Search results for: Adaptive neural fuzzy inference system (ANFIS)
9632 On Weakly Prime and Weakly Quasi-Prime Fuzzy Left Ideals in Ordered Semigroups
Authors: Jian Tang
Abstract:
In this paper, we first introduce the concepts of weakly prime and weakly quasi-prime fuzzy left ideals of an ordered semigroup S. Furthermore, we give some characterizations of weakly prime and weakly quasi-prime fuzzy left ideals of an ordered semigroup S by the ordered fuzzy points and fuzzy subsets of S.
Keywords: Ordered semigroup, ordered fuzzy point, weakly prime fuzzy left ideal, weakly quasi-prime fuzzy left ideal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16429631 Compromise Ratio Method for Decision Making under Fuzzy Environment using Fuzzy Distance Measure
Authors: Debashree Guha, Debjani Chakraborty
Abstract:
The aim of this paper is to adopt a compromise ratio (CR) methodology for fuzzy multi-attribute single-expert decision making proble. In this paper, the rating of each alternative has been described by linguistic terms, which can be expressed as triangular fuzzy numbers. The compromise ratio method for fuzzy multi-attribute single expert decision making has been considered here by taking the ranking index based on the concept that the chosen alternative should be as close as possible to the ideal solution and as far away as possible from the negative-ideal solution simultaneously. From logical point of view, the distance between two triangular fuzzy numbers also is a fuzzy number, not a crisp value. Therefore a fuzzy distance measure, which is itself a fuzzy number, has been used here to calculate the difference between two triangular fuzzy numbers. Now in this paper, with the help of this fuzzy distance measure, it has been shown that the compromise ratio is a fuzzy number and this eases the problem of the decision maker to take the decision. The computation principle and the procedure of the compromise ratio method have been described in detail in this paper. A comparative analysis of the compromise ratio method previously proposed [1] and the newly adopted method have been illustrated with two numerical examples.
Keywords: Compromise ratio method, Fuzzy multi-attributesingle-expert decision making, Fuzzy number, Linguistic variable
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14139630 Fuzzy Scan Method to Detect Clusters
Authors: Laureano Rodríguez, Gladys Casas, Ricardo Grau, Yailen Martínez
Abstract:
The classical temporal scan statistic is often used to identify disease clusters. In recent years, this method has become as a very popular technique and its field of application has been notably increased. Many bioinformatic problems have been solved with this technique. In this paper a new scan fuzzy method is proposed. The behaviors of classic and fuzzy scan techniques are studied with simulated data. ROC curves are calculated, being demonstrated the superiority of the fuzzy scan technique.Keywords: Scan statistic, fuzzy scan, simulating study
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13989629 Design of Robust Fuzzy Logic Power System Stabilizer
Authors: S. A. Taher, A. Shemshadi
Abstract:
Power system stabilizers (PSS) must be capable of providing appropriate stabilization signals over a broad range of operating conditions and disturbance. Traditional PSS rely on robust linear design method in an attempt to cover a wider range of operating condition. Expert or rule-based controllers have also been proposed. Recently fuzzy logic (FL) as a novel robust control design method has shown promising results. The emphasis in fuzzy control design center is around uncertainties in the system parameters & operating conditions. In this paper a novel Robust Fuzzy Logic Power System Stabilizer (RFLPSS) design is proposed The RFLPSS basically utilizes only one measurable Δω signal as input (generator shaft speed). The speed signal is discretized resulting in three inputs to the RFLPSS. There are six rules for the fuzzification and two rules for defuzzification. To provide robustness, additional signal namely, speed are used as inputs to RFLPSS enabling appropriate gain adjustments for the three RFLPSS inputs. Simulation studies show the superior performance of the RFLPSS compared with an optimally designed conventional PSS and discrete mode FLPSS.Keywords: Controller design, Fuzzy Logic, PID, Power SystemStabilizer, Robust control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21369628 Block Homotopy Perturbation Method for Solving Fuzzy Linear Systems
Authors: Shu-Xin Miao
Abstract:
In this paper, we present an efficient numerical algorithm, namely block homotopy perturbation method, for solving fuzzy linear systems based on homotopy perturbation method. Some numerical examples are given to show the efficiency of the algorithm.
Keywords: Homotopy perturbation method, fuzzy linear systems, block linear system, fuzzy solution, embedding parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13769627 Adaptation of Iterative Methods to Solve Fuzzy Mathematical Programming Problems
Authors: Ricardo C. Silva, Luiza A. P. Cantao, Akebo Yamakami
Abstract:
Based on the fuzzy set theory this work develops two adaptations of iterative methods that solve mathematical programming problems with uncertainties in the objective function and in the set of constraints. The first one uses the approach proposed by Zimmermann to fuzzy linear programming problems as a basis and the second one obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. We outline similarities between the two iterative methods studied. Selected examples from the literature are presented to validate the efficiency of the methods addressed.Keywords: Fuzzy Theory, Nonlinear Optimization, Fuzzy Mathematics Programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16249626 Implementation of Intuitionistic Fuzzy Approach in Maximizing Net Present Value
Authors: Gaurav Kumar, Rakesh Kumar Bajaj
Abstract:
The applicability of Net Present Value (NPV) in an investment project is becoming more and more popular in the field of engineering economics. The classical NPV methodology involves only the precise and accurate data of the investment project. In the present communication, we give a new mathematical model for NPV which uses the concept of intuitionistic fuzzy set theory. The proposed model is based on triangular intuitionistic fuzzy number, which may be known as Intuitionistic Fuzzy Net Present Value (IFNPV). The model has been applied to an example and the results are presented.
Keywords: Net Present Value, Intuitionistic Fuzzy Set, Investment Projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25199625 Adaptive Sampling Algorithm for ANN-based Performance Modeling of Nano-scale CMOS Inverter
Authors: Dipankar Dhabak, Soumya Pandit
Abstract:
This paper presents an adaptive technique for generation of data required for construction of artificial neural network-based performance model of nano-scale CMOS inverter circuit. The training data are generated from the samples through SPICE simulation. The proposed algorithm has been compared to standard progressive sampling algorithms like arithmetic sampling and geometric sampling. The advantages of the present approach over the others have been demonstrated. The ANN predicted results have been compared with actual SPICE results. A very good accuracy has been obtained.Keywords: CMOS Inverter, Nano-scale, Adaptive Sampling, ArtificialNeural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16099624 Evolutionary Computing Approach for the Solution of Initial value Problems in Ordinary Differential Equations
Authors: A. Junaid, M. A. Z. Raja, I. M. Qureshi
Abstract:
An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other numerical techniques. The comparison is carried out with classical numerical techniques and the solution is found with a uniform accuracy of MSE ≈ 10-9 .
Keywords: Neural networks, Unsupervised learning, Evolutionary computing, Numerical methods, Fitness evaluation function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17829623 Design of Adaptive Sliding Mode Controller for Robotic Manipulators Tracking Control
Authors: T. C. Kuo, Y. J. Huang, B. W. Hong
Abstract:
This paper proposes an adaptive sliding mode controller which combines adaptive control and sliding mode control to control a nonlinear robotic manipulator with uncertain parameters. We use an adaptive algorithm based on the concept of sliding mode control to alleviate the chattering phenomenon of control input. Adaptive laws are developed to obtain the gain of switching input and the boundary layer parameters. The stability and convergence of the robotic manipulator control system are guaranteed by applying the Lyapunov theorem. Simulation results demonstrate that the chattering of control input can be alleviated effectively. The proposed controller scheme can assure robustness against a large class of uncertainties and achieve good trajectory tracking performance.Keywords: Robotic manipulators, sliding mode control, adaptive law, Lyapunov theorem, robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30469622 Comparison Results of Two-point Fuzzy Boundary Value Problems
Authors: Hsuan-Ku Liu
Abstract:
This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.
Keywords: Fuzzy derivative, lateral type of H-derivative, fuzzy differential equations, fuzzy boundary value problems, boundary value problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15349621 Adaptive Radio Resource Allocation for Multiple Traffic OFDMA Broadband Wireless Access System
Authors: Lu Yanhui, Zhang Lizhi, Yin Changchuan, Yue Guangxin
Abstract:
In this paper, an adaptive radio resource allocation (RRA) algorithm applying to multiple traffic OFDMA system is proposed, which distributes sub-carrier and loading bits among users according to their different QoS requirements and traffic class. By classifying and prioritizing the users based on their traffic characteristic and ensuring resource for higher priority users, the scheme decreases tremendously the outage probability of the users requiring a real time transmission without impact on the spectrum efficiency of system, as well as the outage probability of data users is not increased compared with the RRA methods published.Keywords: OFDMA, adaptive radio resource allocation, QoS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16899620 On λ− Summable of Orlicz Space of Gai Sequences of Fuzzy Numbers
Authors: N.Subramanian, S.Krishnamoorthy, S. Balasubramanian
Abstract:
In this paper the concept of strongly (λM)p - Ces'aro summability of a sequence of fuzzy numbers and strongly λM- statistically convergent sequences of fuzzy numbers is introduced.Keywords: Fuzzy numbers, statistical convergence, Orlicz space, gai sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19549619 Mapping Complex, Large – Scale Spiking Networks on Neural VLSI
Authors: Christian Mayr, Matthias Ehrlich, Stephan Henker, Karsten Wendt, René Schüffny
Abstract:
Traditionally, VLSI implementations of spiking neural nets have featured large neuron counts for fixed computations or small exploratory, configurable nets. This paper presents the system architecture of a large configurable neural net system employing a dedicated mapping algorithm for projecting the targeted biology-analog nets and dynamics onto the hardware with its attendant constraints.Keywords: Large scale VLSI neural net, topology mapping, complex pulse communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16859618 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.
Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18599617 Intelligent Condition Monitoring Systems for Unmanned Aerial Vehicle Robots
Authors: A. P. Anvar, T. Dowling, T. Putland, A. M. Anvar, S.Grainger
Abstract:
This paper presents the application of Intelligent Techniques to the various duties of Intelligent Condition Monitoring Systems (ICMS) for Unmanned Aerial Vehicle (UAV) Robots. These Systems are intended to support these Intelligent Robots in the event of a Fault occurrence. Neural Networks are used for Diagnosis, whilst Fuzzy Logic is intended for Prognosis and Remedy. The ultimate goals of ICMS are to save large losses in financial cost, time and data.Keywords: Intelligent Techniques, Condition Monitoring Systems, ICMS, Robots, Fault, Unmanned Aerial Vehicle, UAV, Neural Networks, Diagnosis, Fuzzy Logic, Prognosis, Remedy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23569616 UML Model for Double-Loop Control Self-Adaptive Braking System
Authors: Heung Sun Yoon, Jong Tae Kim
Abstract:
In this paper, we present an activity diagram model for double-loop control self-adaptive braking system. Since activity diagram helps to improve visibility of self-adaption. We can easily find where improvement is needed on double-loop control. Double-loop control is adopted since the design conditions and actual conditions can be different. The system is reconfigured in runtime by using double-loop control. We simulated to verify and validate our model by using MATLAB. We compared single-loop control model with double-loop control model. Simulation results show that double-loop control provides more consistent brake power control than single-loop control.
Keywords: Activity diagram, automotive, braking system, double-loop, Self-adaptive, UML, vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25059615 Generalized Measures of Fuzzy Entropy and their Properties
Authors: K.C. Deshmukh, P.G. Khot, Nikhil
Abstract:
In the present communication, we have proposed some new generalized measure of fuzzy entropy based upon real parameters, discussed their and desirable properties, and presented these measures graphically. An important property, that is, monotonicity of the proposed measures has also been studied.Keywords: Fuzzy numbers, Fuzzy entropy, Characteristicfunction, Crisp set, Monotonicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14749614 Complexity of Mathematical Expressions in Adaptive Multimodal Multimedia System Ensuring Access to Mathematics for Visually Impaired Users
Authors: Ali Awde, Yacine Bellik, Chakib Tadj
Abstract:
Our adaptive multimodal system aims at correctly presenting a mathematical expression to visually impaired users. Given an interaction context (i.e. combination of user, environment and system resources) as well as the complexity of the expression itself and the user-s preferences, the suitability scores of different presentation format are calculated. Unlike the current state-of-the art solutions, our approach takes into account the user-s situation and not imposes a solution that is not suitable to his context and capacity. In this wok, we present our methodology for calculating the mathematical expression complexity and the results of our experiment. Finally, this paper discusses the concepts and principles applied on our system as well as their validation through cases studies. This work is our original contribution to an ongoing research to make informatics more accessible to handicapped users.Keywords: Adaptive system, intelligent multi-agent system, mathematics for visually-impaired users.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15879613 Using Interval Constrained Petri Nets for the Fuzzy Regulation of Quality: Case of Assembly Process Mechanics
Authors: Nabli L., Dhouibi H., Collart Dutilleul S., Craye E.
Abstract:
The indistinctness of the manufacturing processes makes that a parts cannot be realized in an absolutely exact way towards the specifications on the dimensions. It is thus necessary to assume that the effectively realized product has to belong in a very strict way to compatible intervals with a correct functioning of the parts. In this paper we present an approach based on mixing tow different characteristics theories, the fuzzy system and Petri net system. This tool has been proposed to model and control the quality in an assembly system. A robust command of a mechanical assembly process is presented as an application. This command will then have to maintain the specifications interval of parts in front of the variations. It also illustrates how the technique reacts when the product quality is high, medium, or low.
Keywords: Petri nets, production rate, performance evaluation, tolerant system, fuzzy sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12779612 Improving Digital Image Edge Detection by Fuzzy Systems
Authors: Begol, Moslem, Maghooli, Keivan
Abstract:
Image Edge Detection is one of the most important parts of image processing. In this paper, by fuzzy technique, a new method is used to improve digital image edge detection. In this method, a 3x3 mask is employed to process each pixel by means of vicinity. Each pixel is considered a fuzzy input and by examining fuzzy rules in its vicinity, the edge pixel is specified and by utilizing calculation algorithms in image processing, edges are displayed more clearly. This method shows significant improvement compared to different edge detection methods (e.g. Sobel, Canny).Keywords: Fuzzy Systems, Edge Detection, Fuzzy edgedetection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20899611 Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation
Authors: Ferenc Peter Pach, Janos Abonyi
Abstract:
This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23059610 Statistical Feature Extraction Method for Wood Species Recognition System
Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof
Abstract:
Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.Keywords: Classification, fuzzy, inspection system, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17449609 Fuzzy Mathematical Morphology approach in Image Processing
Authors: Yee Yee Htun, Dr. Khaing Khaing Aye
Abstract:
Morphological operators transform the original image into another image through the interaction with the other image of certain shape and size which is known as the structure element. Mathematical morphology provides a systematic approach to analyze the geometric characteristics of signals or images, and has been applied widely too many applications such as edge detection, objection segmentation, noise suppression and so on. Fuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations such as fuzzy erosion, dilation, opening and closing, a general method based upon fuzzy implication and inclusion grade operators is introduced. The fuzzy morphological operations extend the ordinary morphological operations by using fuzzy sets where for fuzzy sets, the union operation is replaced by a maximum operation, and the intersection operation is replaced by a minimum operation. In this work, it consists of two articles. In the first one, fuzzy set theory, fuzzy Mathematical morphology which is based on fuzzy logic and fuzzy set theory; fuzzy Mathematical operations and their properties will be studied in details. As a second part, the application of fuzziness in Mathematical morphology in practical work such as image processing will be discussed with the illustration problems.Keywords: Binary Morphological, Fuzzy sets, Grayscalemorphology, Image processing, Mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32479608 Study of Variation of Winds Behavior on Micro Urban Environment with Use of Fuzzy Logic for Wind Power Generation: Case Study in the Cities of Arraial do Cabo and São Pedro da Aldeia, State of Rio de Janeiro, Brazil
Authors: Roberto Rosenhaim, Marcos Antonio Crus Moreira, Robson da Cunha, Gerson Gomes Cunha
Abstract:
This work provides details on the wind speed behavior within cities of Arraial do Cabo and São Pedro da Aldeia located in the Lakes Region of the State of Rio de Janeiro, Brazil. This region has one of the best potentials for wind power generation. In interurban layer, wind conditions are very complex and depend on physical geography, size and orientation of buildings and constructions around, population density, and land use. In the same context, the fundamental surface parameter that governs the production of flow turbulence in urban canyons is the surface roughness. Such factors can influence the potential for power generation from the wind within the cities. Moreover, the use of wind on a small scale is not fully utilized due to complexity of wind flow measurement inside the cities. It is difficult to accurately predict this type of resource. This study demonstrates how fuzzy logic can facilitate the assessment of the complexity of the wind potential inside the cities. It presents a decision support tool and its ability to deal with inaccurate information using linguistic variables created by the heuristic method. It relies on the already published studies about the variables that influence the wind speed in the urban environment. These variables were turned into the verbal expressions that are used in computer system, which facilitated the establishment of rules for fuzzy inference and integration with an application for smartphones used in the research. In the first part of the study, challenges of the sustainable development which are described are followed by incentive policies to the use of renewable energy in Brazil. The next chapter follows the study area characteristics and the concepts of fuzzy logic. Data were collected in field experiment by using qualitative and quantitative methods for assessment. As a result, a map of the various points is presented within the cities studied with its wind viability evaluated by a system of decision support using the method multivariate classification based on fuzzy logic.Keywords: Behavior of winds, wind power, fuzzy logic, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11019607 Adaptive Educational Hypermedia System for High School Students Based on Learning Styles
Authors: Stephen Akuma, Timothy Ndera
Abstract:
Information seekers get “lost in hyperspace” due to the voluminous documents updated daily on the internet. Adaptive Hypermedia Systems (AHS) are used to direct learners to their target goals. One of the most common AHS designed to help information seekers to overcome the problem of information overload is the Adaptive Education Hypermedia System (AEHS). However, this paper focuses on AEHS that adopts the learning preference of high school students and deliver learning content according to this preference throughout their learning experience. The research developed a prototype system for predicting students’ learning preference from the Visual, Aural, Read-Write and Kinesthetic (VARK) learning style model and adopting the learning content suitable to their preference. The predicting strength of several classifiers was compared and we found Support Vector Machine (SVM) to be more accurate in predicting learning style based on users’ preferences.
Keywords: Hypermedia, adaptive education, learning style, lesson content, user profile, prediction, feedback, adaptive hypermedia, learning style.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8519606 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: Deep neural models, natural language inference, recognizing textual entailment, sentence-to-sentence relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14549605 Load Flow Analysis: An Overview
Authors: P. S. Bhowmik, D. V. Rajan, S. P. Bose
Abstract:
The load flow study in a power system constitutes a study of paramount importance. The study reveals the electrical performance and power flows (real and reactive) for specified condition when the system is operating under steady state. This paper gives an overview of different techniques used for load flow study under different specified conditions.
Keywords: Load Flow Studies, Y-matrix and Z-matrix iteration, Newton-Raphson method, Fast Decoupled method, Fuzzy logic, Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68609604 Adaptive Integral Backstepping Motion Control for Inverted Pendulum
Authors: Ö. Tolga Altınöz
Abstract:
The adaptive backstepping controller for inverted pendulum is designed by using the general motion control model. Backstepping is a novel nonlinear control technique based on the Lyapunov design approach, used when higher derivatives of parameter estimation appear. For easy parameter adaptation, the mathematical model of the inverted pendulum converted into the motion control model. This conversion is performed by taking functions of unknown parameters and dynamics of the system. By using motion control model equations, inverted pendulum is simulated without any information about not only parameters but also measurable dynamics. Also these results are compare with the adaptive backstepping controller which extended with integral action that given from [1].
Keywords: Adaptive backstepping, inverted pendulum, nonlinear adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34939603 Fuzzy Multi-Criteria Framework for Supporting Biofuels Policy Making
Authors: Jadwiga R. Ziolkowska
Abstract:
In this paper, a fuzzy algorithm and a fuzzy multicriteria decision framework are developed and used for a practical question of optimizing biofuels policy making. The methodological framework shows how to incorporate fuzzy set theory in a decision process of finding a sustainable biofuels policy among several policy options. Fuzzy set theory is used here as a tool to deal with uncertainties of decision environment, vagueness and ambiguities of policy objectives, subjectivities of human assessments and imprecise and incomplete information about the evaluated policy instruments.Keywords: Fuzzy set theory, multi-criteria decision-makingsupport, uncertainties, policy making, biofuels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031