Search results for: reliability prediction model
7981 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: Model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10027980 Attribution Theory and Perceived Reliability of Cellphones for Teaching and Learning
Authors: Mayowa A. Sofowora, Seraphim D. Eyono Obono
Abstract:
The use of information and communication technologies such as computers, mobile phones and the Internet is becoming prevalent in today’s world; and it is facilitating access to a vast amount of data, services and applications for the improvement of people’s lives. However, this prevalence of ICTs is hampered by the problem of low income levels in developing countries to the point where people cannot timeously replace or repair their ICT devices when damaged or lost; and this problem serves as a motivation for this study whose aim is to examine the perceptions of teachers on the reliability of cellphones when used for teaching and learning purposes. The research objectives unfolding this aim are of two types: Objectives on the selection and design of theories and models, and objectives on the empirical testing of these theories and models. The first type of objectives is achieved using content analysis in an extensive literature survey: and the second type of objectives is achieved through a survey of high school teachers from the ILembe and UMgungundlovu districts in the KwaZulu-Natal province of South Africa. Data collected from this questionnaire based survey is analysed in SPSS using descriptive statistics and Pearson correlations after checking the reliability and validity of the questionnaires. The main hypothesis driving this study is that there is a relationship between the demographics and the attribution identity of teachers on one hand, and their perceptions on the reliability of cellphones on the other hand, as suggested by existing literature; except that attribution identities are considered in this study under three angles: intention, knowledge and ability, and action. The results of this study confirm that the perceptions of teachers on the reliability of cellphones for teaching and learning are affected by the school location of these teachers, and by their perceptions on learners’ cellphones usage intentions and actual use.
Keywords: Attribution, Cellphones, E-learning, Reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18047979 A Study of Neuro-Fuzzy Inference System for Gross Domestic Product Growth Forecasting
Authors: Ε. Giovanis
Abstract:
In this paper we present a Adaptive Neuro-Fuzzy System (ANFIS) with inputs the lagged dependent variable for the prediction of Gross domestic Product growth rate in six countries. We compare the results with those of Autoregressive (AR) model. We conclude that the forecasting performance of neuro-fuzzy-system in the out-of-sample period is much more superior and can be a very useful alternative tool used by the national statistical services and the banking and finance industry.Keywords: Autoregressive model, Forecasting, Gross DomesticProduct, Neuro-Fuzzy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16037978 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study
Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng
Abstract:
MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23877977 Prediction of Cardiovascular Disease by Applying Feature Extraction
Authors: Nebi Gedik
Abstract:
Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.
Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347976 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair
Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira
Abstract:
A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.
Keywords: Bottleneck, Golgohar Iron Ore Mining and Industrial Company, maintainability, maintenance costs, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9567975 Reliability Analysis of P-I Diagram Formula for RC Column Subjected to Blast Load
Authors: Masoud Abedini, Azrul A. Mutalib, Shahrizan Baharom, Hong Hao
Abstract:
This study was conducted published to investigate there liability of the equation pressure-impulse (PI) reinforced concrete column inprevious studies. Equation involves three different levels of damage criteria known as D =0. 2, D =0. 5 and D =0. 8.The damage criteria known as a minor when 0-0.2, 0.2-0.5is known as moderate damage, high damage known as 0.5-0.8, and 0.8-1 of the structure is considered a failure. In this study, two types of reliability analyzes conducted. First, using pressure-impulse equation with different parameters. The parameters involved are the concrete strength, depth, width, and height column, the ratio of longitudinal reinforcement and transverse reinforcement ratio. In the first analysis of the reliability of this new equation is derived to improve the previous equations. The second reliability analysis involves three types of columns used to derive the PI curve diagram using the derived equation to compare with the equation derived from other researchers and graph minimum standoff versus weapon yield Federal Emergency Management Agency (FEMA). The results showed that the derived equation is more accurate with FEMA standards than previous researchers.
Keywords: Blast load, RC column, P-I curve, Analytical formulae, Standard FEMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29137974 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in Golgohar Company
Authors: Iman Atighi, Jalal Soleimannejad, Ahmad Akbarinasab, Saeid Moradpour
Abstract:
In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increase prices. Therefore, the only way to increase profit will be reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Company (GEG) was examined by using of MTBF (Mean Time between Failures) and MTTR (Mean Time to Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.
Keywords: Golgohar Iron Ore Mining & Industrial Company, maintainability, maintenance costs, reliability-center-maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6567973 A Model for Estimation of Efforts in Development of Software Systems
Authors: Parvinder S. Sandhu, Manisha Prashar, Pourush Bassi, Atul Bisht
Abstract:
Software effort estimation is the process of predicting the most realistic use of effort required to develop or maintain software based on incomplete, uncertain and/or noisy input. Effort estimates may be used as input to project plans, iteration plans, budgets. There are various models like Halstead, Walston-Felix, Bailey-Basili, Doty and GA Based models which have already used to estimate the software effort for projects. In this study Statistical Models, Fuzzy-GA and Neuro-Fuzzy (NF) Inference Systems are experimented to estimate the software effort for projects. The performances of the developed models were tested on NASA software project datasets and results are compared with the Halstead, Walston-Felix, Bailey-Basili, Doty and Genetic Algorithm Based models mentioned in the literature. The result shows that the NF Model has the lowest MMRE and RMSE values. The NF Model shows the best results as compared with the Fuzzy-GA based hybrid Inference System and other existing Models that are being used for the Effort Prediction with lowest MMRE and RMSE values.Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model, GA Based Model, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32277972 Objectivity, Reliability and Validity of the 90º Push-Ups Test Protocol Among Male and Female Students of Sports Science Program
Authors: Ahmad Hashim, Mohd Sani Madon
Abstract:
This study was conducted to determine the objectivity, reliability and validity of the 90º push-ups test protocol among male and female students of Sports Science Program, Faculty of Sports Science and Coaching Sultan Idris University of Education. Samples (n = 300), consisted of males (n = 168) and females (n = 132) students were randomly selected for this study. Researchers tested the 90º push-ups on the sample twice in a single trial, test and re-test protocol in the bench press test. Pearson-Product Moment Correlation method's was used to determine the value of objectivity, reliability and validity testing. The findings showed that the 900 pushups test protocol showed high consistency between the two testers with a value of r = .99. Likewise, The reliability value between test and re-test for the 90º push-ups test for the male (r=.93) and female (r=.93) students was also high. The results showed a correlation between 90º push-ups test and bench press test for boys was r = .64 and girls was r = .28. This finding indicates that the use of the 90º push-ups to test muscular strength and endurance in the upper body of males has a higher validity values than female students.Keywords: Arm and shoulder girdle strength and endurance, 900 push-ups, bench press
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92157971 Prediction of Protein Subchloroplast Locations using Random Forests
Authors: Chun-Wei Tung, Chyn Liaw, Shinn-Jang Ho, Shinn-Ying Ho
Abstract:
Protein subchloroplast locations are correlated with its functions. In contrast to the large amount of available protein sequences, the information of their locations and functions is less known. The experiment works for identification of protein locations and functions are costly and time consuming. The accurate prediction of protein subchloroplast locations can accelerate the study of functions of proteins in chloroplast. This study proposes a Random Forest based method, ChloroRF, to predict protein subchloroplast locations using interpretable physicochemical properties. In addition to high prediction accuracy, the ChloroRF is able to select important physicochemical properties. The important physicochemical properties are also analyzed to provide insights into the underlying mechanism.Keywords: Chloroplast, Physicochemical properties, Proteinlocations, Random Forests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16777970 A Dynamic Programming Model for Maintenance of Electric Distribution System
Authors: Juha Korpijärvi, Jari Kortelainen
Abstract:
The paper presents dynamic programming based model as a planning tool for the maintenance of electric power systems. Every distribution component has an exponential age depending reliability function to model the fault risk. In the moment of time when the fault costs exceed the investment costs of the new component the reinvestment of the component should be made. However, in some cases the overhauling of the old component may be more economical than the reinvestment. The comparison between overhauling and reinvestment is made by optimisation process. The goal of the optimisation process is to find the cost minimising maintenance program for electric power distribution system.
Keywords: Dynamic programming, Electric distribution system, Maintenance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21057969 A Comparison of Air Pollution in Developed and Developing Cities: A Case Study of London and Beijing
Abstract:
With the rapid development of industrialization, countries in different stages of development in the world have gradually begun to pay attention to the impact of air pollution on health and the environment. Air control in developed countries is an effective reference for air control in developing countries. Artificial intelligence and other technologies also play a positive role in the prediction of air pollution. By comparing the annual changes of pollution in London and Beijing, this paper concludes that the pollution in developed cities is relatively low and stable, while the pollution in Beijing is relatively heavy and unstable, but is clearly improving. In addition, by analyzing the changes of major pollutants in Beijing in the past eight years, it is concluded that all pollutants except O3 show a significant downward trend. In addition, all pollutants except O3 have certain correlation. For example, PM10 and PM2.5 have the greatest influence on air quality index (AQI). Python, which is commonly used by artificial intelligence, is used as the main software to establish two models, support vector machine (SVM) and linear regression. By comparing the two models under the same conditions, it is concluded that SVM has higher accuracy in pollution prediction. The results of this study provide valuable reference for pollution control and prediction in developing countries.
Keywords: Air pollution, particulate matter, AQI, correlation coefficient, air pollution prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5817968 Three Steps of One-way Nested Grid for Energy Balance Equations by Wave Model
Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai
Abstract:
The three steps of the standard one-way nested grid for a regional scale of the third generation WAve Model Cycle 4 (WAMC4) is scrutinized. The model application is enabled to solve the energy balance equation on a coarse resolution grid in order to produce boundary conditions for a smaller area by the nested grid technique. In the present study, the model takes a full advantage of the fine resolution of wind fields in space and time produced by the available U.S. Navy Global Atmospheric Prediction System (NOGAPS) model with 1 degree resolution. The nested grid application of the model is developed in order to gradually increase the resolution from the open ocean towards the South China Sea (SCS) and the Gulf of Thailand (GoT) respectively. The model results were compared with buoy observations at Ko Chang, Rayong and Huahin locations which were obtained from the Seawatch project. In addition, the results were also compared with Satun based weather station which was provided from Department of Meteorology, Thailand. The data collected from this station presented the significant wave height (Hs) reached 12.85 m. The results indicated that the tendency of the Hs from the model in the spherical coordinate propagation with deep water condition in the fine grid domain agreed well with the Hs from the observations.Keywords: energy balance equation, Gulf of Thailand, nested gridapplication, South China Sea, wave model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15967967 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database
Authors: M. Breška, I. Peruš, V. Stankovski
Abstract:
The number of Ground Motion Prediction Equations (GMPEs) used for predicting peak ground acceleration (PGA) and the number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.
Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14957966 Result Validation Analysis of Steel Testing Machines
Authors: Wasiu O. Ajagbe, Habeeb O. Hamzat, Waris A. Adebisi
Abstract:
Structural failures occur due to a number of reasons. These may include under design, poor workmanship, substandard materials, misleading laboratory tests and lots more. Reinforcing steel bar is an important construction material, hence its properties must be accurately known before being utilized in construction. Understanding this property involves carrying out mechanical tests prior to design and during construction to ascertain correlation using steel testing machine which is usually not readily available due to the location of project. This study was conducted to determine the reliability of reinforcing steel testing machines. Reconnaissance survey was conducted to identify laboratories where yield and ultimate tensile strengths tests can be carried out. Six laboratories were identified within Ibadan and environs. However, only four were functional at the time of the study. Three steel samples were tested for yield and tensile strengths, using a steel testing machine, at each of the four laboratories (LM, LO, LP and LS). The yield and tensile strength results obtained from the laboratories were compared with the manufacturer’s specification using a reliability analysis programme. Structured questionnaire was administered to the operators in each laboratory to consider their impact on the test results. The average value of manufacturers’ tensile strength and yield strength are 673.7 N/mm2 and 559.7 N/mm2 respectively. The tensile strength obtained from the four laboratories LM, LO, LP and LS are given as 579.4, 652.7, 646.0 and 649.9 N/mm2 respectively while their yield strengths respectively are 453.3, 597.0, 550.7 and 564.7 N/mm2. Minimum tensile to yield strength ratio is 1.08 for BS 4449: 2005 and 1.15 for ASTM A615. Tensile to yield strength ratio from the four laboratories are 1.28, 1.09, 1.17 and 1.15 for LM, LO, LP and LS respectively. The tensile to yield strength ratio shows that the result obtained from all the laboratories meet the code requirements used for the test. The result of the reliability test shows varying level of reliability between the manufacturers’ specification and the result obtained from the laboratories. Three of the laboratories; LO, LS and LP have high value of reliability with the manufacturer i.e. 0.798, 0.866 and 0.712 respectively. The fourth laboratory, LM has a reliability value of 0.100. Steel test should be carried out in a laboratory using the same code in which the structural design was carried out. More emphasis should be laid on the importance of code provisions.
Keywords: Reinforcing steel bars, reliability analysis, tensile strength, universal testing machine, yield strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7497965 Fuzzy Logic System for Tractive Performance Prediction of an Intelligent Air-Cushion Track Vehicle
Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda
Abstract:
Fuzzy logic system (FLS) is used in this study to predict the tractive performance in terms of traction force, and motion resistance for an intelligent air cushion track vehicle while it operates in the swamp peat. The system is effective to control the intelligent air –cushion system with measuring the vehicle traction force (TF), motion resistance (MR), cushion clearance height (CH) and cushion pressure (CP). Ultrasonic displacement sensor, pull-in solenoid electromagnetic switch, pressure control sensor, micro controller, and battery pH sensor are incorporated with the Fuzzy logic system to investigate experimentally the TF, MR, CH, and CP. In this study, a comparison for tractive performance of an intelligent air cushion track vehicle has been performed with the results obtained from the predicted values of FLS and experimental actual values. The mean relative error of actual and predicted values from the FLS model on traction force, and total motion resistance are found as 5.58 %, and 6.78 % respectively. For all parameters, the relative error of predicted values are found to be less than the acceptable limits. The goodness of fit of the prediction values from the FLS model on TF, and MR are found as 0.90, and 0.98 respectively.Keywords: Cushion pressure, Fuzzy logic, Motion resistance, Traction force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14937964 Use of Radial Basis Function Neural Network for Bearing Pressure Prediction of Strip Footing on Reinforced Granular Bed Overlying Weak Soil
Authors: Srinath Shetty K., Shivashankar R., Rashmi P. Shetty
Abstract:
Earth reinforcing techniques have become useful and economical to solve problems related to difficult grounds and provide satisfactory foundation performance. In this context, this paper uses radial basis function neural network (RBFNN) for predicting the bearing pressure of strip footing on reinforced granular bed overlying weak soil. The inputs for the neural network models included plate width, thickness of granular bed and number of layers of reinforcements, settlement ratio, water content, dry density, cohesion and angle of friction. The results indicated that RBFNN model exhibited more than 84 % prediction accuracy, thereby demonstrating its application in a geotechnical problem.
Keywords: Bearing pressure, granular bed, radial basis function neural network, strip footing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19467963 A Strategy for a Robust Design of Cracked Stiffened Panels
Authors: Francesco Caputo, Giuseppe Lamanna, Alessandro Soprano
Abstract:
This work is focused on the numerical prediction of the fracture resistance of a flat stiffened panel made of the aluminium alloy 2024 T3 under a monotonic traction condition. The performed numerical simulations have been based on the micromechanical Gurson-Tvergaard (GT) model for ductile damage. The applicability of the GT model to this kind of structural problems has been studied and assessed by comparing numerical results, obtained by using the WARP 3D finite element code, with experimental data available in literature. In the sequel a home-made procedure is presented, which aims to increase the residual strength of a cracked stiffened aluminum panel and which is based on the stochastic design improvement (SDI) technique; a whole application example is then given to illustrate the said technique.
Keywords: Residual strength, R-Curve, Gurson model, SDI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15417962 Tractive Performance Prediction for Intelligent Air-Cushion Track Vehicle: Fuzzy Logic Approach
Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda
Abstract:
Fuzzy logic approach is used in this study to predict the tractive performance in terms of traction force, and motion resistance for an intelligent air cushion track vehicle while it operates in the swamp peat. The system is effective to control the intelligent air –cushion system with measuring the vehicle traction force (TF), motion resistance (MR), cushion clearance height (CH) and cushion pressure (CP). Sinkage measuring sensor, magnetic switch, pressure sensor, micro controller, control valves and battery are incorporated with the Fuzzy logic system (FLS) to investigate experimentally the TF, MR, CH, and CP. In this study, a comparison for tractive performance of an intelligent air cushion track vehicle has been performed with the results obtained from the predicted values of FLS and experimental actual values. The mean relative error of actual and predicted values from the FLS model on traction force, and total motion resistance are found as 5.58 %, and 6.78 % respectively. For all parameters, the relative error of predicted values are found to be less than the acceptable limits. The goodness of fit of the prediction values from the FLS model on TF, and MR are found as 0.90, and 0.98 respectively.Keywords: Cushion pressure, Fuzzy logic, Motion resistance, Traction force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14997961 Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection
Authors: Ayat E. Ali, Christeen R. Aziz, Merna A. Helmy, Mohammed M. Malek, Sherif H. El-Gohary
Abstract:
Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.
Keywords: K-nearest neighbor, face detection, vitiligo, bone deformity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7017960 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber
Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi
Abstract:
This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.Keywords: Bending and deflection, Bridge beam, Compression, Nigerian Opepe, Shear, Structural reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12587959 Simulation of Effect of Current Stressing on Reliability of Solder Joints with Cu-Pillar Bumps
Authors: Y. Li, Q. S. Zhang, H. Z. Huang, B. Y. Wu
Abstract:
The mechanism behind the electromigration and thermomigration failure in flip-chip solder joints with Cu-pillar bumps was investigated in this paper through using finite element method. Hot spot and the current crowding occurrs in the upper corner of copper column instead of solders of the common solder ball. The simulation results show that the change in thermal gradient is noticeable, which might greatly affect the reliability of solder joints with Cu-pillar bumps under current stressing. When the average applied current density is increased from 1×104 A/cm2 to 3×104 A/cm2 in solders, the thermal gradient would increase from 74 K/cm to 901 K/cm at an ambient temperature of 25°C. The force from thermal gradient of 901 K/cm can nearly induce thermomigration by itself. With the increase in applied current, the thermal gradient is growing. It is proposed that thermomigration likely causes a serious reliability issue for Cu column based interconnects.Keywords: Simulation, Cu-pillar bumps, Electromigration, Thermomigration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18667958 Computational Prediction of Complicated Atmospheric Motion for Spinning or non- Spinning Projectiles
Authors: Dimitrios N. Gkritzapis, Elias E. Panagiotopoulos, Dionissios P. Margaris, Dimitrios G. Papanikas
Abstract:
A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high spin and fin-stabilized projectiles via atmospheric flight to final impact point. The projectiles is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The mathematical model is based on the full equations of motion set up in the no-roll body reference frame and is integrated numerically from given initial conditions at the firing site. The projectiles maneuvering motion depends on the most significant force and moment variations, in addition to wind and gravity. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy-s book. The developed computational method gives satisfactory agreement with published data of verified experiments and computational codes on atmospheric projectile trajectory analysis for various initial firing flight conditions.Keywords: Constant-Variable aerodynamic coefficients, low and high pitch angles, wind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24227957 A Study of Behavioral Phenomena Using ANN
Authors: Yudhajit Datta
Abstract:
Behavioral aspects of experience such as will power are rarely subjected to quantitative study owing to the numerous complexities involved. Will is a phenomenon that has puzzled humanity for a long time. It is a belief that will power of an individual affects the success achieved by them in life. It is also thought that a person endowed with great will power can overcome even the most crippling setbacks in life while a person with a weak will cannot make the most of life even the greatest assets. This study is an attempt to subject the phenomena of will to the test of an artificial neural network through a computational model. The claim being tested is that will power of an individual largely determines success achieved in life. It is proposed that data pertaining to success of individuals be obtained from an experiment and the phenomenon of will be incorporated into the model, through data generated recursively using a relation between will and success characteristic to the model. An artificial neural network trained using part of the data, could subsequently be used to make predictions regarding data points in the rest of the model. The procedure would be tried for different models and the model where the networks predictions are found to be in greatest agreement with the data would be selected; and used for studying the relation between success and will.
Keywords: Will Power, Success, ANN, Time Series Prediction, Sliding Window, Computational Model, Behavioral Phenomena.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19297956 A Proposed Performance Prediction Approach for Manufacturing Processes using ANNs
Authors: M. S. Abdelwahed, M. A. El-Baz, T. T. El-Midany
Abstract:
this paper aims to provide an approach to predict the performance of the product produced after multi-stages of manufacturing processes, as well as the assembly. Such approach aims to control and subsequently identify the relationship between the process inputs and outputs so that a process engineer can more accurately predict how the process output shall perform based on the system inputs. The approach is guided by a six-sigma methodology to obtain improved performance. In this paper a case study of the manufacture of a hermetic reciprocating compressor is presented. The application of artificial neural networks (ANNs) technique is introduced to improve performance prediction within this manufacturing environment. The results demonstrate that the approach predicts accurately and effectively.Keywords: Artificial neural networks, Reciprocating compressor manufacturing, Performance prediction, Quality improvement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17827955 Simulation of Kinetic Friction in L-Bending of Sheet Metals
Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang
Abstract:
This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.
Keywords: Friction, L-bending, Springback, Stribeck curves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24007954 A Model Predicting the Microbiological Qualityof Aquacultured Sea Bream (Sparus aurata) According to Physicochemical Data: An Application in Western Greece Fish Aquaculture
Authors: Joan Iliopoulou-Georgudaki, Chris Theodoropoulos, Danae Venieri, Maria Lagkadinou
Abstract:
Monitoring of microbial flora in aquacultured sea bream, in relation to the physicochemical parameters of the rearing seawater, ended to a model describing the influence of the last to the quality of the fisheries. Fishes were sampled during eight months from four aqua farms in Western Greece and analyzed for psychrotrophic, H2S producing bacteria, Salmonella sp., heterotrophic plate count (PCA), with simultaneous physical evaluation. Temperature, dissolved oxygen, pH, conductivity, TDS, salinity, NO3 - and NH4 + ions were recorded. Temperature, dissolved oxygen and conductivity were correlated, respectively, to PCA, Pseudomonas sp. and Shewanella sp. counts. These parameters were the inputs of the model, which was driving, as outputs, to the prediction of PCA, Vibrio sp., Pseudomonas sp. and Shewanella sp. counts, and fish microbiological quality. The present study provides, for the first time, a ready-to-use predictive model of fisheries hygiene, leading to an effective management system for the optimization of aquaculture fisheries quality.
Keywords: Microbiological, model, physicochemical, Seabream.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17497953 Contaminant Transport in Soil from a Point Source
Authors: S. A. Nta, M. J. Ayotamuno, A. H. Igoni, R. N. Okparanma
Abstract:
The work sought to understand the pattern of movement of contaminant from a continuous point source through soil. The soil used was sandy-loam in texture. The contaminant used was municipal solid waste landfill leachate, introduced as a point source through an entry point located at the center of top layer of the soil tank. Analyses were conducted after maturity periods of 50 and 80 days. The maximum change in chemical concentration was observed on soil samples at a radial distance of 0.25 m. Finite element approximation based model was used to assess the future prediction, management and remediation in the polluted area. The actual field data collected for the case study were used to calibrate the modeling and thus simulated the flow pattern of the pollutants through soil. MATLAB R2015a was used to visualize the flow of pollutant through the soil. Dispersion coefficient at 0.25 and 0.50 m radial distance from the point of application of leachate shows a measure of the spreading of a flowing leachate due to the nature of the soil medium, with its interconnected channels distributed at random in all directions. Surface plots of metals on soil after maturity period of 80 days shows a functional relationship between a designated dependent variable (Y), and two independent variables (X and Z). Comparison of measured and predicted profile transport along the depth after 50 and 80 days of leachate application and end of the experiment shows that there were no much difference between the predicted and measured concentrations as they were all lying close to each other. For the analysis of contaminant transport, finite difference approximation based model was very effective in assessing the future prediction, management and remediation in the polluted area. The experiment gave insight into the most likely pattern of movement of contaminant as a result of continuous percolations of the leachate on soil. This is important for contaminant movement prediction and subsequent remediation of such soils.
Keywords: Contaminant, dispersion, point or leaky source, surface plot, soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5327952 Hidden Markov Model for the Simulation Study of Neural States and Intentionality
Authors: R. B. Mishra
Abstract:
Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful.Keywords: BDI, HMM, neural activation, optimal states, working conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870