Search results for: font distribution algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5130

Search results for: font distribution algorithm

4710 A Novel Pareto-Based Meta-Heuristic Algorithm to Optimize Multi-Facility Location-Allocation Problem

Authors: Vahid Hajipour, Samira V. Noshafagh, Reza Tavakkoli-Moghaddam

Abstract:

This article proposes a novel Pareto-based multiobjective meta-heuristic algorithm named non-dominated ranking genetic algorithm (NRGA) to solve multi-facility location-allocation problem. In NRGA, a fitness value representing rank is assigned to each individual of the population. Moreover, two features ranked based roulette wheel selection including select the fronts and choose solutions from the fronts, are utilized. The proposed solving methodology is validated using several examples taken from the specialized literature. The performance of our approach shows that NRGA algorithm is able to generate true and well distributed Pareto optimal solutions.

Keywords: Non-dominated ranking genetic algorithm, Pareto solutions, Multi-facility location-allocation problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
4709 A Novel Compression Algorithm for Electrocardiogram Signals based on Wavelet Transform and SPIHT

Authors: Sana Ktata, Kaïs Ouni, Noureddine Ellouze

Abstract:

Electrocardiogram (ECG) data compression algorithm is needed that will reduce the amount of data to be transmitted, stored and analyzed, but without losing the clinical information content. A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm has achieved notable success in still image coding. We modified the algorithm for the one-dimensional (1-D) case and applied it to compression of ECG data. By this compression method, small percent root mean square difference (PRD) and high compression ratio with low implementation complexity are achieved. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. Compression ratios of up to 48:1 for ECG signals lead to acceptable results for visual inspection.

Keywords: Discrete Wavelet Transform, ECG compression, SPIHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
4708 Alternative Key Exchange Algorithm Based on Elliptic Curve Digital Signature Algorithm Certificate and Usage in Applications

Authors: A. Andreasyan, C. Connors

Abstract:

The Elliptic Curve Digital Signature algorithm-based X509v3 certificates are becoming more popular due to their short public and private key sizes. Moreover, these certificates can be stored in Internet of Things (IoT) devices, with limited resources, using less memory and transmitted in network security protocols, such as Internet Key Exchange (IKE), Transport Layer Security (TLS) and Secure Shell (SSH) with less bandwidth. The proposed method gives another advantage, in that it increases the performance of the above-mentioned protocols in terms of key exchange by saving one scalar multiplication operation.

Keywords: Cryptography, elliptic curve digital signature algorithm, key exchange, network security protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
4707 Data Mining Using Learning Automata

Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri

Abstract:

In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).

Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
4706 Preparation of ATO Conductive Particles with Narrow Size Distribution

Authors: Yueying Wu, Fengzhu Lv, Yihe Zhang, Zixian Xu

Abstract:

Antimosy-doped tin oxide (ATO) particles were prepared via chemical coprecipitation and reverse emulsion. The size and size distribution of ATO particles were obviously decreased via reverse microemulsion method. At the relatively high yield the ATO particles were nearly spherical in shape, meanwhile the crystalline structure and excellent conductivity were reserved, which could satisfy the requirement as composite fillers, such as dielectric filler of polyimide film.

Keywords: ATO particle, Conductivity, Distribution, Reverse emulsion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
4705 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
4704 A Selective 3-Anchor DV-Hop Algorithm Based On the Nearest Anchor for Wireless Sensor Network

Authors: Hichem Sassi, Tawfik Najeh, Noureddine Liouane

Abstract:

Information of nodes’ locations is an important criterion for lots of applications in Wireless Sensor Networks. In the hop-based range-free localization methods, anchors transmit the localization messages counting a hop count value to the whole network. Each node receives this message and calculates its own distance with anchor in hops and then approximates its own position. However the estimative distances can provoke large error, and affect the localization precision. To solve the problem, this paper proposes an algorithm, which makes the unknown nodes fix the nearest anchor as a reference and select two other anchors which are the most accurate to achieve the estimated location. Compared to the DV-Hop algorithm, experiment results illustrate that proposed algorithm has less average localization error and is more effective.

Keywords: Wireless Sensors Networks, Localization problem, localization average error, DV–Hop Algorithm, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963
4703 An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem

Authors: Y. Wang

Abstract:

The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is O(CNmaxn2) where C is the iterations, Nmax is the maximum number of frequency quadrilaterals containing each edge and n is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5n edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced.

Keywords: Frequency quadrilateral, iterative algorithm, sparse graph, traveling salesman problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
4702 Fast Calculation for Particle Interactions in SPH Simulations: Outlined Sub-domain Technique

Authors: Buntara Sthenly Gan, Naohiro Kawada

Abstract:

A simple and easy algorithm is presented for a fast calculation of kernel functions which required in fluid simulations using the Smoothed Particle Hydrodynamic (SPH) method. Present proposed algorithm improves the Linked-list algorithm and adopts the Pair-Wise Interaction technique, which are widely used for evaluating kernel functions in fluid simulations using the SPH method. The algorithm is easy to be implemented without any complexities in programming. Some benchmark examples are used to show the simulation time saved by using the proposed algorithm. Parametric studies on the number of divisions for sub-domains, smoothing length and total amount of particles are conducted to show the effectiveness of the present technique. A compact formulation is proposed for practical usage.

Keywords: Technique, fluid simulation, smoothing particle hydrodynamic (SPH), particle interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
4701 An ICA Algorithm for Separation of Convolutive Mixture of Speech Signals

Authors: Rajkishore Prasad, Hiroshi Saruwatari, Kiyohiro Shikano

Abstract:

This paper describes Independent Component Analysis (ICA) based fixed-point algorithm for the blind separation of the convolutive mixture of speech, picked-up by a linear microphone array. The proposed algorithm extracts independent sources by non- Gaussianizing the Time-Frequency Series of Speech (TFSS) in a deflationary way. The degree of non-Gaussianization is measured by negentropy. The relative performances of algorithm under random initialization and Null beamformer (NBF) based initialization are studied. It has been found that an NBF based initial value gives speedy convergence as well as better separation performance

Keywords: Blind signal separation, independent component analysis, negentropy, convolutive mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
4700 An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods

Authors: Autcha Araveeporn

Abstract:

This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.

Keywords: Bayes method, Markov Chain Monte Carlo method, Maximum Likelihood method, normal distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
4699 Short-Term Electric Load Forecasting Using Multiple Gaussian Process Models

Authors: Tomohiro Hachino, Hitoshi Takata, Seiji Fukushima, Yasutaka Igarashi

Abstract:

This paper presents a Gaussian process model-based short-term electric load forecasting. The Gaussian process model is a nonparametric model and the output of the model has Gaussian distribution with mean and variance. The multiple Gaussian process models as every hour ahead predictors are used to forecast future electric load demands up to 24 hours ahead in accordance with the direct forecasting approach. The separable least-squares approach that combines the linear least-squares method and genetic algorithm is applied to train these Gaussian process models. Simulation results are shown to demonstrate the effectiveness of the proposed electric load forecasting.

Keywords: Direct method, electric load forecasting, Gaussian process model, genetic algorithm, separable least-squares method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
4698 On the Computation of a Common n-finger Robotic Grasp for a Set of Objects

Authors: Avishai Sintov, Roland Menassa, Amir Shapiro

Abstract:

Industrial robotic arms utilize multiple end-effectors, each for a specific part and for a specific task. We propose a novel algorithm which will define a single end-effector’s configuration able to grasp a given set of objects with different geometries. The algorithm will have great benefit in production lines allowing a single robot to grasp various parts. Hence, reducing the number of endeffectors needed. Moreover, the algorithm will reduce end-effector design and manufacturing time and final product cost. The algorithm searches for a common grasp over the set of objects. The search algorithm maps all possible grasps for each object which satisfy a quality criterion and takes into account possible external wrenches (forces and torques) applied to the object. The mapped grasps are- represented by high-dimensional feature vectors which describes the shape of the gripper. We generate a database of all possible grasps for each object in the feature space. Then we use a search and classification algorithm for intersecting all possible grasps over all parts and finding a single common grasp suitable for all objects. We present simulations of planar and spatial objects to validate the feasibility of the approach.

Keywords: Common Grasping, Search Algorithm, Robotic End-Effector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
4697 Detection and Classification of Power Quality Disturbances Using S-Transform and Wavelet Algorithm

Authors: Mohamed E. Salem Abozaed

Abstract:

Detection and classification of power quality (PQ) disturbances is an important consideration to electrical utilities and many industrial customers so that diagnosis and mitigation of such disturbance can be implemented quickly. S-transform algorithm and continuous wavelet transforms (CWT) are time-frequency algorithms, and both of them are powerful in detection and classification of PQ disturbances. This paper presents detection and classification of PQ disturbances using S-transform and CWT algorithms. The results of detection and classification, provides that S-transform is more accurate in detection and classification for most PQ disturbance than CWT algorithm, where as CWT algorithm more powerful in detection in some disturbances like notching

Keywords: CWT, Disturbances classification, Disturbances detection, Power quality, S-transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
4696 Loss Reduction and Reliability Improvement of Industrial Distribution System through Network Reconfiguration

Authors: Ei Ei Phyu, Kyaw Myo Lin, Thin Thin Moe

Abstract:

The paper presents an approach to improve the reliability and reduce line losses of practical distribution system applying network reconfiguration. The change of the topology redirects the power flow within the distribution network to obtain better performance of the system. Practical distribution network (Pyigyitagon Industrial Zone (I)) is used as the case study network. The detailed calculations of the reliability indices are done by using analytical method and power flow calculation is performed by Newton-Rephason solver. The comparison of various network reconfiguration techniques are described with respect to power loss and reliability index levels. Finally, the optimal reconfigured network is selected among difference cases based on the two factors: the most reliable network and the least loss minimization.

Keywords: Distribution system reliability, loss reduction, network reconfiguration, reliability enhancement, reliability indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
4695 Noise Performance Optimization of a Fast Wavelength Calibration Algorithm for OSAs

Authors: Thomas Fuhrmann

Abstract:

A new fast correlation algorithm for calibrating the wavelength of Optical Spectrum Analyzers (OSAs) was introduced in [1]. The minima of acetylene gas spectra were measured and correlated with saved theoretical data [2]. So it is possible to find the correct wavelength calibration data using a noisy reference spectrum. First tests showed good algorithmic performance for gas line spectra with high noise. In this article extensive performance tests were made to validate the noise resistance of this algorithm. The filter and correlation parameters of the algorithm were optimized for improved noise performance. With these parameters the performance of this wavelength calibration was simulated to predict the resulting wavelength error in real OSA systems. Long term simulations were made to evaluate the performance of the algorithm over the lifetime of a real OSA.

Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
4694 Fault-Tolerant Optimal Broadcast Algorithm for the Hypercube Topology

Authors: Lokendra Singh Umrao, Ravi Shankar Singh

Abstract:

This paper presents an optimal broadcast algorithm for the hypercube networks. The main focus of the paper is the effectiveness of the algorithm in the presence of many node faults. For the optimal solution, our algorithm builds with spanning tree connecting the all nodes of the networks, through which messages are propagated from source node to remaining nodes. At any given time, maximum n − 1 nodes may fail due to crashing. We show that the hypercube networks are strongly fault-tolerant. Simulation results analyze to accomplish algorithm characteristics under many node faults. We have compared our simulation results between our proposed method and the Fu’s method. Fu’s approach cannot tolerate n − 1 faulty nodes in the worst case, but our approach can tolerate n − 1 faulty nodes.

Keywords: Fault tolerance, hypercube, broadcasting, link/node faults, routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
4693 3D Numerical Simulation on Annular Diffuser Temperature Distribution Enhancement by Different Twist Arrangement

Authors: Ehan Sabah Shukri, Wirachman Wisnoe

Abstract:

The influence of twist arrangement on the temperature distribution in an annular diffuser fitted with twisted rectangular hub is investigated. Different pitches (Y = 120 mm, 100 mm, 80 mm, and 60 mm) for the twist arrangements are simulated to be compared. The geometry of the annular diffuser and the inlet condition for the hub arrangements are kept constant. The result reveals that using twisted rectangular hub insert with different pitches will force the temperature to distribute in a circular direction. However, temperature distribution will be enhanced with the length pitch increases.

Keywords: Numerical simulation, twist arrangement, annular diffuser, temperature distribution, swirl flow, pitches.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
4692 Determination of Sequential Best Replies in N-player Games by Genetic Algorithms

Authors: Mattheos K. Protopapas, Elias B. Kosmatopoulos

Abstract:

An iterative algorithm is proposed and tested in Cournot Game models, which is based on the convergence of sequential best responses and the utilization of a genetic algorithm for determining each player-s best response to a given strategy profile of its opponents. An extra outer loop is used, to address the problem of finite accuracy, which is inherent in genetic algorithms, since the set of feasible values in such an algorithm is finite. The algorithm is tested in five Cournot models, three of which have convergent best replies sequence, one with divergent sequential best replies and one with “local NE traps"[14], where classical local search algorithms fail to identify the Nash Equilibrium. After a series of simulations, we conclude that the algorithm proposed converges to the Nash Equilibrium, with any level of accuracy needed, in all but the case where the sequential best replies process diverges.

Keywords: Best response, Cournot oligopoly, genetic algorithms, Nash equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
4691 Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets

Authors: Wissem Saidani, Yacine Morsly, Mohand Saïd Djouadi

Abstract:

In this paper, we consider the problem of tracking multiple maneuvering targets using switching multiple target motion models. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to avoid the Extended Kalman filter because of its limitations and substitute it with the Unscented Kalman filter which seems to be more efficient especially according to the simulation results obtained with the nonlinear IMM algorithm (IMMUKF). To resolve the problem of data association, the JPDA approach is combined with the IMM-UKF algorithm, the derived algorithm is noted JPDA-IMM-UKF.

Keywords: Estimation, Kalman filtering, Multi-Target Tracking, Visual servoing, data association.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
4690 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: HTM, Real time anomaly detection, ECG, Cardiac Anomalies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
4689 Grid–SVC: An Improvement in SVC Algorithm, Based On Grid Based Clustering

Authors: Farhad Hadinejad, Hasan Saberi, Saeed Kazem

Abstract:

Support vector clustering (SVC) is an important kernelbased clustering algorithm in multi applications. It has got two main bottle necks, the high computation price and labeling piece. In this paper, we presented a modified SVC method, named Grid–SVC, to improve the original algorithm computationally. First we normalized and then we parted the interval, where the SVC is processing, using a novel Grid–based clustering algorithm. The algorithm parts the intervals, based on the density function of the data set and then applying the cartesian multiply makes multi-dimensional grids. Eliminating many outliers and noise in the preprocess, we apply an improved SVC method to each parted grid in a parallel way. The experimental results show both improvement in time complexity order and the accuracy.

Keywords: Grid–based clustering, SVC, Density function, Radial basis function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
4688 Numerical Optimization within Vector of Parameters Estimation in Volatility Models

Authors: J. Arneric, A. Rozga

Abstract:

In this paper usefulness of quasi-Newton iteration procedure in parameters estimation of the conditional variance equation within BHHH algorithm is presented. Analytical solution of maximization of the likelihood function using first and second derivatives is too complex when the variance is time-varying. The advantage of BHHH algorithm in comparison to the other optimization algorithms is that requires no third derivatives with assured convergence. To simplify optimization procedure BHHH algorithm uses the approximation of the matrix of second derivatives according to information identity. However, parameters estimation in a/symmetric GARCH(1,1) model assuming normal distribution of returns is not that simple, i.e. it is difficult to solve it analytically. Maximum of the likelihood function can be founded by iteration procedure until no further increase can be found. Because the solutions of the numerical optimization are very sensitive to the initial values, GARCH(1,1) model starting parameters are defined. The number of iterations can be reduced using starting values close to the global maximum. Optimization procedure will be illustrated in framework of modeling volatility on daily basis of the most liquid stocks on Croatian capital market: Podravka stocks (food industry), Petrokemija stocks (fertilizer industry) and Ericsson Nikola Tesla stocks (information-s-communications industry).

Keywords: Heteroscedasticity, Log-likelihood Maximization, Quasi-Newton iteration procedure, Volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2658
4687 A Deterministic Polynomial-time Algorithm for the Clique Problem and the Equality of P and NP Complexity Classes

Authors: Zohreh O. Akbari

Abstract:

In this paper a deterministic polynomial-time algorithm is presented for the Clique problem. The case is considered as the problem of omitting the minimum number of vertices from the input graph so that none of the zeroes on the graph-s adjacency matrix (except the main diagonal entries) would remain on the adjacency matrix of the resulting subgraph. The existence of a deterministic polynomial-time algorithm for the Clique problem, as an NP-complete problem will prove the equality of P and NP complexity classes.

Keywords: Clique problem, Deterministic Polynomial-time Algorithm, Equality of P and NP Complexity Classes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
4686 Parallel Distributed Computational Microcontroller System for Adaptive Antenna Downlink Transmitter Power Optimization

Authors: K. Prajindra Sankar, S.K. Tiong, S.P. Johnny Koh

Abstract:

This paper presents a tested research concept that implements a complex evolutionary algorithm, genetic algorithm (GA), in a multi-microcontroller environment. Parallel Distributed Genetic Algorithm (PDGA) is employed in adaptive beam forming technique to reduce power usage of adaptive antenna at WCDMA base station. Adaptive antenna has dynamic beam that requires more advanced beam forming algorithm such as genetic algorithm which requires heavy computation and memory space. Microcontrollers are low resource platforms that are normally not associated with GAs, which are typically resource intensive. The aim of this project was to design a cooperative multiprocessor system by expanding the role of small scale PIC microcontrollers to optimize WCDMA base station transmitter power. Implementation results have shown that PDGA multi-microcontroller system returned optimal transmitted power compared to conventional GA.

Keywords: Microcontroller, Genetic Algorithm, Adaptiveantenna, Power optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
4685 A Distributed Group Mutual Exclusion Algorithm for Soft Real Time Systems

Authors: Abhishek Swaroop, Awadhesh Kumar Singh

Abstract:

The group mutual exclusion (GME) problem is an interesting generalization of the mutual exclusion problem. Several solutions of the GME problem have been proposed for message passing distributed systems. However, none of these solutions is suitable for real time distributed systems. In this paper, we propose a token-based distributed algorithms for the GME problem in soft real time distributed systems. The algorithm uses the concepts of priority queue, dynamic request set and the process state. The algorithm uses first come first serve approach in selecting the next session type between the same priority levels and satisfies the concurrent occupancy property. The algorithm allows all n processors to be inside their CS provided they request for the same session. The performance analysis and correctness proof of the algorithm has also been included in the paper.

Keywords: Concurrency, Group mutual exclusion, Priority, Request set, Token.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
4684 A Comparison among Wolf Pack Search and Four other Optimization Algorithms

Authors: Shahla Shoghian, Maryam Kouzehgar

Abstract:

The main objective of this paper is applying a comparison between the Wolf Pack Search (WPS) as a newly introduced intelligent algorithm with several other known algorithms including Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL), Binary and Continues Genetic algorithms. All algorithms are applied on two benchmark cost functions. The aim is to identify the best algorithm in terms of more speed and accuracy in finding the solution, where speed is measured in terms of function evaluations. The simulation results show that the SFL algorithm with less function evaluations becomes first if the simulation time is important, while if accuracy is the significant issue, WPS and PSO would have a better performance.

Keywords: Wolf Pack Search, Particle Swarm Optimization, Continues Genetic Algorithm, Binary Genetic Algorithm, Shuffled Frog Leaping, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3764
4683 Cost Optimization of Concentric Braced Steel Building Structures

Authors: T. Balogh, L. G. Vigh

Abstract:

Seismic design may require non-conventional concept, due to the fact that the stiffness and layout of the structure have a great effect on the overall structural behaviour, on the seismic load intensity as well as on the internal force distribution. To find an economical and optimal structural configuration the key issue is the optimal design of the lateral load resisting system. This paper focuses on the optimal design of regular, concentric braced frame (CBF) multi-storey steel building structures. The optimal configurations are determined by a numerical method using genetic algorithm approach, developed by the authors. Aim is to find structural configurations with minimum structural cost. The design constraints of objective function are assigned in accordance with Eurocode 3 and Eurocode 8 guidelines. In this paper the results are presented for various building geometries, different seismic intensities, and levels of energy dissipation.

Keywords: Dissipative Structures, Genetic Algorithm, Seismic Effects, Structural Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3021
4682 Harmony Search-based K-Coverage Enhancement in Wireless Sensor Networks

Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit

Abstract:

Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.

Keywords: Wireless Sensor Networks (WSN), Harmony Search Algorithms, K-Coverage, Mobile WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
4681 Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem

Authors: D.Venkatesan, K.Kannan, S. Raja Balachandar

Abstract:

In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.

Keywords: Genetic Algorithm, Unbounded Knapsack Problem, Combinatorial Optimization, Meta-Heuristic, Center of Mass

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707