Search results for: Large scale networks
4413 Embedding a Large Amount of Information Using High Secure Neural Based Steganography Algorithm
Authors: Nameer N. EL-Emam
Abstract:
In this paper, we construct and implement a new Steganography algorithm based on learning system to hide a large amount of information into color BMP image. We have used adaptive image filtering and adaptive non-uniform image segmentation with bits replacement on the appropriate pixels. These pixels are selected randomly rather than sequentially by using new concept defined by main cases with sub cases for each byte in one pixel. According to the steps of design, we have been concluded 16 main cases with their sub cases that covere all aspects of the input information into color bitmap image. High security layers have been proposed through four layers of security to make it difficult to break the encryption of the input information and confuse steganalysis too. Learning system has been introduces at the fourth layer of security through neural network. This layer is used to increase the difficulties of the statistical attacks. Our results against statistical and visual attacks are discussed before and after using the learning system and we make comparison with the previous Steganography algorithm. We show that our algorithm can embed efficiently a large amount of information that has been reached to 75% of the image size (replace 18 bits for each pixel as a maximum) with high quality of the output.Keywords: Adaptive image segmentation, hiding with high capacity, hiding with high security, neural networks, Steganography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19894412 Research on the Protection and Reuse Model of Historical Buildings in Chinese Airports
Authors: Jie Ouyang, Chen Nie
Abstract:
China had constructed a large number of military and civilian airports before and after World War II, and then began large-scale repairs, reconstructions or relocation of airports after the baptism of wars after World War I and World War II. The airport's historical area and its historical buildings such as terminals, hangars, and towers have adopted different protection strategies and reuse application strategies. This paper is based on the judgment of the value of airport historical buildings to study different protection and reuse strategies. The protection and reuse models of historical buildings are classified in three dimensions: the airport historical area, the airport historical building complex and its individual buildings, and combined with specific examples to discuss and summarize the technical characteristics, protection strategies and successful experiences of different modes of protection and reuse of historical areas and historical buildings of airports.
Keywords: Airport, airport area, historic airport building, protection, reuse model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6754411 Validation of the Career Motivation Scale among Chinese University and Vocational College Teachers
Authors: Wei Zhang, Lifen Zhao
Abstract:
The present study aims to translate and validate the Career Motivation Scale among Chinese University and vocational college teachers. Exploratory factor analysis supported a three-factor structure that was consistent with the original structure of career motivation: career insight, career identity, and career resilience. Confirmatory factor analysis showed that a second-order three-factor model with correlated measurement errors best fit the data. Configural, metric, and scalar invariance models were tested, demonstrating that the Chinese version of the Career Motivation Scale did not differ across groups of school type, educational level, and working years in current institutions. The concurrent validity of the Chinese Career Motivation Scale was confirmed by its significant correlations with work engagement, career adaptability, career satisfaction, job crafting, and intention to quit. The results of the study indicated that the Chinese Career Motivation Scale was a valid and reliable measure of career motivation among university and vocational college teachers in China.
Keywords: Career motivation scale, Chinese university and vocational college teachers, measurement invariance, validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3674410 Development of a Support Tool for Cost and Schedule Integration Managment at Program Level
Authors: H. J. Yang, R. Z. Jin, I. J. Park, C. T. Hyun
Abstract:
There has been gradual progress of late in construction projects, particularly in big-scale megaprojects. Due to the long-term construction period, however, with large-scale budget investment, lack of construction management technologies, and increase in the incomplete elements of project schedule management, a plan to conduct efficient operations and to ensure business safety is required. In particular, as the project management information system (PMIS) is meant for managing a single project centering on the construction phase, there is a limitation in the management of program-scale businesses like megaprojects. Thus, a program management information system (PgMIS) that includes program-level management technologies is needed to manage multiple projects. In this study, a support tool was developed for managing the cost and schedule information occurring in the construction phase, at the program level. In addition, a case study on the developed support tool was conducted to verify the usability of the system. With the use of the developed support tool program, construction managers can monitor the progress of the entire project and of the individual subprojects in real time.
Keywords: Cost∙Schedule integration management, Supporting Tool, UI, WBS, CBS, introduce PgMIS (Program Management Information System), PMIS (Project Management Information System)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14614409 Clustering Approach to Unveiling Relationships between Gene Regulatory Networks
Authors: Hiba Hasan, Khalid Raza
Abstract:
Reverse engineering of genetic regulatory network involves the modeling of the given gene expression data into a form of the network. Computationally it is possible to have the relationships between genes, so called gene regulatory networks (GRNs), that can help to find the genomics and proteomics based diagnostic approach for any disease. In this paper, clustering based method has been used to reconstruct genetic regulatory network from time series gene expression data. Supercoiled data set from Escherichia coli has been taken to demonstrate the proposed method.
Keywords: Gene expression, gene regulatory networks (GRNs), clustering, data preprocessing, network visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21524408 High Impedance Fault Detection using LVQ Neural Networks
Authors: Abhishek Bansal, G. N. Pillai
Abstract:
This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.Keywords: Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22144407 Performance Analysis of Heterogeneous Cellular Networks with Multiple Connectivity
Authors: Sungkyung Kim, Jee-Hyeon Na, Dong-Seung Kwon
Abstract:
Future mobile networks following 5th generation will be characterized by one thousand times higher gains in capacity; connections for at least one hundred billion devices; user experience capable of extremely low latency and response times. To be close to the capacity requirements and higher reliability, advanced technologies have been studied, such as multiple connectivity, small cell enhancement, heterogeneous networking, and advanced interference and mobility management. This paper is focused on the multiple connectivity in heterogeneous cellular networks. We investigate the performance of coverage and user throughput in several deployment scenarios. Using the stochastic geometry approach, the SINR distributions and the coverage probabilities are derived in case of dual connection. Also, to compare the user throughput enhancement among the deployment scenarios, we calculate the spectral efficiency and discuss our results.
Keywords: Heterogeneous networks, multiple connectivity, small cell enhancement, stochastic geometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19644406 Enabling Integration across Heterogeneous Care Networks
Authors: Federico Cabitza, Marco P. Locatelli, Marcello Sarini, Carla Simone
Abstract:
The paper shows how the CASMAS modeling language, and its associated pervasive computing architecture, can be used to facilitate continuity of care by providing members of patientcentered communities of care with a support to cooperation and knowledge sharing through the usage of electronic documents and digital devices. We consider a scenario of clearly fragmented care to show how proper mechanisms can be defined to facilitate a better integration of practices and information across heterogeneous care networks. The scenario is declined in terms of architectural components and cooperation-oriented mechanisms that make the support reactive to the evolution of the context where these communities operate.Keywords: Pervasive Computing, Communities of Care, HeterogeneousCare Networks, Multi-Agent System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13594405 The Effect of Risky Assets to Operating Efficiencies for Listed Securities Firms in Taiwan Using the Data Envelopment Analysis
Authors: Ying-Hsiu Chen, Pao-Peng Hsu, Mou-Yuan Liao, Shu-Min Hsieh
Abstract:
This paper employs a the variable returns to scale DEA model to take account of risky assets and estimate the operating efficiencies for the 21 domestic listed securities firms during the period 2005-2009. Evidence is found that on average the brokerage securities firms- operating efficiencies are better than integrated securities firms. Evidence is also found that the technical inefficiency from inappropriate management constitutes the main source of the operating inefficiency for both types of securities firms. Moreover, the scale economies prevail in brokerage and integrated securities firms, in other words, which exhibit the characteristic of increasing returns to scale.Keywords: Data Envelopment Analysis, Risky Assets, PureTechnical Efficiency, Scale Efficiency, Scale Economies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14914404 Transmitter Macrodiversity in Multihopping- SFN Based Algorithm for Improved Node Reachability and Robust Routing
Authors: Magnus Eriksson, Arif Mahmud
Abstract:
A novel idea presented in this paper is to combine multihop routing with single-frequency networks (SFNs) for a broadcasting scenario. An SFN is a set of multiple nodes that transmit the same data simultaneously, resulting in transmitter macrodiversity. Two of the most important performance factors of multihop networks, node reachability and routing robustness, are analyzed. Simulation results show that our proposed SFN-D routing algorithm improves the node reachability by 37 percentage points as compared to non-SFN multihop routing. It shows a diversity gain of 3.7 dB, meaning that 3.7 dB lower transmission powers are required for the same reachability. Even better results are possible for larger networks. If an important node becomes inactive, this algorithm can find new routes that a non-SFN scheme would not be able to find. Thus, two of the major problems in multihopping are addressed; achieving robust routing as well as improving node reachability or reducing transmission power.Keywords: OFDM, single-frequency networks (SFN), DSFN, MANET; multihop routing, transmitter macrodiversity, broadcasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19274403 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks
Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos
Abstract:
This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.Keywords: Metaphor detection, deep learning, representation learning, embeddings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5534402 Some Remarkable Properties of a Hopfield Neural Network with Time Delay
Authors: Kelvin Rozier, Vladimir E. Bondarenko
Abstract:
It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections. The neural network under the study consists of 10 identical neurons. For symmetric (fully connected) networks all interneuron connections aij = +1; the interneuron connections for asymmetric networks form an upper triangular matrix with non-zero entries aij = +1. The behavior of the network is described by 10 differential equations, which are solved numerically. The results of simulations demonstrate some remarkable properties of a Hopfield neural network, such as linear growth of outputs, dependence of synchronization properties on the connection type, huge amplification of oscillation by the external uniform noise, and the capability of the neural network to transform one type of noise to another.Keywords: Chaos, Hopfield neural network, noise, synchronization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18904401 A Utilitarian Approach to Modeling Information Flows in Social Networks
Authors: Usha Sridhar, Sridhar Mandyam
Abstract:
We propose a multi-agent based utilitarian approach to model and understand information flows in social networks that lead to Pareto optimal informational exchanges. We model the individual expected utility function of the agents to reflect the net value of information received. We show how this model, adapted from a theorem by Karl Borch dealing with an actuarial Risk Exchange concept in the Insurance industry, can be used for social network analysis. We develop a utilitarian framework that allows us to interpret Pareto optimal exchanges of value as potential information flows, while achieving a maximization of a sum of expected utilities of information of the group of agents. We examine some interesting conditions on the utility function under which the flows are optimal. We illustrate the promise of this new approach to attach economic value to information in networks with a synthetic example.Keywords: Borch's Theorem , Economic value of information, Information Exchange, Pareto Optimal Solution, Social Networks, Utility Functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15054400 Malware Beaconing Detection by Mining Large-scale DNS Logs for Targeted Attack Identification
Authors: Andrii Shalaginov, Katrin Franke, Xiongwei Huang
Abstract:
One of the leading problems in Cyber Security today is the emergence of targeted attacks conducted by adversaries with access to sophisticated tools. These attacks usually steal senior level employee system privileges, in order to gain unauthorized access to confidential knowledge and valuable intellectual property. Malware used for initial compromise of the systems are sophisticated and may target zero-day vulnerabilities. In this work we utilize common behaviour of malware called ”beacon”, which implies that infected hosts communicate to Command and Control servers at regular intervals that have relatively small time variations. By analysing such beacon activity through passive network monitoring, it is possible to detect potential malware infections. So, we focus on time gaps as indicators of possible C2 activity in targeted enterprise networks. We represent DNS log files as a graph, whose vertices are destination domains and edges are timestamps. Then by using four periodicity detection algorithms for each pair of internal-external communications, we check timestamp sequences to identify the beacon activities. Finally, based on the graph structure, we infer the existence of other infected hosts and malicious domains enrolled in the attack activities.Keywords: Malware detection, network security, targeted attack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61074399 Layered Multiple Description Coding For Robust Video Transmission Over Wireless Ad-Hoc Networks
Authors: Joohee Kim
Abstract:
This paper presents a video transmission system using layered multiple description (coding (MDC) and multi-path transport for reliable video communications in wireless ad-hoc networks. The proposed MDC extends a quality-scalable H.264/AVC video coding algorithm to generate two independent descriptions. The two descriptions are transmitted over different paths to a receiver in order to alleviate the effect of unstable channel conditions of wireless adhoc networks. If one description is lost due to transmission erros, then the correctly received description is used to estimate the lost information of the corrupted description. The proposed MD coder maintains an adequate video quality as long as both description are not simultaneously lost. Simulation results show that the proposed MD coding combined with multi-path transport system is largely immune to packet losses, and therefore, can be a promising solution for robust video communications over wireless ad-hoc networks.Keywords: Multiple description coding, wireless video streaming, rate control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14444398 Robust Parameter and Scale Factor Estimation in Nonstationary and Impulsive Noise Environment
Authors: Zoran D. Banjac, Branko D. Kovacevic
Abstract:
The problem of FIR system parameter estimation has been considered in the paper. A new robust recursive algorithm for simultaneously estimation of parameters and scale factor of prediction residuals in non-stationary environment corrupted by impulsive noise has been proposed. The performance of derived algorithm has been tested by simulations.
Keywords: Adaptive filtering, Non-Gaussian filtering, Robustestimation, Scale factor estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17074397 Potential of Irish Orientated Strand Board in Bending Active Structures
Authors: M. Collins, B. O’Regan, T. Cosgrove
Abstract:
To determine the potential of a low cost Irish engineered timber product to replace high cost solid timber for use in bending active structures such as gridshells a single Irish engineered timber product in the form of orientated strand board (OSB) was selected. A comparative study of OSB and solid timber was carried out to determine the optimum properties that make a material suitable for use in gridshells. Three parameters were identified to be relevant in the selection of a material for gridshells. These three parameters are the strength to stiffness ratio, the flexural stiffness of commercially available sections, and the variability of material and section properties. It is shown that when comparing OSB against solid timber, OSB is a more suitable material for use in gridshells that are at the smaller end of the scale and that have tight radii of curvature. Typically, for solid timber materials, stiffness is used as an indicator for strength and engineered timber is no different. Thus, low flexural stiffness would mean low flexural strength. However, when it comes to bending active gridshells, OSB offers a significant advantage. By the addition of multiple layers, an increased section size is created, thus endowing the structure with higher stiffness and higher strength from initial low stiffness and low strength materials while still maintaining tight radii of curvature. This allows OSB to compete with solid timber on large scale gridshells. Additionally, a preliminary sustainability study using a set of sustainability indicators was carried out to determine the relative sustainability of building a large-scale gridshell in Ireland with a primary focus on economic viability but a mention is also given to social and environmental aspects. For this, the Savill garden gridshell in the UK was used as the functional unit with the sustainability of the structural roof skeleton constructed from UK larch solid timber being compared with the same structure using Irish OSB. Albeit that the advantages of using commercially available OSB in a bending active gridshell are marginal and limited to specific gridshell applications, further study into an optimised engineered timber product is merited.
Keywords: Bending active gridshells, High end timber structures, Low cost material, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17114396 Modeling Stress-Induced Regulatory Cascades with Artificial Neural Networks
Authors: Maria E. Manioudaki, Panayiota Poirazi
Abstract:
Yeast cells live in a constantly changing environment that requires the continuous adaptation of their genomic program in order to sustain their homeostasis, survive and proliferate. Due to the advancement of high throughput technologies, there is currently a large amount of data such as gene expression, gene deletion and protein-protein interactions for S. Cerevisiae under various environmental conditions. Mining these datasets requires efficient computational methods capable of integrating different types of data, identifying inter-relations between different components and inferring functional groups or 'modules' that shape intracellular processes. This study uses computational methods to delineate some of the mechanisms used by yeast cells to respond to environmental changes. The GRAM algorithm is first used to integrate gene expression data and ChIP-chip data in order to find modules of coexpressed and co-regulated genes as well as the transcription factors (TFs) that regulate these modules. Since transcription factors are themselves transcriptionally regulated, a three-layer regulatory cascade consisting of the TF-regulators, the TFs and the regulated modules is subsequently considered. This three-layer cascade is then modeled quantitatively using artificial neural networks (ANNs) where the input layer corresponds to the expression of the up-stream transcription factors (TF-regulators) and the output layer corresponds to the expression of genes within each module. This work shows that (a) the expression of at least 33 genes over time and for different stress conditions is well predicted by the expression of the top layer transcription factors, including cases in which the effect of up-stream regulators is shifted in time and (b) identifies at least 6 novel regulatory interactions that were not previously associated with stress-induced changes in gene expression. These findings suggest that the combination of gene expression and protein-DNA interaction data with artificial neural networks can successfully model biological pathways and capture quantitative dependencies between distant regulators and downstream genes.
Keywords: gene modules, artificial neural networks, yeast, stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14654395 Comparative Analysis of Geographical Routing Protocol in Wireless Sensor Networks
Authors: Rahul Malhotra
Abstract:
The field of wireless sensor networks (WSN) engages a lot of associates in the research community as an interdisciplinary field of interest. This type of network is inexpensive, multifunctionally attributable to advances in micro-electromechanical systems and conjointly the explosion and expansion of wireless communications. A mobile ad hoc network is a wireless network without fastened infrastructure or federal management. Due to the infrastructure-less mode of operation, mobile ad-hoc networks are gaining quality. During this work, we have performed an efficient performance study of the two major routing protocols: Ad hoc On-Demand Distance Vector Routing (AODV) and Dynamic Source Routing (DSR) protocols. We have used an accurate simulation model supported NS2 for this purpose. Our simulation results showed that AODV mitigates the drawbacks of the DSDV and provides better performance as compared to DSDV.
Keywords: Routing protocols, mobility, Mobile Ad-hoc Networks, Ad-hoc On-demand Distance Vector, Dynamic Source Routing, Destination Sequence Distance Vector, Quality of Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7074394 Development and Validation of Employee Trust Scale: Factor Structure, Reliability and Validity
Authors: Chua Bee Seok, Getrude Cosmas, Jasmine Adela Mutang, Shazia Iqbal Hashmi
Abstract:
The aim of this study was to determine the factor structure and psychometric properties (i.e., reliability and convergent validity) of the Employee Trust Scale, a newly created instrument by the researchers. The Employee Trust Scale initially contained 82 items to measure employees’ trust toward their supervisors. A sample of 818 (343 females, 449 males) employees were selected randomly from public and private organization sectors in Kota Kinabalu, Sabah, Malaysia. Their ages ranged from 19 to 67 years old with a mean of 34.55 years old. Their average tenure with their current employer was 11.2 years (s.d. = 7.5 years). The respondents were asked to complete the Employee Trust Scale, as well as a managerial trust questionnaire from Mishra. The exploratory factor analysis on employees’ trust toward their supervisor’s extracted three factors, labeled ‘trustworthiness’ (32 items), ‘position status’ (11 items) and ‘relationship’ (6 items) which accounted for 62.49% of the total variance. Trustworthiness factors were re-categorized into three sub factors: competency (11 items), benevolence (8 items) and integrity (13 items). All factors and sub factors of the scales demonstrated clear reliability with internal consistency of Cronbach’s Alpha above .85. The convergent validity of the Scale was supported by an expected pattern of correlations (positive and significant correlation) between the score of all factors and sub factors of the scale and the score on the managerial trust questionnaire, which measured the same construct. The convergent validity of Employee Trust Scale was further supported by the significant and positive inter-correlation between the factors and sub factors of the scale. The results suggest that the Employee Trust Scale is a reliable and valid measure. However, further studies need to be carried out in other groups of sample as to further validate the Scale.Keywords: Employees trust scale, position status, psychometric properties, relationship, trustworthiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33024393 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development
Authors: R. Byler
Abstract:
Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.Keywords: Community-based innovation, integrated knowledge networks, nanotechnology, technology innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8984392 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24934391 The Impact of Large-Scale Wind Energy Development on Islands’ Interconnection to the Mainland System
Authors: Marina Kapsali, John S. Anagnostopoulos
Abstract:
Greek islands’ interconnection (IC) with larger power systems, such as the mainland grid, is a crucial issue that has attracted a lot of interest; however, the recent economic recession that the country undergoes together with the highly capital intensive nature of this kind of projects have stalled or sifted the development of many of those on a more long-term basis. On the other hand, most of Greek islands are still heavily dependent on the lengthy and costly supply chain of oil imports whilst the majority of them exhibit excellent potential for wind energy (WE) applications. In this respect, the main purpose of the present work is to investigate −through a parametric study which varies both in wind farm (WF) and submarine IC capacities− the impact of large-scale WE development on the IC of the third in size island of Greece (Lesbos) with the mainland system. The energy and economic performance of the system is simulated over a 25-year evaluation period assuming two possible scenarios, i.e. S(a): without the contribution of the local Thermal Power Plant (TPP) and S(b): the TPP is maintained to ensure electrification of the island. The economic feasibility of the two options is investigated in terms of determining their Levelized Cost of Energy (LCOE) including also a sensitivity analysis on the worst/reference/best Cases. According to the results, Lesbos island IC presents considerable economic interest for covering part of island’s future electrification needs with WE having a vital role in this challenging venture.
Keywords: Electricity generation cost, levelized cost of energy, mainland grid, wind energy rejection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10284390 Markov Chain Based QoS Support for Wireless Body Area Network Communication in Health Monitoring Services
Authors: R. A. Isabel, E. Baburaj
Abstract:
Wireless Body Area Networks (WBANs) are essential for real-time health monitoring of patients and in diagnosing of many diseases. WBANs comprise many sensors to monitor a large range of ambient conditions. Quality of Service (QoS) is a key challenge in WBAN, because the different state information of the neighboring nodes has to be monitored in an accurate manner. However, energy consumption gets increased while predicting and maintaining the exact information in highly dynamic environments. In order to reduce energy consumption and end to end delay, Markov Chain Based Quality of Service Support (MC-QoSS) method is designed in the health monitoring services of WBAN communication. The energy consumption gets reduced by forming a Markov chain with high energy nodes in the sensor networks communication path. The low energy level sensor nodes are removed using transitional probability in order to reduce end to end delay. High energy nodes are formed in the chain structure of its corresponding path to enhance communication. After choosing the communication path through high energy nodes, the packets are sent to the sink node from the source node with a higher Packet Delivery Ratio. The simulation result shows that MC-QoSS method improves the packet delivery ratio and reduces energy consumption with minimum end to end delay, compared to existing methods.
Keywords: Wireless body area networks, quality of service, Markov chain, health monitoring services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14394389 Energy Recovery from Swell with a Height Inferior to 1.5 m
Authors: A. Errasti, F. Doffagne, O. Foucrier, S. Kao, A. Meigne, H. Pellae, T. Rouland
Abstract:
Renewable energy recovery is an important domain of research in past few years in view of protection of our ecosystem. Several industrial companies are setting up widespread recovery systems to exploit wave energy. Most of them have a large size, are implanted near the shores and exploit current flows. However, as oceans represent 70% of Earth surface, a huge space is still unexploited to produce energy. Present analysis focuses on surface small scale wave energy recovery. The principle is exactly the opposite of wheel damper for a car on a road. Instead of maintaining the car body as non-oscillatory as possible by adapted control, a system is designed so that its oscillation amplitude under wave action will be maximized with respect to a boat carrying it in view of differential potential energy recuperation. From parametric analysis of system equations, interesting domains have been selected and expected energy output has been evaluated.
Keywords: Small scale wave, potential energy, optimized energy recovery, auto-adaptive system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11944388 Crude Oil Price Prediction Using LSTM Networks
Authors: Varun Gupta, Ankit Pandey
Abstract:
Crude oil market is an immensely complex and dynamic environment and thus the task of predicting changes in such an environment becomes challenging with regards to its accuracy. A number of approaches have been adopted to take on that challenge and machine learning has been at the core in many of them. There are plenty of examples of algorithms based on machine learning yielding satisfactory results for such type of prediction. In this paper, we have tried to predict crude oil prices using Long Short-Term Memory (LSTM) based recurrent neural networks. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.
Keywords: Crude oil price prediction, deep learning, LSTM, recurrent neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37124387 Efficient Broadcasting in Wireless Sensor Networks
Authors: Min Kyung An, Hyuk Cho
Abstract:
In this paper, we study the Minimum Latency Broadcast Scheduling (MLBS) problem in wireless sensor networks (WSNs). The main issue of the MLBS problem is to compute schedules with the minimum number of timeslots such that a base station can broadcast data to all other sensor nodes with no collisions. Unlike existing works that utilize the traditional omni-directional WSNs, we target the directional WSNs where nodes can collaboratively determine and orientate their antenna directions. We first develop a 7-approximation algorithm, adopting directional WSNs. Our ratio is currently the best, to the best of our knowledge. We then validate the performance of the proposed algorithm through simulation.Keywords: Broadcast, collision-free, directional antenna, approximation, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11524386 Periodic Solutions of Recurrent Neural Networks with Distributed Delays and Impulses on Time Scales
Authors: Yaping Ren, Yongkun Li
Abstract:
In this paper, by using the continuation theorem of coincidence degree theory, M-matrix theory and constructing some suitable Lyapunov functions, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of recurrent neural networks with distributed delays and impulses on time scales. Without assuming the boundedness of the activation functions gj, hj , these results are less restrictive than those given in the earlier references.
Keywords: Recurrent neural networks, global exponential stability, periodic solutions, distributed delays, impulses, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15954385 Research Design for Developing and Validating Ice-Hockey Team Diagnostics Scale
Authors: Gergely Géczi
Abstract:
In the modern world, ice-hockey (and in a broader sense, team sports) is becoming an increasingly popular field of entertainment. Although the main element is most likely perceived as the show itself, winning is an inevitable part of the successful operation of any sports team. In this paper, the author creates a research design allowing to develop and validate an ice-hockey team-focused diagnostics scale, which enables researchers and practitioners to identify the problems associated with underperforming teams. The construction of the scale starts with personal interviews with experts of the field, carefully chosen from Hungarian ice-hockey sector. Based on the interviews, the author is shown to be in the position to create the categories and the relevant items for the scale. When constructed, the next step is the validation process on a Hungarian sample. Data for validation are acquired through reaching the licensed database of the Hungarian Ice-Hockey Federation involving Hungarian ice-hockey coaches and players. The Ice-Hockey Team Diagnostics Scale is to be created to orientate practitioners in understanding both effective and underperforming team work.
Keywords: Diagnostics Scale, effective versus underperforming team work, ice-hockey, research design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5524384 Unknown Environment Representation for Mobile Robot Using Spiking Neural Networks
Authors: Amir Reza Saffari Azar Alamdari
Abstract:
In this paper, a model of self-organizing spiking neural networks is introduced and applied to mobile robot environment representation and path planning problem. A network of spike-response-model neurons with a recurrent architecture is used to create robot-s internal representation from surrounding environment. The overall activity of network simulates a self-organizing system with unsupervised learning. A modified A* algorithm is used to find the best path using this internal representation between starting and goal points. This method can be used with good performance for both known and unknown environments.
Keywords: Mobile Robot, Path Planning, Self-organization, Spiking Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492