Search results for: Matrix Minimization Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4391

Search results for: Matrix Minimization Algorithm

101 Applying Kinect on the Development of a Customized 3D Mannequin

Authors: Shih-Wen Hsiao, Rong-Qi Chen

Abstract:

In the field of fashion design, 3D Mannequin is a kind of assisting tool which could rapidly realize the design concepts. While the concept of 3D Mannequin is applied to the computer added fashion design, it will connect with the development and the application of design platform and system. Thus, the situation mentioned above revealed a truth that it is very critical to develop a module of 3D Mannequin which would correspond with the necessity of fashion design. This research proposes a concrete plan that developing and constructing a system of 3D Mannequin with Kinect. In the content, ergonomic measurements of objective human features could be attained real-time through the implement with depth camera of Kinect, and then the mesh morphing can be implemented through transformed the locations of the control-points on the model by inputting those ergonomic data to get an exclusive 3D mannequin model. In the proposed methodology, after the scanned points from the Kinect are revised for accuracy and smoothening, a complete human feature would be reconstructed by the ICP algorithm with the method of image processing. Also, the objective human feature could be recognized to analyze and get real measurements. Furthermore, the data of ergonomic measurements could be applied to shape morphing for the division of 3D Mannequin reconstructed by feature curves. Due to a standardized and customer-oriented 3D Mannequin would be generated by the implement of subdivision, the research could be applied to the fashion design or the presentation and display of 3D virtual clothes. In order to examine the practicality of research structure, a system of 3D Mannequin would be constructed with JAVA program in this study. Through the revision of experiments the practicability-contained research result would come out.

Keywords: 3D Mannequin, kinect scanner, interactive closest point, shape morphing, subdivision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
100 Spatial Query Localization Method in Limited Reference Point Environment

Authors: Victor Krebss

Abstract:

Task of object localization is one of the major challenges in creating intelligent transportation. Unfortunately, in densely built-up urban areas, localization based on GPS only produces a large error, or simply becomes impossible. New opportunities arise for the localization due to the rapidly emerging concept of a wireless ad-hoc network. Such network, allows estimating potential distance between these objects measuring received signal level and construct a graph of distances in which nodes are the localization objects, and edges - estimates of the distances between pairs of nodes. Due to the known coordinates of individual nodes (anchors), it is possible to determine the location of all (or part) of the remaining nodes of the graph. Moreover, road map, available in digital format can provide localization routines with valuable additional information to narrow node location search. However, despite abundance of well-known algorithms for solving the problem of localization and significant research efforts, there are still many issues that currently are addressed only partially. In this paper, we propose localization approach based on the graph mapped distances on the digital road map data basis. In fact, problem is reduced to distance graph embedding into the graph representing area geo location data. It makes possible to localize objects, in some cases even if only one reference point is available. We propose simple embedding algorithm and sample implementation as spatial queries over sensor network data stored in spatial database, allowing employing effectively spatial indexing, optimized spatial search routines and geometry functions.

Keywords: Intelligent Transportation System, Sensor Network, Localization, Spatial Query, GIS, Graph Embedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
99 Improved Fuzzy Neural Modeling for Underwater Vehicles

Authors: O. Hassanein, Sreenatha G. Anavatti, Tapabrata Ray

Abstract:

The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.

Keywords: AUV, AUV dynamic model, fuzzy control, fuzzy modelling, adaptive fuzzy control, back propagation, system identification, neural fuzzy model, FLNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
98 Verification of On-Line Vehicle Collision Avoidance Warning System using DSRC

Authors: C. W. Hsu, C. N. Liang, L. Y. Ke, F. Y. Huang

Abstract:

Many accidents were happened because of fast driving, habitual working overtime or tired spirit. This paper presents a solution of remote warning for vehicles collision avoidance using vehicular communication. The development system integrates dedicated short range communication (DSRC) and global position system (GPS) with embedded system into a powerful remote warning system. To transmit the vehicular information and broadcast vehicle position; DSRC communication technology is adopt as the bridge. The proposed system is divided into two parts of the positioning andvehicular units in a vehicle. The positioning unit is used to provide the position and heading information from GPS module, and furthermore the vehicular unit is used to receive the break, throttle, and othersignals via controller area network (CAN) interface connected to each mechanism. The mobile hardware are built with an embedded system using X86 processor in Linux system. A vehicle is communicated with other vehicles via DSRC in non-addressed protocol with wireless access in vehicular environments (WAVE) short message protocol. From the position data and vehicular information, this paper provided a conflict detection algorithm to do time separation and remote warning with error bubble consideration. And the warning information is on-line displayed in the screen. This system is able to enhance driver assistance service and realize critical safety by using vehicular information from the neighbor vehicles.KeywordsDedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Keywords: Dedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
97 Numerical Investigation of Developing Mixed Convection in Isothermal Circular and Annular Sector Ducts

Authors: Ayad A. Abdalla, Elhadi I. Elhadi, Hisham A. Elfergani

Abstract:

Developing mixed convection in circular and annular sector ducts is investigated numerically for steady laminar flow of an incompressible Newtonian fluid with Pr = 0.7 and a wide range of Grashof number (0 £ Gr £ 107). Investigation is limited to the case of heating in circular and annular sector ducts with apex angle of 2ϕ = π/4 for the thermal boundary condition of uniform wall temperature axially and peripherally. A numerical, finite control volume approach based on the SIMPLER algorithm is employed to solve the 3D governing equations. Numerical analysis is conducted using marching technique in the axial direction with axial conduction, axial mass diffusion, and viscous dissipation within the fluid are assumed negligible. The results include developing secondary flow patterns, developing temperature and axial velocity fields, local Nusselt number, local friction factor, and local apparent friction factor. Comparisons are made with the literature and satisfactory agreement is obtained. It is found that free convection enhances the local heat transfer in some cases by up to 2.5 times from predictions which account for forced convection only and the enhancement increases as Grashof number increases. Duct geometry and Grashof number strongly influence the heat transfer and pressure drop characteristics.

Keywords: Mixed convection, annular and circular sector ducts, heat transfer enhancement, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547
96 A Hybrid Fuzzy AGC in a Competitive Electricity Environment

Authors: H. Shayeghi, A. Jalili

Abstract:

This paper presents a new Hybrid Fuzzy (HF) PID type controller based on Genetic Algorithms (GA-s) for solution of the Automatic generation Control (AGC) problem in a deregulated electricity environment. In order for a fuzzy rule based control system to perform well, the fuzzy sets must be carefully designed. A major problem plaguing the effective use of this method is the difficulty of accurately constructing the membership functions, because it is a computationally expensive combinatorial optimization problem. On the other hand, GAs is a technique that emulates biological evolutionary theories to solve complex optimization problems by using directed random searches to derive a set of optimal solutions. For this reason, the membership functions are tuned automatically using a modified GA-s based on the hill climbing method. The motivation for using the modified GA-s is to reduce fuzzy system effort and take large parametric uncertainties into account. The global optimum value is guaranteed using the proposed method and the speed of the algorithm-s convergence is extremely improved, too. This newly developed control strategy combines the advantage of GA-s and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed GA based HF (GAHF) controller is tested on a threearea deregulated power system under different operating conditions and contract variations. The results of the proposed GAHF controller are compared with those of Multi Stage Fuzzy (MSF) controller, robust mixed H2/H∞ and classical PID controllers through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes.

Keywords: AGC, Hybrid Fuzzy Controller, Deregulated Power System, Power System Control, GAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
95 FPGA Hardware Implementation and Evaluation of a Micro-Network Architecture for Multi-Core Systems

Authors: Yahia Salah, Med Lassaad Kaddachi, Rached Tourki

Abstract:

This paper presents the design, implementation and evaluation of a micro-network, or Network-on-Chip (NoC), based on a generic pipeline router architecture. The router is designed to efficiently support traffic generated by multimedia applications on embedded multi-core systems. It employs a simplest routing mechanism and implements the round-robin scheduling strategy to resolve output port contentions and minimize latency. A virtual channel flow control is applied to avoid the head-of-line blocking problem and enhance performance in the NoC. The hardware design of the router architecture has been implemented at the register transfer level; its functionality is evaluated in the case of the two dimensional Mesh/Torus topology, and performance results are derived from ModelSim simulator and Xilinx ISE 9.2i synthesis tool. An example of a multi-core image processing system utilizing the NoC structure has been implemented and validated to demonstrate the capability of the proposed micro-network architecture. To reduce complexity of the image compression and decompression architecture, the system use image processing algorithm based on classical discrete cosine transform with an efficient zonal processing approach. The experimental results have confirmed that both the proposed image compression scheme and NoC architecture can achieve a reasonable image quality with lower processing time.

Keywords: Generic Pipeline Network-on-Chip Router Architecture, JPEG Image Compression, FPGA Hardware Implementation, Performance Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097
94 Fake Account Detection in Twitter Based on Minimum Weighted Feature set

Authors: Ahmed El Azab, Amira M. Idrees, Mahmoud A. Mahmoud, Hesham Hefny

Abstract:

Social networking sites such as Twitter and Facebook attracts over 500 million users across the world, for those users, their social life, even their practical life, has become interrelated. Their interaction with social networking has affected their life forever. Accordingly, social networking sites have become among the main channels that are responsible for vast dissemination of different kinds of information during real time events. This popularity in Social networking has led to different problems including the possibility of exposing incorrect information to their users through fake accounts which results to the spread of malicious content during life events. This situation can result to a huge damage in the real world to the society in general including citizens, business entities, and others. In this paper, we present a classification method for detecting the fake accounts on Twitter. The study determines the minimized set of the main factors that influence the detection of the fake accounts on Twitter, and then the determined factors are applied using different classification techniques. A comparison of the results of these techniques has been performed and the most accurate algorithm is selected according to the accuracy of the results. The study has been compared with different recent researches in the same area; this comparison has proved the accuracy of the proposed study. We claim that this study can be continuously applied on Twitter social network to automatically detect the fake accounts; moreover, the study can be applied on different social network sites such as Facebook with minor changes according to the nature of the social network which are discussed in this paper.

Keywords: Fake accounts detection, classification algorithms, twitter accounts analysis, features based techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5837
93 Laser Registration and Supervisory Control of neuroArm Robotic Surgical System

Authors: Hamidreza Hoshyarmanesh, Hosein Madieh, Sanju Lama, Yaser Maddahi, Garnette R. Sutherland, Kourosh Zareinia

Abstract:

This paper illustrates the concept of an algorithm to register specified markers on the neuroArm surgical manipulators, an image-guided MR-compatible tele-operated robot for microsurgery and stereotaxy. Two range-finding algorithms, namely time-of-flight and phase-shift, are evaluated for registration and supervisory control. The time-of-flight approach is implemented in a semi-field experiment to determine the precise position of a tiny retro-reflective moving object. The moving object simulates a surgical tool tip. The tool is a target that would be connected to the neuroArm end-effector during surgery inside the magnet bore of the MR imaging system. In order to apply flight approach, a 905-nm pulsed laser diode and an avalanche photodiode are utilized as the transmitter and receiver, respectively. For the experiment, a high frequency time to digital converter was designed using a field-programmable gate arrays. In the phase-shift approach, a continuous green laser beam with a wavelength of 530 nm was used as the transmitter. Results showed that a positioning error of 0.1 mm occurred when the scanner-target point distance was set in the range of 2.5 to 3 meters. The effectiveness of this non-contact approach exhibited that the method could be employed as an alternative for conventional mechanical registration arm. Furthermore, the approach is not limited by physical contact and extension of joint angles.

Keywords: 3D laser scanner, intraoperative MR imaging, neuroArm, real time registration, robot-assisted surgery, supervisory control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
92 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples

Authors: Ahmed S. Fayed, Umima M. Mansour

Abstract:

Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.

Keywords: PVC sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1264
91 Accurate Calculation of Free Frequencies of Beams and Rectangular Plates

Authors: R .Lassoued, M. Guenfoud

Abstract:

An accurate procedure to determine free vibrations of beams and plates is presented. The natural frequencies are exact solutions of governing vibration equations witch load to a nonlinear homogeny system. The bilinear and linear structures considered simulate a bridge. The dynamic behavior of this one is analyzed by using the theory of the orthotropic plate simply supported on two sides and free on the two others. The plate can be excited by a convoy of constant or harmonic loads. The determination of the dynamic response of the structures considered requires knowledge of the free frequencies and the shape modes of vibrations. Our work is in this context. Indeed, we are interested to develop a self-consistent calculation of the Eigen frequencies. The formulation is based on the determination of the solution of the differential equations of vibrations. The boundary conditions corresponding to the shape modes permit to lead to a homogeneous system. Determination of the noncommonplace solutions of this system led to a nonlinear problem in Eigen frequencies. We thus, develop a computer code for the determination of the eigenvalues. It is based on a method of bisection with interpolation whose precision reaches 10 -12. Moreover, to determine the corresponding modes, the calculation algorithm that we develop uses the method of Gauss with a partial optimization of the "pivots" combined with an inverse power procedure. The Eigen frequencies of a plate simply supported along two opposite sides while considering the two other free sides are thus analyzed. The results could be generalized with the case of a beam by regarding it as a plate with low width. We give, in this paper, some examples of treated cases. The comparison with results presented in the literature is completely satisfactory.

Keywords: Free frequencies, beams, rectangular plates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
90 LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft

Authors: Roberto Sabatini, Alessandro Gardi, Mark A. Richardson

Abstract:

The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.

Keywords: LIDAR, Low-Level Flight, Nap-of-the-Earth Flight, Near Infra-Red, Obstacle Avoidance, Obstacle Detection, Obstacle Warning System, Sense and Avoid, Trajectory Optimisation, Unmanned Aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7085
89 Wavelet Based Qualitative Assessment of Femur Bone Strength Using Radiographic Imaging

Authors: Sundararajan Sangeetha, Joseph Jesu Christopher, Swaminathan Ramakrishnan

Abstract:

In this work, the primary compressive strength components of human femur trabecular bone are qualitatively assessed using image processing and wavelet analysis. The Primary Compressive (PC) component in planar radiographic femur trabecular images (N=50) is delineated by semi-automatic image processing procedure. Auto threshold binarization algorithm is employed to recognize the presence of mineralization in the digitized images. The qualitative parameters such as apparent mineralization and total area associated with the PC region are derived for normal and abnormal images.The two-dimensional discrete wavelet transforms are utilized to obtain appropriate features that quantify texture changes in medical images .The normal and abnormal samples of the human femur are comprehensively analyzed using Harr wavelet.The six statistical parameters such as mean, median, mode, standard deviation, mean absolute deviation and median absolute deviation are derived at level 4 decomposition for both approximation and horizontal wavelet coefficients. The correlation coefficient of various wavelet derived parameters with normal and abnormal for both approximated and horizontal coefficients are estimated. It is seen that in almost all cases the abnormal show higher degree of correlation than normals. Further the parameters derived from approximation coefficient show more correlation than those derived from the horizontal coefficients. The parameters mean and median computed at the output of level 4 Harr wavelet channel was found to be a useful predictor to delineate the normal and the abnormal groups.

Keywords: Image processing, planar radiographs, trabecular bone and wavelet analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
88 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches

Authors: Shilpy Sharma

Abstract:

As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.

Keywords: Search engines; machine learning, Informationretrieval, Active logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
87 Numerical Simulations of Acoustic Imaging in Hydrodynamic Tunnel with Model Adaptation and Boundary Layer Noise Reduction

Authors: Sylvain Amailland, Jean-Hugh Thomas, Charles Pézerat, Romuald Boucheron, Jean-Claude Pascal

Abstract:

The noise requirements for naval and research vessels have seen an increasing demand for quieter ships in order to fulfil current regulations and to reduce the effects on marine life. Hence, new methods dedicated to the characterization of propeller noise, which is the main source of noise in the far-field, are needed. The study of cavitating propellers in closed-section is interesting for analyzing hydrodynamic performance but could involve significant difficulties for hydroacoustic study, especially due to reverberation and boundary layer noise in the tunnel. The aim of this paper is to present a numerical methodology for the identification of hydroacoustic sources on marine propellers using hydrophone arrays in a large hydrodynamic tunnel. The main difficulties are linked to the reverberation of the tunnel and the boundary layer noise that strongly reduce the signal-to-noise ratio. In this paper it is proposed to estimate the reflection coefficients using an inverse method and some reference transfer functions measured in the tunnel. This approach allows to reduce the uncertainties of the propagation model used in the inverse problem. In order to reduce the boundary layer noise, a cleaning algorithm taking advantage of the low rank and sparse structure of the cross-spectrum matrices of the acoustic and the boundary layer noise is presented. This approach allows to recover the acoustic signal even well under the boundary layer noise. The improvement brought by this method is visible on acoustic maps resulting from beamforming and DAMAS algorithms.

Keywords: Acoustic imaging, boundary layer noise denoising, inverse problems, model adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
86 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic

Abstract:

Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.

Keywords: Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822
85 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based On Li-ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries.

In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3091
84 Improved Segmentation of Speckled Images Using an Arithmetic-to-Geometric Mean Ratio Kernel

Authors: J. Daba, J. Dubois

Abstract:

In this work, we improve a previously developed segmentation scheme aimed at extracting edge information from speckled images using a maximum likelihood edge detector. The scheme was based on finding a threshold for the probability density function of a new kernel defined as the arithmetic mean-to-geometric mean ratio field over a circular neighborhood set and, in a general context, is founded on a likelihood random field model (LRFM). The segmentation algorithm was applied to discriminated speckle areas obtained using simple elliptic discriminant functions based on measures of the signal-to-noise ratio with fractional order moments. A rigorous stochastic analysis was used to derive an exact expression for the cumulative density function of the probability density function of the random field. Based on this, an accurate probability of error was derived and the performance of the scheme was analysed. The improved segmentation scheme performed well for both simulated and real images and showed superior results to those previously obtained using the original LRFM scheme and standard edge detection methods. In particular, the false alarm probability was markedly lower than that of the original LRFM method with oversegmentation artifacts virtually eliminated. The importance of this work lies in the development of a stochastic-based segmentation, allowing an accurate quantification of the probability of false detection. Non visual quantification and misclassification in medical ultrasound speckled images is relatively new and is of interest to clinicians.

Keywords: Discriminant function, false alarm, segmentation, signal-to-noise ratio, skewness, speckle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
83 Uncertainty Multiple Criteria Decision Making Analysis for Stealth Combat Aircraft Selection

Authors: C. Ardil

Abstract:

Fuzzy set theory and its extensions (intuitionistic fuzzy sets, picture fuzzy sets, and neutrosophic sets) have been widely used to address imprecision and uncertainty in complex decision-making. However, they may struggle with inherent indeterminacy and inconsistency in real-world situations. This study introduces uncertainty sets as a promising alternative, offering a structured framework for incorporating both types of uncertainty into decision-making processes.This work explores the theoretical foundations and applications of uncertainty sets. A novel decision-making algorithm based on uncertainty set-based proximity measures is developed and demonstrated through a practical application: selecting the most suitable stealth combat aircraft.

The results highlight the effectiveness of uncertainty sets in ranking alternatives under uncertainty. Uncertainty sets offer several advantages, including structured uncertainty representation, robust ranking mechanisms, and enhanced decision-making capabilities due to their ability to account for ambiguity.Future research directions are also outlined, including comparative analysis with existing MCDM methods under uncertainty, sensitivity analysis to assess the robustness of rankings,and broader application to various MCDM problems with diverse complexities. By exploring these avenues, uncertainty sets can be further established as a valuable tool for navigating uncertainty in complex decision-making scenarios.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty proximity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186
82 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change

Authors: Moustafa Osman Mohammed

Abstract:

Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.

Keywords: Sustainability, constructions ecology, composite structure model, design structure matrix, environmental impact assessment, life cycle analysis, climate change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
81 Iris Recognition Based On the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
80 Analysis of Driver Point of Regard Determinations with Eye-Gesture Templates Using Receiver Operating Characteristic

Authors: Siti Nor Hafizah binti Mohd Zaid, Mohamed Abdel-Maguid, Abdel-Hamid Soliman

Abstract:

An Advance Driver Assistance System (ADAS) is a computer system on board a vehicle which is used to reduce the risk of vehicular accidents by monitoring factors relating to the driver, vehicle and environment and taking some action when a risk is identified. Much work has been done on assessing vehicle and environmental state but there is still comparatively little published work that tackles the problem of driver state. Visual attention is one such driver state. In fact, some researchers claim that lack of attention is the main cause of accidents as factors such as fatigue, alcohol or drug use, distraction and speeding all impair the driver-s capacity to pay attention to the vehicle and road conditions [1]. This seems to imply that the main cause of accidents is inappropriate driver behaviour in cases where the driver is not giving full attention while driving. The work presented in this paper proposes an ADAS system which uses an image based template matching algorithm to detect if a driver is failing to observe particular windscreen cells. This is achieved by dividing the windscreen into 24 uniform cells (4 rows of 6 columns) and matching video images of the driver-s left eye with eye-gesture templates drawn from images of the driver looking at the centre of each windscreen cell. The main contribution of this paper is to assess the accuracy of this approach using Receiver Operating Characteristic analysis. The results of our evaluation give a sensitivity value of 84.3% and a specificity value of 85.0% for the eye-gesture template approach indicating that it may be useful for driver point of regard determinations.

Keywords: Advanced Driver Assistance Systems, Eye-Tracking, Hazard Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
79 The Application of a Neural Network in the Reworking of Accu-Chek to Wrist Bands to Monitor Blood Glucose in the Human Body

Authors: J. K Adedeji, O. H Olowomofe, C. O Alo, S.T Ijatuyi

Abstract:

The issue of high blood sugar level, the effects of which might end up as diabetes mellitus, is now becoming a rampant cardiovascular disorder in our community. In recent times, a lack of awareness among most people makes this disease a silent killer. The situation calls for urgency, hence the need to design a device that serves as a monitoring tool such as a wrist watch to give an alert of the danger a head of time to those living with high blood glucose, as well as to introduce a mechanism for checks and balances. The neural network architecture assumed 8-15-10 configuration with eight neurons at the input stage including a bias, 15 neurons at the hidden layer at the processing stage, and 10 neurons at the output stage indicating likely symptoms cases. The inputs are formed using the exclusive OR (XOR), with the expectation of getting an XOR output as the threshold value for diabetic symptom cases. The neural algorithm is coded in Java language with 1000 epoch runs to bring the errors into the barest minimum. The internal circuitry of the device comprises the compatible hardware requirement that matches the nature of each of the input neurons. The light emitting diodes (LED) of red, green, and yellow colors are used as the output for the neural network to show pattern recognition for severe cases, pre-hypertensive cases and normal without the traces of diabetes mellitus. The research concluded that neural network is an efficient Accu-Chek design tool for the proper monitoring of high glucose levels than the conventional methods of carrying out blood test.

Keywords: Accu-Chek, diabetes, neural network, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
78 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
77 A Robust Method for Finding Nearest-Neighbor using Hexagon Cells

Authors: Ahmad Attiq Al-Ogaibi, Ahmad Sharieh, Moh’d Belal Al-Zoubi, R. Bremananth

Abstract:

In pattern clustering, nearest neighborhood point computation is a challenging issue for many applications in the area of research such as Remote Sensing, Computer Vision, Pattern Recognition and Statistical Imaging. Nearest neighborhood computation is an essential computation for providing sufficient classification among the volume of pixels (voxels) in order to localize the active-region-of-interests (AROI). Furthermore, it is needed to compute spatial metric relationships of diverse area of imaging based on the applications of pattern recognition. In this paper, we propose a new methodology for finding the nearest neighbor point, depending on making a virtually grid of a hexagon cells, then locate every point beneath them. An algorithm is suggested for minimizing the computation and increasing the turnaround time of the process. The nearest neighbor query points Φ are fetched by seeking fashion of hexagon holistic. Seeking will be repeated until an AROI Φ is to be expected. If any point Υ is located then searching starts in the nearest hexagons in a circular way. The First hexagon is considered be level 0 (L0) and the surrounded hexagons is level 1 (L1). If Υ is located in L1, then search starts in the next level (L2) to ensure that Υ is the nearest neighbor for Φ. Based on the result and experimental results, we found that the proposed method has an advantage over the traditional methods in terms of minimizing the time complexity required for searching the neighbors, in turn, efficiency of classification will be improved sufficiently.

Keywords: Hexagon cells, k-nearest neighbors, Nearest Neighbor, Pattern recognition, Query pattern, Virtually grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2802
76 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model

Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi

Abstract:

Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).

Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
75 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel

Authors: F. M. Pisano, M. Ciminello

Abstract:

Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.

Keywords: Interactive dashboards, optical fibers, structural health monitoring, visual analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
74 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach

Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.

Keywords: CO2 emissions, performance based design, optimization, sustainable design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
73 Lamb Wave Wireless Communication in Healthy Plates Using Coherent Demodulation

Authors: Rudy Bahouth, Farouk Benmeddour, Emmanuel Moulin, Jamal Assaad

Abstract:

Guided ultrasonic waves are used in Non-Destructive Testing and Structural Health Monitoring for inspection and damage detection. Recently, wireless data transmission using ultrasonic waves in solid metallic channels has gained popularity in some industrial applications such as nuclear, aerospace and smart vehicles. The idea is to find a good substitute for electromagnetic waves since they are highly attenuated near metallic components due to Faraday shielding. The proposed solution is to use ultrasonic guided waves such as Lamb waves as an information carrier due to their capability of propagation for long distances. In addition to this, valuable information about the health of the structure could be extracted simultaneously. In this work, the reliable frequency bandwidth for communication is extracted experimentally from dispersion curves at first. Then, an experimental platform for wireless communication using Lamb waves is described and built. After this, coherent demodulation algorithm used in telecommunications is tested for Amplitude Shift Keying, On-Off Keying and Binary Phase Shift Keying modulation techniques. Signal processing parameters such as threshold choice, number of cycles per bit and Bit Rate are optimized. Experimental results are compared based on the average bit error percentage. Results has shown high sensitivity to threshold selection for Amplitude Shift Keying and On-Off Keying techniques resulting a Bit Rate decrease. Binary Phase Shift Keying technique shows the highest stability and data rate between all tested modulation techniques.

Keywords: Lamb Wave Communication, wireless communication, coherent demodulation, bit error percentage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 561
72 Experimental and Theoretical Investigation of Rough Rice Drying in Infrared-assisted Hot Air Dryer Using Artificial Neural Network

Authors: D. Zare, H. Naderi, A. A. Jafari

Abstract:

Drying characteristics of rough rice (variety of lenjan) with an initial moisture content of 25% dry basis (db) was studied in a hot air dryer assisted by infrared heating. Three arrival air temperatures (30, 40 and 500C) and four infrared radiation intensities (0, 0.2 , 0.4 and 0.6 W/cm2) and three arrival air speeds (0.1, 0.15 and 0.2 m.s-1) were studied. Bending strength of brown rice kernel, percentage of cracked kernels and time of drying were measured and evaluated. The results showed that increasing the drying arrival air temperature and radiation intensity of infrared resulted decrease in drying time. High bending strength and low percentage of cracked kernel was obtained when paddy was dried by hot air assisted infrared dryer. Between this factors and their interactive effect were a significant difference (p<0.01). An intensity level of 0.2 W/cm2 was found to be optimum for radiation drying. Furthermore, in the present study, the application of Artificial Neural Network (ANN) for predicting the moisture content during drying (output parameter for ANN modeling) was investigated. Infrared Radiation intensity, drying air temperature, arrival air speed and drying time were considered as input parameters for the model. An ANN model with two hidden layers with 8 and 14 neurons were selected for studying the influence of transfer functions and training algorithms. The results revealed that a network with the Tansig (hyperbolic tangent sigmoid) transfer function and trainlm (Levenberg-Marquardt) back propagation algorithm made the most accurate predictions for the paddy drying system. Mean square error (MSE) was calculated and found that the random errors were within and acceptable range of ±5% with coefficient of determination (R2) of 99%.

Keywords: Rough rice, Infrared-hot air, Artificial Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826