Search results for: weak convergence.
222 Newtonian Mechanics Descriptions for General Relativity Experimental Tests, Dark Matter and Dark Energy
Authors: Jing-Gang Xie
Abstract:
As the continuation to the previous studies of gravitational frequency shift, gravitational time dilation, gravitational light bending, gravitational waves, dark matter, and dark energy are explained in the context of Newtonian mechanics. The photon is treated as the particle with mass of hν/C2 under the gravitational field of much larger mass of M. Hence the quantum mechanics theory could be applied to gravitational field on cosmology scale. The obtained results are the same as those obtained by general relativity considering weak gravitational field approximation; however, the results are different when the gravitational field is substantially strong.
Keywords: Gravitational time dilation, gravitational light bending, gravitational waves, dark matter, dark energy, General Relativity, gravitational frequency shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049221 Dynamic Measurement System Modeling with Machine Learning Algorithms
Authors: Changqiao Wu, Guoqing Ding, Xin Chen
Abstract:
In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781220 Unsteady 3D Post-Stall Aerodynamics Accounting for Effective Loss in Camber Due to Flow Separation
Authors: Aritras Roy, Rinku Mukherjee
Abstract:
The current study couples a quasi-steady Vortex Lattice Method and a camber correcting technique, ‘Decambering’ for unsteady post-stall flow prediction. The wake is force-free and discrete such that the wake lattices move with the free-stream once shed from the wing. It is observed that the time-averaged unsteady coefficient of lift sees a relative drop at post-stall angles of attack in comparison to its steady counterpart for some angles of attack. Multiple solutions occur at post-stall and three different algorithms to choose solutions in these regimes show both unsteadiness and non-convergence of the iterations. The distribution of coefficient of lift on the wing span also shows sawtooth. Distribution of vorticity changes both along span and in the direction of the free-stream as the wake develops over time with distinct roll-up, which increases with time.Keywords: Post-stall, unsteady, wing, aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989219 Conversion of Methanol to Propylene over a High Silica B-HZSM-5 Catalyst
Authors: Aina Xu, Hongfang Ma, Haitao Zhang, Weiyong Ying, Dingye Fang
Abstract:
Hydrothermally synthesized high silica borosilicates with the MFI structure was subjected to several characterization techniques. The effect of boron on the structure and acidity of HZSM-5 catalyst were studied by XRD, SEM, N2 adsorption, solid state NMR, NH3-TPD. It was confirmed that boron had entered the framework in the boron samples. The results also revealed that strong acidity was weakened and weak acidity was strengthened by the boron added zeolite framework compared with parent catalyst. The catalytic performance was carried out in a fixed bed at 460°C for methanol to propylene (MTP) reaction. The results of MTP reaction showed a great increment of the propylene selectivity and excellent stability for the B-HZSM-5. The catalyst exhibited about 81% selectivity to C2 = - C4 = olefins with 40% selectivity of propylene as major component at near 100% methanol conversion, and the stable performance in the studied period was 100h.Keywords: Methanol to propylene, HZSM-5, boron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3567218 Simulation and Validation of Spur Gear Heated by Induction using 3d Model
Authors: A. Chebak, N. Barka, A. Menou, J. Brousseau, D. S. Ramdenee
Abstract:
This paper presents the study of hardness profile of spur gear heated by induction heating process in function of the machine parameters, such as the power (kW), the heating time (s) and the generator frequency (kHz). The global work is realized by 3D finite-element simulation applied to the process by coupling and resolving the electromagnetic field and the heat transfer problems, and it was performed in three distinguished steps. First, a Comsol 3D model was built using an adequate formulation and taking into account the material properties and the machine parameters. Second, the convergence study was conducted to optimize the mesh. Then, the surface temperatures and the case depths were deeply analyzed in function of the initial current density and the heating time in medium frequency (MF) and high frequency (HF) heating modes and the edge effect were studied. Finally, the simulations results are validated using experimental tests.
Keywords: Induction heating, simulation, experimental validation, 3D model, hardness profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652217 An Application of the Sinc-Collocation Method to a Three-Dimensional Oceanography Model
Authors: Y. Mohseniahouei, K. Abdella, M. Pollanen
Abstract:
In this paper, we explore the applicability of the Sinc- Collocation method to a three-dimensional (3D) oceanography model. The model describes a wind-driven current with depth-dependent eddy viscosity in the complex-velocity system. In general, the Sinc-based methods excel over other traditional numerical methods due to their exponentially decaying errors, rapid convergence and handling problems in the presence of singularities in end-points. Together with these advantages, the Sinc-Collocation approach that we utilize exploits first derivative interpolation, whose integration is much less sensitive to numerical errors. We bring up several model problems to prove the accuracy, stability, and computational efficiency of the method. The approximate solutions determined by the Sinc-Collocation technique are compared to exact solutions and those obtained by the Sinc-Galerkin approach in earlier studies. Our findings indicate that the Sinc-Collocation method outperforms other Sinc-based methods in past studies.Keywords: Boundary Value Problems, Differential Equations, Sinc Numerical Methods, Wind-Driven Currents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851216 Trajectory-Based Modified Policy Iteration
Abstract:
This paper presents a new problem solving approach that is able to generate optimal policy solution for finite-state stochastic sequential decision-making problems with high data efficiency. The proposed algorithm iteratively builds and improves an approximate Markov Decision Process (MDP) model along with cost-to-go value approximates by generating finite length trajectories through the state-space. The approach creates a synergy between an approximate evolving model and approximate cost-to-go values to produce a sequence of improving policies finally converging to the optimal policy through an intelligent and structured search of the policy space. The approach modifies the policy update step of the policy iteration so as to result in a speedy and stable convergence to the optimal policy. We apply the algorithm to a non-holonomic mobile robot control problem and compare its performance with other Reinforcement Learning (RL) approaches, e.g., a) Q-learning, b) Watkins Q(λ), c) SARSA(λ).Keywords: Markov Decision Process (MDP), Mobile robot, Policy iteration, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446215 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423214 Improving Image Segmentation Performance via Edge Preserving Regularization
Authors: Ying-jie Zhang, Li-ling Ge
Abstract:
This paper presents an improved image segmentation model with edge preserving regularization based on the piecewise-smooth Mumford-Shah functional. A level set formulation is considered for the Mumford-Shah functional minimization in segmentation, and the corresponding partial difference equations are solved by the backward Euler discretization. Aiming at encouraging edge preserving regularization, a new edge indicator function is introduced at level set frame. In which all the grid points which is used to locate the level set curve are considered to avoid blurring the edges and a nonlinear smooth constraint function as regularization term is applied to smooth the image in the isophote direction instead of the gradient direction. In implementation, some strategies such as a new scheme for extension of u+ and u- computation of the grid points and speedup of the convergence are studied to improve the efficacy of the algorithm. The resulting algorithm has been implemented and compared with the previous methods, and has been proved efficiently by several cases.Keywords: Energy minimization, image segmentation, level sets, edge regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498213 Poverty, Inequality and Growth: A Survey of the Literature and Some Facts from Turkey
Authors: Fatma Didin Sonmez
Abstract:
This survey of recent literature examines the link between growth and poverty. It is widely accepted that economic growth is a necessary condition for sustainable poverty reduction. But it is the fact that the economic growth of some countries has been pro-poor while others not. Some factors such as labor market, policies and demographic factors may lead to a weak relationship between economic performance and poverty rate. In this sense pro-growth policies should be pro-poor to increase the poverty alleviation effects of the growth. The purpose of this study is to review the recent studies on the effects of macroeconomic policies on poverty and inequality and to review the poverty analyses which examine the relationship between growth, poverty and inequality. Also this study provides some facts about the relationship between economic growth, inequality and poverty from Turkey. Keywordseconomic growth, inequality, macroeconomic policy, poverty
Keywords: economic growth, inequality, macroeconomic policy, poverty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123212 A Parameter-Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks
Authors: Felix Dobslaw
Abstract:
In this paper, a framework for the simplification and standardization of metaheuristic related parameter-tuning by applying a four phase methodology, utilizing Design of Experiments and Artificial Neural Networks, is presented. Metaheuristics are multipurpose problem solvers that are utilized on computational optimization problems for which no efficient problem specific algorithm exist. Their successful application to concrete problems requires the finding of a good initial parameter setting, which is a tedious and time consuming task. Recent research reveals the lack of approach when it comes to this so called parameter-tuning process. In the majority of publications, researchers do have a weak motivation for their respective choices, if any. Because initial parameter settings have a significant impact on the solutions quality, this course of action could lead to suboptimal experimental results, and thereby a fraudulent basis for the drawing of conclusions.Keywords: Parameter-Tuning, Metaheuristics, Design of Experiments, Artificial Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777211 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559210 A Robotic Rehabilitation Arm Driven by Somatosensory Brain-Computer Interface
Authors: Jiewei Li, Hongyan Cui, Chunqi Chang, Yong Hu
Abstract:
It was expected to benefit patient with hemiparesis after stroke by extensive arm rehabilitation, to partially regain forearm and hand function. This paper propose a robotic rehabilitation arm in assisting the hemiparetic patient to learn new ways of using and moving their weak arms. In this study, the robotic arm was driven by a somatosensory stimulated brain computer interface (BCI), which is a new modality BCI. The use of somatosensory stimulation is not only an input for BCI, but also a electrical stimulation for treatment of hemiparesis to strengthen the arm and improve its range of motion. A trial of this robotic rehabilitation arm was performed in a stroke patient with pure motor hemiparesis. The initial trial showed a promising result from the patient with great motivation and function improvement. It suggests that robotic rehabilitation arm driven by somatosensory BCI can enhance the rehabilitation performance and progress for hemiparetic patients after stroke.
Keywords: Robotic rehabilitation arm, brain computer interface (BCI), hemiparesis, stroke, somatosensory stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236209 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning
Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim
Abstract:
As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.
Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130208 Governmentality and the Norwegian Knowledge Promotion Reform
Authors: Christin Tønseth
Abstract:
The Norwegian ‘knowledge promotion reform’ was implemented in elementary schools and upper secondary schools in 2006. The goal of the reform was that all pupils should develop basic skills and competencies in order to take an active part in the knowledge society. This paper discusses how governmentality as a management principle is demonstrated through the Norwegian ‘knowledge promotion reform’. Evaluation reports and political documents are the basis for the discussion. The ‘knowledge promotion reform’ was including quality assurance for schools, teachers, and students and the authorities retained control by using curricula and national tests. The reform promoted several intentions that were not reached. In light of governmentality, it seemed that thoughts and intentions by the authorities differed from those in the world of practice. The quality assurances did not motivate the practitioners to be self-governing. The relationship between the authorities and the implementation actors was weak, and the reform was, therefore, difficult to implement in practice.
Keywords: Education politics, governance, governmentality, the Norwegian knowledge promotion reform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173207 Elephant Herding Optimization for Service Selection in QoS-Aware Web Service Composition
Authors: Samia Sadouki Chibani, Abdelkamel Tari
Abstract:
Web service composition combines available services to provide new functionality. Given the number of available services with similar functionalities and different non functional aspects (QoS), the problem of finding a QoS-optimal web service composition is considered as an optimization problem belonging to NP-hard class. Thus, an optimal solution cannot be found by exact algorithms within a reasonable time. In this paper, a meta-heuristic bio-inspired is presented to address the QoS aware web service composition; it is based on Elephant Herding Optimization (EHO) algorithm, which is inspired by the herding behavior of elephant group. EHO is characterized by a process of dividing and combining the population to sub populations (clan); this process allows the exchange of information between local searches to move toward a global optimum. However, with Applying others evolutionary algorithms the problem of early stagnancy in a local optimum cannot be avoided. Compared with PSO, the results of experimental evaluation show that our proposition significantly outperforms the existing algorithm with better performance of the fitness value and a fast convergence.Keywords: Elephant herding optimization, web service composition, bio-inspired algorithms, QoS optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032206 Stability Analysis of Impulsive Stochastic Fuzzy Cellular Neural Networks with Time-varying Delays and Reaction-diffusion Terms
Authors: Xinhua Zhang, Kelin Li
Abstract:
In this paper, the problem of stability analysis for a class of impulsive stochastic fuzzy neural networks with timevarying delays and reaction-diffusion is considered. By utilizing suitable Lyapunov-Krasovskii funcational, the inequality technique and stochastic analysis technique, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive stochastic fuzzy cellular neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of fuzzy neural networks. An example is given to show the effectiveness of the obtained results.
Keywords: Exponential stability, stochastic fuzzy cellular neural networks, time-varying delays, impulses, reaction-diffusion terms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382205 Migration among Multicities
Authors: Ming Guan
Abstract:
This paper proposes a simple model of economic geography within the Dixit-Stiglitz-Iceberg framework that may be used to analyze migration patterns among three cities. The cost–benefit tradeoffs affecting incentives for three types of migration, including echelon migration, are discussed. This paper develops a tractable, heterogeneous-agent, general equilibrium model, where agents share constant human capital, and explores the relationship between the benefits of echelon migration and gross human capital. Using Chinese numerical solutions, we study the manifestation of echelon migration and how it responds to changes in transportation cost and elasticity of substitution. Numerical results demonstrate that (i) there are positive relationships between a migration-s benefit-and-wage ratio, (ii) there are positive relationships between gross human capital ratios and wage ratios as to origin and destination, and (iii) we identify 13 varieties of human capital convergence among cities. In particular, this model predicts population shock resulting from the processes of migration choice and echelon migration.
Keywords: Dixit-Stiglitz-Iceberg framework, elasticity , echelonmigration, trade-off
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473204 Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix
Authors: Tao Dai, Andy Adler, Behnam Shahrrava
Abstract:
This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.
Keywords: Adaptive signal processing, affine projection algorithms, variable step-size adaptive algorithms, regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631203 Assessment of Vulnerability Curves Using Vulnerability Index Method for Reinforced Concrete Structures
Authors: F. I. Belheouane, M. Bensaibi
Abstract:
The seismic feedback experiences in Algeria have shown higher percentage of damages for non-code conforming reinforced concrete (RC) buildings. Furthermore, the vulnerability of these buildings was further aggravated due to presence of many factors (e.g. weak the seismic capacity of these buildings, shorts columns, Pounding effect, etc.). Consequently Seismic risk assessments were carried out on populations of buildings to identify the buildings most likely to undergo losses during an earthquake. The results of such studies are important in the mitigation of losses under future seismic events as they allow strengthening intervention and disaster management plans to be drawn up. Within this paper, the state of the existing structures is assessed using "the vulnerability index" method. This method allows the classification of RC constructions taking into account both, structural and non structural parameters, considered to be ones of the main parameters governing the vulnerability of the structure. Based on seismic feedback from past earthquakes DPM (damage probability matrices) were developed too.Keywords: Seismic vulnerability, Reinforced concrete buildings, Earthquake, DPM, Algeria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923202 Perceptions of Corporate Social Responsibility Concept in Greece
Authors: Grigoris Giannarakis, Nikolaos Litinas, Ioannis Theotokas
Abstract:
This study attempts to clarify major perspectives of Corporate Social Responsibility (CSR) in the Greek market related to companies that have sufficient CSR. An empirical analysis was undertaken, based on literature review and previous observations and surveys, in order to provide a general analysis of the CSR concept in Greece. The results of Accountability Rating institution were used in order to identify companies that adopt an integrated social responsibility approach. Companies that responded to the survey are both regional and international and belong to different industrial fields. Some of the main survey results reveal: multiple aspects for the CSR concept, weak consensus as regards the importance of stakeholders and benefits from the CSR implementation, the important role of CSR in the decision procedure and CSR practices concerning social issues that affect mostly company-s competitiveness. Sharing companies- experience could address common social issues through CSR best practices and develop new knowledge.
Keywords: Corporate Social Responsibility, Greece, Kendall's co-efficient of concordance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241201 Restriction Specificity of Some Soybean Genotypes to Bradyrhizobium japonicum Serogrous
Authors: H.K. Abd El-Maksoud, H.H. Keyser
Abstract:
Competitive relationships among Bradyrhizobium japonicum USDA serogroup 123, 122 and 138 were screened versus the standard commercial soybean variety Williams and two introductions P1 377578 "671" in a field trial. Displacement of strain 123 by an effective strain should improved N2 fixation. Root nodules were collected and strain occupancy percentage was determined using strain specific fluorescent antibodies technique. As anticipated the strain USDA 123 dominated 92% of nodules due to the high affinity between the host and the symbiont. This dominance was consistent and not changed materially either by inoculation practice or by introducing new strainan. The interrelationship between the genotype Williams and serogroup 122 & 138 was found very weak although the cell density of the strain in the rhizosphere area was equal. On the other hand, the nodule occupancy of genotypes 671 and 166 with rhizobia serogroup 123 was almost diminished to zero. . The data further exhibited that the genotypes P1 671 and P1 166 have high affinity to colonize with strains 122 and 138 whereas Williams was highly promiscuous to strain 123.Keywords: B. japonicum serogroups, Competition, Host restriction, Soybean genotype.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380200 Client Server System for e-Services Access Using Mobile Communications Networks
Authors: Eugen Pop, Mihai Barbos, Razvan Lupu
Abstract:
The client server systems using mobile communications networks for data transmission became very attractive for many economic agents, in the purpose of promoting and offering electronic services to their clients. E-services are suitable for business developing and financial benefits increasing. The products or services can be efficiently delivered to a large number of clients, using mobile Internet access technologies. The clients can have access to e-services, anywhere and anytime, with the support of 3G, GPRS, WLAN, etc., channels bandwidth, data services and protocols. Based on the mobile communications networks evolution and development, a convergence of technological and financial interests of mobile operators, software developers, mobile terminals producers and e-content providers is established. These will lead to a high level of integration of IT&C resources and will facilitate the value added services delivery through the mobile communications networks. In this paper it is presented a client server system, for e-services access, with Smartphones and PDA-s mobile software applications, installed on Symbian and Windows Mobile operating systems.Keywords: Client server system, e-services access, mobile communications, PDA, Smartphone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666199 Simulation of Particle Damping under Centrifugal Loads
Authors: Riaz A. Bhatti, Wang Yanrong
Abstract:
Particle damping is a technique to reduce the structural vibrations by means of placing small metallic particles inside a cavity that is attached to the structure at location of high vibration amplitudes. In this paper, we have presented an analytical model to simulate the particle damping of two dimensional transient vibrations in structure operating under high centrifugal loads. The simulation results show that this technique remains effective as long as the ratio of the dynamic acceleration of the structure to the applied centrifugal load is more than 0.1. Particle damping increases with the increase of particle to structure mass ratio. However, unlike to the case of particle damping in the absence of centrifugal loads where the damping efficiency strongly depends upon the size of the cavity, here this dependence becomes very weak. Despite the simplicity of the model, the simulation results are considerably in good agreement with the very scarce experimental data available in the literature for particle damping under centrifugal loads.Keywords: Impact damping, particle damping, vibration control, vibration suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799198 Optimal Placement and Sizing of SVC for Load Margin Improvement Using BF Algorithm
Authors: Santi Behera, M. Tripathy, J. K. Satapathy
Abstract:
Power systems are operating under stressed condition due to continuous increase in demand of load. This can lead to voltage instability problem when face additional load increase or contingency. In order to avoid voltage instability suitable size of reactive power compensation at optimal location in the system is required which improves the load margin. This work aims at obtaining optimal size as well as location of compensation in the 39- bus New England system with the help of Bacteria Foraging and Genetic algorithms. To reduce the computational time the work identifies weak candidate buses in the system, and then picks only two of them to take part in the optimization. The objective function is based on a recently proposed voltage stability index which takes into account the weighted average sensitivity index is a simpler and faster approach than the conventional CPF algorithm. BFOA has been found to give better results compared to GA.
Keywords: BFOA, GA, SSVSL, WASI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190197 Discrete Particle Swarm Optimization Algorithm Used for TNEP Considering Network Adequacy Restriction
Authors: H. Shayeghi, M. Mahdavi, A. Kazemi
Abstract:
Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, transmission expansion planning considering network adequacy restriction has not been investigated. Thus, in this paper, STNEP problem is being studied considering network adequacy restriction using discrete particle swarm optimization (DPSO) algorithm. The goal of this paper is obtaining a configuration for network expansion with lowest expansion cost and a specific adequacy. The proposed idea has been tested on the Garvers network and compared with the decimal codification genetic algorithm (DCGA). The results show that the network will possess maximum efficiency economically. Also, it is shown that precision and convergence speed of the proposed DPSO based method for the solution of the STNEP problem is more than DCGA approach.Keywords: DPSO algorithm, Adequacy restriction, STNEP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549196 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: Classification, classifier fusion, CNN, Deep Learning, prediction, SNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720195 Medical Image Segmentation and Detection of MR Images Based on Spatial Multiple-Kernel Fuzzy C-Means Algorithm
Authors: J. Mehena, M. C. Adhikary
Abstract:
In this paper, a spatial multiple-kernel fuzzy C-means (SMKFCM) algorithm is introduced for segmentation problem. A linear combination of multiples kernels with spatial information is used in the kernel FCM (KFCM) and the updating rules for the linear coefficients of the composite kernels are derived as well. Fuzzy cmeans (FCM) based techniques have been widely used in medical image segmentation problem due to their simplicity and fast convergence. The proposed SMKFCM algorithm provides us a new flexible vehicle to fuse different pixel information in medical image segmentation and detection of MR images. To evaluate the robustness of the proposed segmentation algorithm in noisy environment, we add noise in medical brain tumor MR images and calculated the success rate and segmentation accuracy. From the experimental results it is clear that the proposed algorithm has better performance than those of other FCM based techniques for noisy medical MR images.Keywords: Clustering, fuzzy C-means, image segmentation, MR images, multiple kernels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129194 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules
Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima
Abstract:
Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.Keywords: Box-Jenkins’s problem, Double-input rule module, Fuzzy inference model, Obstacle avoidance, Single-input rule module.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957193 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve
Authors: Roman Klas, František Pochylý, Pavel Rudolf
Abstract:
This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design.
Keywords: CFD, radiaxial pump, spiral case, stability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572