Search results for: hierarchical clustering
192 Framework and Characterization of Physical Internet
Authors: Charifa Fergani, Adiba El Bouzekri El Idrissi, Suzanne Marcotte, Abdelowahed Hajjaji
Abstract:
Over the last years, a new paradigm known as Physical Internet has been developed, and studied in logistics management. The purpose of this global and open system is to deal with logistics grand challenge by setting up an efficient and sustainable Logistics Web. The purpose of this paper is to review scientific articles dedicated to Physical Internet topic, and to provide a clustering strategy enabling to classify the literature on the Physical Internet, to follow its evolution, as well as to criticize it. The classification is based on three factors: Logistics Web, organization, and resources. Several papers about Physical Internet have been classified and analyzed along the Logistics Web, resources and organization views at a strategic, tactical and operational level, respectively. A developed cluster analysis shows which topics of the Physical Internet that are the less covered actually. Future researches are outlined for these topics.Keywords: Logistics web, Physical Internet, PI characterization, taxonomy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856191 Increasing Lifetime of Target Tracking Wireless Sensor Networks
Authors: Khin Thanda Soe
Abstract:
A model to identify the lifetime of target tracking wireless sensor network is proposed. The model is a static clusterbased architecture and aims to provide two factors. First, it is to increase the lifetime of target tracking wireless sensor network. Secondly, it is to enable good localization result with low energy consumption for each sensor in the network. The model consists of heterogeneous sensors and each sensing member node in a cluster uses two operation modes–active mode and sleep mode. The performance results illustrate that the proposed architecture consumes less energy and increases lifetime than centralized and dynamic clustering architectures, for target tracking sensor network.Keywords: Network lifetime, Target Localization, TargetTracking, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722190 Improved C-Fuzzy Decision Tree for Intrusion Detection
Authors: Krishnamoorthi Makkithaya, N. V. Subba Reddy, U. Dinesh Acharya
Abstract:
As the number of networked computers grows, intrusion detection is an essential component in keeping networks secure. Various approaches for intrusion detection are currently being in use with each one has its own merits and demerits. This paper presents our work to test and improve the performance of a new class of decision tree c-fuzzy decision tree to detect intrusion. The work also includes identifying best candidate feature sub set to build the efficient c-fuzzy decision tree based Intrusion Detection System (IDS). We investigated the usefulness of c-fuzzy decision tree for developing IDS with a data partition based on horizontal fragmentation. Empirical results indicate the usefulness of our approach in developing the efficient IDS.Keywords: Data mining, Decision tree, Feature selection, Fuzzyc- means clustering, Intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575189 Parameter Estimation for Viewing Rank Distribution of Video-on-Demand
Authors: Hyoup-Sang Yoon
Abstract:
Video-on-demand (VOD) is designed by using content delivery networks (CDN) to minimize the overall operational cost and to maximize scalability. Estimation of the viewing pattern (i.e., the relationship between the number of viewings and the ranking of VOD contents) plays an important role in minimizing the total operational cost and maximizing the performance of the VOD systems. In this paper, we have analyzed a large body of commercial VOD viewing data and found that the viewing rank distribution fits well with the parabolic fractal distribution. The weighted linear model fitting function is used to estimate the parameters (coefficients) of the parabolic fractal distribution. This paper presents an analytical basis for designing an optimal hierarchical VOD contents distribution system in terms of its cost and performance.
Keywords: VOD, CDN, parabolic fractal distribution, viewing rank, weighted linear model fitting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789188 Adoption and Diffusion of E-Government Services in India: The Impact of User Demographics and Service Quality
Authors: Sayantan Khanra, Rojers P. Joseph
Abstract:
This study attempts to analyze the impact of demography and service quality on the adoption and diffusion of e-Government services in the context of India. The objective of this paper is to study the users' perception about e-Government services and investigate the key variables that are most salient to the Indian populace. At the completion of this study, a research model that would help to understand the relationship involving the demographic variables and service quality dimensions, and the willingness to adopt e-Government services is expected to be developed. Dedicated authorities, particularly those in developing economies, may use that model or its augmented versions to design and update e-Government services and promote their use among citizens. After all, enhanced public participation is required to improve efficiency, engagement and transparency in the implementation of the aforementioned services.
Keywords: Adoption and diffusion of e-Government services, demographic variables, hierarchical regression analysis, service quality dimensions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778187 Anticipating Action Decisions of Automated Guided Vehicle in an Autonomous Decentralized Flexible Manufacturing System
Authors: Rizauddin Ramli, Jaber Abu Qudeiri, Hidehiko Yamamoto
Abstract:
Nowadays the market for industrial companies is becoming more and more globalized and highly competitive, forcing them to shorten the duration of the manufacturing system development time in order to reduce the time to market. In order to achieve this target, the hierarchical systems used in previous manufacturing systems are not enough because they cannot deal effectively with unexpected situations. To achieve flexibility in manufacturing systems, the concept of an Autonomous Decentralized Flexible Manufacturing System (AD-FMS) is useful. In this paper, we introduce a hypothetical reasoning based algorithm called the Algorithm for Future Anticipative Reasoning (AFAR) which is able to decide on a conceivable next action of an Automated Guided Vehicle (AGV) that works autonomously in the AD-FMS.
Keywords: Flexible Manufacturing System, Automated GuidedVehicle, Hypothetical Reasoning, Autonomous Decentralized.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086186 A PSO-based End-Member Selection Method for Spectral Unmixing of Multispectral Satellite Images
Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman
Abstract:
An end-member selection method for spectral unmixing that is based on Particle Swarm Optimization (PSO) is developed in this paper. The algorithm uses the K-means clustering algorithm and a method of dynamic selection of end-members subsets to find the appropriate set of end-members for a given set of multispectral images. The proposed algorithm has been successfully applied to test image sets from various platforms such as LANDSAT 5 MSS and NOAA's AVHRR. The experimental results of the proposed algorithm are encouraging. The influence of different values of the algorithm control parameters on performance is studied. Furthermore, the performance of different versions of PSO is also investigated.
Keywords: End-members selection, multispectral satellite imagery, particle swarm optimization, spectral unmixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097185 A Novel Compression Algorithm for Electrocardiogram Signals based on Wavelet Transform and SPIHT
Authors: Sana Ktata, Kaïs Ouni, Noureddine Ellouze
Abstract:
Electrocardiogram (ECG) data compression algorithm is needed that will reduce the amount of data to be transmitted, stored and analyzed, but without losing the clinical information content. A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm has achieved notable success in still image coding. We modified the algorithm for the one-dimensional (1-D) case and applied it to compression of ECG data. By this compression method, small percent root mean square difference (PRD) and high compression ratio with low implementation complexity are achieved. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. Compression ratios of up to 48:1 for ECG signals lead to acceptable results for visual inspection.Keywords: Discrete Wavelet Transform, ECG compression, SPIHT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130184 An Agent-Based Scheduling Framework for Flexible Manufacturing Systems
Authors: Iman Badr
Abstract:
The concept of flexible manufacturing is highly appealing in gaining a competitive edge in the market by quickly adapting to the changing customer needs. Scheduling jobs on flexible manufacturing systems (FMSs) is a challenging task of managing the available flexibility on the shop floor to react to the dynamics of the environment in real-time. In this paper, an agent-oriented scheduling framework that can be integrated with a real or a simulated FMS is proposed. This framework works in stochastic environments with a dynamic model of job arrival. It supports a hierarchical cooperative scheduling that builds on the available flexibility of the shop floor. Testing the framework on a model of a real FMS showed the capability of the proposed approach to overcome the drawbacks of the conventional approaches and maintain a near optimal solution despite the dynamics of the operational environment.Keywords: Autonomous agents, Flexible manufacturing systems(FMS), Manufacturing scheduling, Real-time systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818183 A Review of Coverage and Routing for Wireless Sensor Networks
Authors: Hamid Barati, Ali Movaghar, Ali Barati, Arash Azizi Mazreah
Abstract:
The special constraints of sensor networks impose a number of technical challenges for employing them. In this review, we study the issues and existing protocols in three areas: coverage and routing. We present two types of coverage problems: to determine the minimum number of sensor nodes that need to perform active sensing in order to monitor a certain area; and to decide the quality of service that can be provided by a given sensor network. While most routing protocols in sensor networks are data-centric, there are other types of routing protocols as well, such as hierarchical, location-based, and QoS-aware. We describe and compare several protocols in each group. We present several multipath routing protocols and single-path with local repair routing protocols, which are proposed for recovering from sensor node crashes. We also discuss some transport layer schemes for reliable data transmission in lossy wireless channels.Keywords: Sensor networks, Coverage, Routing, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678182 Generating 3D Anisotropic Centroidal Voronoi Tessellations
Authors: Alexandre Marin, Alexandra Bac, Laurent Astart
Abstract:
New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Element Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular polyhedral meshes have many advantages. One way to build such meshes consists in constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, i.e. elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: first, we present a gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.
Keywords: Anisotropic Voronoi Diagrams, Meshes for Numerical Simulations, Optimisation, Volumic Polyhedral Meshing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52181 Applications of Rough Set Decompositions in Information Retrieval
Authors: Chen Wu, Xiaohua Hu
Abstract:
This paper proposes rough set models with three different level knowledge granules in incomplete information system under tolerance relation by similarity between objects according to their attribute values. Through introducing dominance relation on the discourse to decompose similarity classes into three subclasses: little better subclass, little worse subclass and vague subclass, it dismantles lower and upper approximations into three components. By using these components, retrieving information to find naturally hierarchical expansions to queries and constructing answers to elaborative queries can be effective. It illustrates the approach in applying rough set models in the design of information retrieval system to access different granular expanded documents. The proposed method enhances rough set model application in the flexibility of expansions and elaborative queries in information retrieval.Keywords: Incomplete information system, Rough set model, tolerance relation, dominance relation, approximation, decomposition, elaborative query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611180 Network Anomaly Detection using Soft Computing
Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee
Abstract:
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954179 Modified Data Mining Approach for Defective Diagnosis in Hard Disk Drive Industry
Authors: S. Soommat, S. Patamatamkul, T. Prempridi, M. Sritulyachot, P. Ineure, S. Yimman
Abstract:
Currently, slider process of Hard Disk Drive Industry become more complex, defective diagnosis for yield improvement becomes more complicated and time-consumed. Manufacturing data analysis with data mining approach is widely used for solving that problem. The existing mining approach from combining of the KMean clustering, the machine oriented Kruskal-Wallis test and the multivariate chart were applied for defective diagnosis but it is still be a semiautomatic diagnosis system. This article aims to modify an algorithm to support an automatic decision for the existing approach. Based on the research framework, the new approach can do an automatic diagnosis and help engineer to find out the defective factors faster than the existing approach about 50%.Keywords: Slider process, Defective diagnosis and Data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198178 A Fast Adaptive Content-based Retrieval System of Satellite Images Database using Relevance Feedback
Authors: Hanan Mahmoud Ezzat Mahmoud, Alaa Abd El Fatah Hefnawy
Abstract:
In this paper, we present a system for content-based retrieval of large database of classified satellite images, based on user's relevance feedback (RF).Through our proposed system, we divide each satellite image scene into small subimages, which stored in the database. The modified radial basis functions neural network has important role in clustering the subimages of database according to the Euclidean distance between the query feature vector and the other subimages feature vectors. The advantage of using RF technique in such queries is demonstrated by analyzing the database retrieval results.Keywords: content-based image retrieval, large database of image, RBF neural net, relevance feedback
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468177 Human Behavior Modeling in Video Surveillance of Conference Halls
Authors: Nour Charara, Hussein Charara, Omar Abou Khaled, Hani Abdallah, Elena Mugellini
Abstract:
In this paper, we present a human behavior modeling approach in videos scenes. This approach is used to model the normal behaviors in the conference halls. We exploited the Probabilistic Latent Semantic Analysis technique (PLSA), using the 'Bag-of-Terms' paradigm, as a tool for exploring video data to learn the model by grouping similar activities. Our term vocabulary consists of 3D spatio-temporal patch groups assigned by the direction of motion. Our video representation ensures the spatial information, the object trajectory, and the motion. The main importance of this approach is that it can be adapted to detect abnormal behaviors in order to ensure and enhance human security.Keywords: Activity modeling, clustering, PLSA, video representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841176 Cardiac Biosignal and Adaptation in Confined Nuclear Submarine Patrol
Authors: B. Lefranc, C. Aufauvre-Poupon, C. Martin-Krumm, M. Trousselard
Abstract:
Isolated and confined environments (ICE) present several challenges which may adversely affect human’s psychology and physiology. Submariners in Sub-Surface Ballistic Nuclear (SSBN) mission exposed to these environmental constraints must be able to perform complex tasks as part of their normal duties, as well as during crisis periods when emergency actions are required or imminent. The operational and environmental constraints they face contribute to challenge human adaptability. The impact of such a constrained environment has yet to be explored. Establishing a knowledge framework is a determining factor, particularly in view of the next long space travels. Ensuring that the crews are maintained in optimal operational conditions is a real challenge because the success of the mission depends on them. This study focused on the evaluation of the impact of stress on mental health and sensory degradation of submariners during a mission on SSBN using cardiac biosignal (heart rate variability, HRV) clustering. This is a pragmatic exploratory study of a prospective cohort included 19 submariner volunteers. HRV was recorded at baseline to classify by clustering the submariners according to their stress level based on parasympathetic (Pa) activity. Impacts of high Pa (HPa) versus low Pa (LPa) level at baseline were assessed on emotional state and sensory perception (interoception and exteroception) as a cardiac biosignal during the patrol and at a recovery time one month after. Whatever the time, no significant difference was found in mental health between groups. There are significant differences in the interoceptive, exteroceptive and physiological functioning during the patrol and at recovery time. To sum up, compared to the LPa group, the HPa maintains a higher level in psychosensory functioning during the patrol and at recovery but exhibits a decrease in Pa level. The HPa group has less adaptable HRV characteristics, less unpredictability and flexibility of cardiac biosignals while the LPa group increases them during the patrol and at recovery time. This dissociation between psychosensory and physiological adaptation suggests two treatment modalities for ICE environments. To our best knowledge, our results are the first to highlight the impact of physiological differences in the HRV profile on the adaptability of submariners. Further studies are needed to evaluate the negative emotional and cognitive effects of ICEs based on the cardiac profile. Artificial intelligence offers a promising future for maintaining high level of operational conditions. These future perspectives will not only allow submariners to be better prepared, but also to design feasible countermeasures that will help support analog environments that bring us closer to a trip to Mars.Keywords: Adaptation, exteroception, HRV, ICE, interoception, SSBN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493175 An Amalgam Approach for DICOM Image Classification and Recognition
Authors: J. Umamaheswari, G. Radhamani
Abstract:
This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.
Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258174 Implementation of an IoT Sensor Data Collection and Analysis Library
Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee
Abstract:
Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.
Keywords: Clustering, data mining, DBSCAN, k-means, k-medoids, sensor data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006173 An Improvement of PDLZW implementation with a Modified WSC Updating Technique on FPGA
Authors: Perapong Vichitkraivin, Orachat Chitsobhuk
Abstract:
In this paper, an improvement of PDLZW implementation with a new dictionary updating technique is proposed. A unique dictionary is partitioned into hierarchical variable word-width dictionaries. This allows us to search through dictionaries in parallel. Moreover, the barrel shifter is adopted for loading a new input string into the shift register in order to achieve a faster speed. However, the original PDLZW uses a simple FIFO update strategy, which is not efficient. Therefore, a new window based updating technique is implemented to better classify the difference in how often each particular address in the window is referred. The freezing policy is applied to the address most often referred, which would not be updated until all the other addresses in the window have the same priority. This guarantees that the more often referred addresses would not be updated until their time comes. This updating policy leads to an improvement on the compression efficiency of the proposed algorithm while still keep the architecture low complexity and easy to implement.Keywords: lossless data compression, LZW algorithm, PDLZW algorithm, WSC and dictionary update.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627172 Design of Personal Job Recommendation Framework on Smartphone Platform
Authors: Chayaporn Kaensar
Abstract:
Recently, Job Recommender Systems have gained much attention in industries since they solve the problem of information overload on the recruiting website. Therefore, we proposed Extended Personalized Job System that has the capability of providing the appropriate jobs for job seeker and recommending some suitable information for them using Data Mining Techniques and Dynamic User Profile. On the other hands, company can also interact to the system for publishing and updating job information. This system have emerged and supported various platforms such as web application and android mobile application. In this paper, User profiles, Implicit User Action, User Feedback, and Clustering Techniques in WEKA libraries were applied and implemented. In additions, open source tools like Yii Web Application Framework, Bootstrap Front End Framework and Android Mobile Technology were also applied.Keywords: Recommendation, user profile, data mining, web technology, mobile technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150171 MIBiClus: Mutual Information based Biclustering Algorithm
Authors: Neelima Gupta, Seema Aggarwal
Abstract:
Most of the biclustering/projected clustering algorithms are based either on the Euclidean distance or correlation coefficient which capture only linear relationships. However, in many applications, like gene expression data and word-document data, non linear relationships may exist between the objects. Mutual Information between two variables provides a more general criterion to investigate dependencies amongst variables. In this paper, we improve upon our previous algorithm that uses mutual information for biclustering in terms of computation time and also the type of clusters identified. The algorithm is able to find biclusters with mixed relationships and is faster than the previous one. To the best of our knowledge, none of the other existing algorithms for biclustering have used mutual information as a similarity measure. We present the experimental results on synthetic data as well as on the yeast expression data. Biclusters on the yeast data were found to be biologically and statistically significant using GO Tool Box and FuncAssociate.
Keywords: Biclustering, mutual information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630170 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476169 Securing Message in Wireless Sensor Network by using New Method of Code Conversions
Authors: Ahmed Chalak Shakir, GuXuemai, Jia Min
Abstract:
Recently, wireless sensor networks have been paid more interest, are widely used in a lot of commercial and military applications, and may be deployed in critical scenarios (e.g. when a malfunctioning network results in danger to human life or great financial loss). Such networks must be protected against human intrusion by using the secret keys to encrypt the exchange messages between communicating nodes. Both the symmetric and asymmetric methods have their own drawbacks for use in key management. Thus, we avoid the weakness of these two cryptosystems and make use of their advantages to establish a secure environment by developing the new method for encryption depending on the idea of code conversion. The code conversion-s equations are used as the key for designing the proposed system based on the basics of logic gate-s principals. Using our security architecture, we show how to reduce significant attacks on wireless sensor networks.Keywords: logic gates, code conversions, Gray-code, and clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653168 Effects of the Stock Market Dynamic Linkages on the Central and Eastern European Capital Markets
Authors: Ioan Popa, Cristiana Tudor, Radu Lupu
Abstract:
The interdependences among stock market indices were studied for a long while by academics in the entire world. The current financial crisis opened the door to a wide range of opinions concerning the understanding and measurement of the connections considered to provide the controversial phenomenon of market integration. Using data on the log-returns of 17 stock market indices that include most of the CEE markets, from 2005 until 2009, our paper studies the problem of these dependences using a new methodological tool that takes into account both the volatility clustering effect and the stochastic properties of these linkages through a Dynamic Conditional System of Simultaneous Equations. We find that the crisis is well captured by our model as it provides evidence for the high volatility – high dependence effect.Keywords: Stock market interdependences, Dynamic System ofSimultaneous Equations, financial crisis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776167 Brain MRI Segmentation and Lesions Detection by EM Algorithm
Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane
Abstract:
In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165166 The Load Balancing Algorithm for the Star Interconnection Network
Authors: Ahmad M. Awwad, Jehad Al-Sadi
Abstract:
The star network is one of the promising interconnection networks for future high speed parallel computers, it is expected to be one of the future-generation networks. The star network is both edge and vertex symmetry, it was shown to have many gorgeous topological proprieties also it is owns hierarchical structure framework. Although much of the research work has been done on this promising network in literature, it still suffers from having enough algorithms for load balancing problem. In this paper we try to work on this issue by investigating and proposing an efficient algorithm for load balancing problem for the star network. The proposed algorithm is called Star Clustered Dimension Exchange Method SCDEM to be implemented on the star network. The proposed algorithm is based on the Clustered Dimension Exchange Method (CDEM). The SCDEM algorithm is shown to be efficient in redistributing the load balancing as evenly as possible among all nodes of different factor networks.
Keywords: Interconnection networks, Load balancing, Star network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106165 Variance Based Component Analysis for Texture Segmentation
Authors: Zeinab Ghasemi, S. Amirhassan Monadjemi, Abbas Vafaei
Abstract:
This paper presents a comparative analysis of a new unsupervised PCA-based technique for steel plates texture segmentation towards defect detection. The proposed scheme called Variance Based Component Analysis or VBCA employs PCA for feature extraction, applies a feature reduction algorithm based on variance of eigenpictures and classifies the pixels as defective and normal. While the classic PCA uses a clusterer like Kmeans for pixel clustering, VBCA employs thresholding and some post processing operations to label pixels as defective and normal. The experimental results show that proposed algorithm called VBCA is 12.46% more accurate and 78.85% faster than the classic PCA. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972164 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung
Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner
Abstract:
Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.
Keywords: lung cancer, micro arrays, data mining, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753163 Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks
Authors: Cesar Hernández, Diego Giral, Ingrid Páez
Abstract:
This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics are used. These metrics are accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth, and accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm.Keywords: Cognitive radio, decision making, hybrid algorithm, spectrum handoff, wireless networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160