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Abstract—This paper is to compare the parameter estimation of
the mean in normal distribution by Maximum Likelihood (ML),
Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML
estimator is estimated by the average of data, the Bayes method is
considered from the prior distribution to estimate Bayes estimator,
and MCMC estimator is approximated by Gibbs sampling from
posterior distribution. These methods are also to estimate a parameter
then the hypothesis testing is used to check a robustness of the
estimators. Data are simulated from normal distribution with the true
parameter of mean 2, and variance 4, 9, and 16 when the sample
sizes is set as 10, 20, 30, and 50. From the results, it can be seen
that the estimation of MLE, and MCMC are perceivably different
from the true parameter when the sample size is 10 and 20 with
variance 16. Furthermore, the Bayes estimator is estimated from the
prior distribution when mean is 1, and variance is 12 which showed
the significant difference in mean with variance 9 at the sample size
10 and 20.

Keywords—Bayes method, Markov Chain Monte Carlo method,
Maximum Likelihood method, normal distribution.

I. INTRODUCTION

ORMAL distribution is an important distribution in the

field of statistics and is often used in tremendous data
especially in social science. Most data are presented in terms
of continuous probability distribution such as income, weight,
and height of a person. The parameters of normal distribution
consist of mean and standard deviation which is remarkably
useful to explain any characteristics of a population. The
mean determines the location of the center of population and
standard deviation determines the dispersion from the mean
of population.

Several methods of parameter estimation are common such
as the moments method, the maximum likelihood method,
the minimum chi-square method, the least square method,
and the Bayes method. The estimators obtained from these
methods have been shown well; e.g. unbiasedness, sufficiency,
completeness, and minimum variance unbiased estimator.

In this paper, we interested in the maximum likelihood
method because the estimator is shown in a class of minimum
variance unbiased estimator [1]. The Bayes method depends
on a prior probability distribution to estimate a posterior
distribution which is obtained from a Bayes estimator.
Moreover, the posterior distribution can be used with Markov
Chain Monte Carlo (MCMC) method [2] to estimate MCMC
estimator.
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II. METHODS OF PARAMETER ESTIMATION

The parameter estimation of the mean in normal distribution
consists of the following three methods.

A. Maximum Likelihood (ML) Method

The ML method corresponds to many well-known
estimations in statistics because it is easy to understand and
calculate the estimators. The basic idea of ML estimation is
to treat the likelihood function as a function of parameter, and
find the value of parameter that maximizes it.

Suppose that we have the random variables Xi,..., X,
which assumed a normal distribution function depended on
unknown parameter mean (p), and variance (02); however,
our goals will approximate the mean. The probability density
function of x; depended on y,o? is written by

1 1

The likelihood function is denoted as

L(u) = [ f(@iln, o). @)
=1

f(@ilp,0®) =

The ML estimator is solved as:
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B. Bayes Method

In Bayesian probability theory, if the posterior distributions
are in the same distribution as the prior probability distribution,
the prior and posterior will be called conjugate distributions,
and the prior is called a conjugate prior for the likelihood
function. In this case, the normal distribution is conjugate
distribution with respect to a normal likelihood function: If the
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likelihood function is normal, choosing a normal prior over the
mean will ensure that the posterior distribution is also normal.
The resulting posterior distribution is
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The parameter ;o can write in form of normal distribution
as [3]
=2 2 2.2
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then the Bayes estimator or [igqyes can be computed by
R ni’a?) + u002
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In this case, the prior is denoted as p1o = 1 and 03 = 12.

C. Markov Chain Monte Carlo (MCMC) Method

The MCMC method was first introduced by [4] as a
method to simulate values from posterior distribution which
are developed from the Bayes method. The Gibbs sampling
[5], [6] is a popular method which are generated values from
the posterior distribution approximated as a MCMC estimator.
Therefore, we carry out the WinBUGS program [7] which
is a statistical software for Bayesian analysis to estimate
MCMC estimator. In order to construct a Gibbs sampling from
MCMC, the posterior distribution from Bayes method is used

to calculate:
020(2)
"nod + o2

~ NOl‘mal(ﬂBayes> (}2Bayes)' (8)

7y 2 2
nroy + oo

wlo®,x; ~ Normal SRR
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Using this result, the Gibbs sampling algorithm proceeds as:

1) Set prior parameter: 1o and o3.

2) Set = pt=,

3) Calculate fipayes and 6%,

4) Generate p from Normal(fiayes, 05 ayes)-
5) Set u) = pt=1,2,...,T.

Finally the MCMC estimator is approximated by

T
1
(0l = — (t)
Hnmcecmce T ;:1 [N ©)
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III. SIMULATION STUDY

The simulation study is to generate the data in terms of
normal distribution with true parameters p = 2 and 02 = 4,9,
and 16 at the sample sizes n = 10, 20,30, and 50. The data
are generated 500 replications in each situation by R program
[8]. To investigate the performance of ML, Bayes, and MCMC
methods, these estimators are computed by

fivr = T,
R B ns‘cag + poo?
HBayes — TLO'(Q] ¥ o2 )
1 T
IN _ - ()
Hyvcomc T ; H

Next, we obtain these estimators from 3 methods. The
hypothesis testing is used to test the mean of estimator in
normal distribution which is different from the true parameters.
In this case, the hypotheses are

and Hy:pp#p

. The t statistic is computed as:

Ho:pp=p

. —
Do i —i)? .
where s; = %771, df =m — 1, m is a number of

replications. For the level of significance at o = 0.05, we will
reject Ho if [t| >t /2m—1.

IV. RESULTS

The parameter estimations of normal distribution by ML,
Bayes, and MCMC methods are given in Tables I-III. The
first and the second columns of these tables present the
sample sizes and the true parameters from simulated data. A
mean, a standard deviation, a lower and an upper bound of
95% confidence interval are shown in the next four columns.
The last two columns list the t statistics and p-values for
hypothesis testing. The p-values of the ML and MCMC from
the tables indicate that the means of the estimated parameters
are different from the true parameters with y = 2, and 02 =
16 at the sample sizes n = 10 and 20. For Table II, the Bayes
estimator shows the significant difference in the mean with p
=2, and 02 = 9 at the sample sizes n = 10 and 20.

Figs. 1-3 show the histograms of the estimated parameter
with ML method which followed a normal distribution. The
Bayes method shows the histogram in normal distribution at
at 02 = 4,9, and 16 on Figs. 4-6. For MCMC method, the
histograms follow a normal distribution at o2 = 4,9, and 16
on Figs. 7-9.
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THE MEAN, STANDARD DEVIATION (SD), LOWER CONFIDENCE
INTERVAL (LCI), UPPER CONFIDENCE INTERVAL (UCI), T STATISTICS
(T), AND P-VALUES BY ML METHOD

n nw=2 mean S.D. t p-values
o? = 1.9799  0.6474  -0.6933 0.4844
n=10 0?2 =9 1.9830 09136 -0.4140  0.6790
02 =16 21312 12436 23589  0.0187*
0?2 =4 20141 04648  0.6806 0.4964
n=20 o02=9 1.9678  0.6889  -1.0440  0.2970
0?2 =16 21036 09016 2.5760  0.0104*
o?2=4 20189 03527 12013 0.2302
n=30 o02=9 1.9979  0.5237 -0.0891 0.9290
0?2=16 19860 07354  0.4237 0.6719
02 =4 1.9990  0.2846  -0.0673 0.9463
n=50 o02=9 20112 03991 0.6305 0.5287
0?2 =16 20250 0.6074 09215 0.3572
* indicated significance level at 5 %
TABLE II
THE MEAN, SD, LCI, UCI, T, AND P-VALUES BY BAYES METHOD
n nw=2 mean S.D. t p-values
02 =4 1.9489  0.6259  -1.8233 0.0688
n=10 0?2 =9 19145 0.8531 -2.2396  0.0255*
0?2 =16  2.000 1.1042  0.0018 0.9985
0? = 1.9976 04571 -0.1140  0.9093
n=20 o02=9 1.9328  0.6634 -2.2642  0.0239*
02 =16 20363 08458 09619 0.3365
0% = 2.0076  0.3488  0.4913 0.6234
n=30 o02=9 1.9738 05116 -1.1414  0.2542
02 =16 19444 07049 -1.7617 0.0787
o2 =4 1.9924  0.2827  -0.5935 0.5531
n=50 o¢2=9 1.9964 03934 -0.2008 0.8409
0? =16 19986 05921 -0.0507  0.9596
* indicated significance level at 5 %
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Fig. 1 Histograms of estimated parameters p with ML method when ;1 = 2
and 02 =4
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Fig. 2 Histograms of estimated parameters p with ML method when p = 2
and 02 =9

V. CONCLUSION

The mean of estimated parameter from ML and MCMC
methods are not different from the true parameters in most
cases except the large variance and small sample sizes.
However, Bayes method are not different from the true
parameters in most cases except the moderate variance and
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Fig. 3 Histograms of estimated parameters p with ML method when p = 2
and 02 = 16
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Fig. 4 Histograms of estimated parameters p with Bayes method when
pw=2and 02 =4
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Fig. 5 Histograms of estimated parameters p with Bayes method when
pw=2and 02 =9
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Fig. 6 Histograms of estimated parameters p with Bayes method when

u=2and 0% =16

TABLE III
THE MEAN, SD, LCI, UCI, T, AND P-VALUES BY MCMC METHOD

n n=2 mean S.D. t p-values
02 =4 1.9698 0.6473  -1.0409 0.2986

n=10 02 =9 1.7040 09136  -0.7243 0.4692
02 =16 21156 12436 2.0796 0.0380*

02 =4 2.0084 0.4648  0.4596 0.6849

n =20 02=9 1.9601 0.6888  -1.2940 0.1963
0?2 =16 2.0938 09017 23270  0.0203*

02 =4 2.0149  0.3527 0.9454 0.3449

n =30 02=9 1.9923  0.5237  -0.3268 0.7439
02 =16 19788 0.7355 -0.6434 0.5202

02 =4 1.9958 0.2846  -0.3243 0.7458

n =50 02=9 2.0066  0.3991 0.3699 0.7116
02=16 20189 0.6074  0.6981 0.4854

* indicated significance level at 5 %
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Fig. 7 Histograms of estimated parameters p with MCMC method when
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Fig. 8 Histograms of estimated parameters p with MCMC method when
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Fig. 9 Histograms of estimated parameters p with MCMC method when

uw=2and 02 =16

small sample sizes, but the Bayes method is depended on
the parameters of prior distribution so the output may change
in this case. If we did not identify the prior distribution, the
ML method will work with good performance for estimating
parameter of normal distribution.
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