Search results for: rock classes.
107 STEP Implementation on Turn-mill Manufacturing Environment
Authors: Ahmad Majdi Bin Abdul-Rani, Mesfin Gizaw, Yusri Yusof
Abstract:
Researches related to standard product model and development of neutral manufacturing interfaces for numerical control machines becomes a significant topic since the last 25 years. In this paper, a detail description of STEP implementation on turnmill manufacturing has been discussed. It shows requirements of information contents from ISO14649 data model. It covers to describe the design of STEP-NC framework applicable to turn-mill manufacturing. In the framework, EXPRESS-G and UML modeling tools are used to depict the information contents of the system and established the bases of information model requirement. A product and manufacturing data model applicable for STEP compliant manufacturing. The next generation turn-mill operations requirements have been represented by a UML diagram. An object oriented classes of ISO1449 has been developed on Visual Basic dot NET platform for binding the static information model represented by the UML diagram. An architect of the proposed system implementation has been given on the bases of the design and manufacturing module of STEP-NC interface established. Finally, a part 21 file process plan generated for an illustration of turn-mill components.Keywords: CAPP, ISO14649, Product modeling, STEP-NC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663106 Quality of Groundwater in the Shallow Aquifers of a Paddy Dominated Agricultural River Basin, Kerala, India
Authors: N. Kannan, Sabu Joseph
Abstract:
Groundwater is an essential and vital component of our life support system. The groundwater resources are being utilized for drinking, irrigation and industrial purposes. There is growing concern on deterioration of groundwater quality due to geogenic and anthropogenic activities. Groundwater, being a fragile must be carefully managed to maintain its purity within standard limits. So, quality assessment and management are to be carried out hand-in-hand to have a pollution free environment and for a sustainable use. In order to assess the quality for consumption by human beings and for use in agriculture, the groundwater from the shallow aquifers (dug well) in the Palakkad and Chittur taluks of Bharathapuzha river basin - a paddy dominated agricultural basin (order=8th; L= 209 Km; Area = 6186 Km2), Kerala, India, has been selected. The water samples (n= 120) collected for various seasons, viz., monsoon-MON (August, 2005), postmonsoon-POM (December, 2005) and premonsoon-PRM (April, 2006), were analyzed for important physico-chemical attributes. Spatial and temporal variation of attributes do exist in the study area, and based on major cations and anions, different hydrochemical facies have been identified. Using Gibbs'diagram, rock dominance has been identified as the mechanism controlling groundwater chemistry. Further, the suitability of water for irrigation was determined by analyzing salinity hazard indicated by sodium adsorption ratio (SAR), residual sodium carbonate (RSC) and sodium percent (%Na). Finally, stress zones in the study area were delineated using Arc GIS spatial analysis and various management options were recommended to restore the ecosystem.
Keywords: Groundwater quality, agricultural basin, Kerala, India.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599105 Inelastic Strength of Laterally Unsupported Top- Loaded Built-Up Slender Beams
Authors: M. Massoud El Sa'adawy, F. F. F. El Dib
Abstract:
Lateral-torsional buckling (LTB) is one of the phenomenae controlling the ultimate bending strength of steel Ibeams carrying distributed loads on top flange. Built-up I-sections are used as main beams and distributors. This study investigates the ultimate bending strength of such beams with sections of different classes including slender elements. The nominal strengths of the selected beams are calculated for different unsupported lengths according to the Provisions of the American Institute of Steel Constructions (AISC-LRFD). These calculations are compared with results of a nonlinear inelastic study using accurate FE model for this type of loading. The goal is to investigate the performance of the provisions for the selected sections. Continuous distributed load at the top flange of the beams was applied at the FE model. Imperfections of different values are implemented to the FE model to examine their effect on the LTB of beams at failure, and hence, their effect on the ultimate strength of beams. The study also introduces a procedure for evaluating the performance of the provisions compared with the accurate FEA results of the selected sections. A simplified design procedure is given and recommendations for future code updates are made.Keywords: Lateral buckling, Top Loading, Ultimate load, Slender Sections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700104 Total Organic Carbon, Porosity and Permeability Correlation: A Tool for Carbon Dioxide Storage Potential Evaluation in Irati Formation of the Parana Basin, Brazil
Authors: Richardson M. Abraham-A., Colombo Celso Gaeta Tassinari
Abstract:
The correlation between Total Organic Carbon (TOC) and flow units have been carried out to predict and compare the carbon dioxide (CO2) storage potential of the shale and carbonate rocks in Irati Formation of the Parana Basin. The equations for permeability (K), reservoir quality index (RQI) and flow zone indicator (FZI) are redefined and engaged to evaluate the flow units in both potential reservoir rocks. Shales show higher values of TOC compared to carbonates, as such, porosity (Ф) is most likely to be higher in shales compared to carbonates. The increase in Ф corresponds to the increase in K (in both rocks). Nonetheless, at lower values of Ф, K is higher in carbonates compared to shales. This shows that at lower values of TOC in carbonates, Ф is low, yet, K is likely to be high compared to shale. In the same vein, at higher values of TOC in shales, Ф is high, yet, K is expected to be low compared to carbonates. Overall, the flow unit factors (RQI and FZI) are better in the carbonates compared to the shales. Moreso, within the study location, there are some portions where the thicknesses of the carbonate units are higher compared to the shale units. Most parts of the carbonate strata in the study location are fractured in situ, hence, this could provide easy access for the storage of CO2. Therefore, based on these points and the disparities between the flow units in the evaluated rock types, the carbonate units are expected to show better potentials for the storage of CO2. The shale units may be considered as potential cap rocks or seals.
Keywords: Total organic carbon, flow units, carbon dioxide storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874103 Alexandria’s Eastern Entrance: Analysis of Qaitbay Waterfront Development
Authors: Riham A. Ragheb
Abstract:
Water is a fundamental attraction in all cultures and among all classes of people,tourists and citizens. It is a favorite location for major tourism initiatives, celebrations and ceremonies. The vitality of any city depends on citizen action to take part in creating the neighborhoods they desire. Waterfront can provide extensive new areas of high quality public open space in parts of the city that are popular venues for social activities and also have the highest land values. Each city must have a character that can be used as a key attraction for the development. The morphology of a waterfront can be identified by both its physical characteristics and the socio-cultural activities that take place in the area. Alexandria has been selected as an area of study because it has a unique character due to its possession of a variety of waterfronts.
This paper aims to set some criteria of successful waterfront development and then through these criteria analyzing the development of the Qaitbay waterfront in the eastern harbor in Alexandria, Egypt. Hence, a comprehensive improvement of the waterfront areas is certainly needed to ensure a successful waterfront development radiated the sense of uniformity and coherence.
Alexandria can benefit from these criteria to develop its urban waterfront in order to preserve and revitalize its unique waterfront character and achieve mixed uses and tourism development.
Keywords: Place making, Qaitbay, responsive environment, sustainable urban design, waterfront development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3197102 Towards the Use of Software Product Metrics as an Indicator for Measuring Mobile Applications Power Consumption
Authors: Ching Kin Keong, Koh Tieng Wei, Abdul Azim Abd. Ghani, Khaironi Yatim Sharif
Abstract:
Maintaining factory default battery endurance rate over time in supporting huge amount of running applications on energy-restricted mobile devices has created a new challenge for mobile applications developer. While delivering customers’ unlimited expectations, developers are barely aware of efficient use of energy from the application itself. Thus, developers need a set of valid energy consumption indicators in assisting them to develop energy saving applications. In this paper, we present a few software product metrics that can be used as an indicator to measure energy consumption of Android-based mobile applications in the early of design stage. In particular, Trepn Profiler (Power profiling tool for Qualcomm processor) has used to collect the data of mobile application power consumption, and then analyzed for the 23 software metrics in this preliminary study. The results show that McCabe cyclomatic complexity, number of parameters, nested block depth, number of methods, weighted methods per class, number of classes, total lines of code and method lines have direct relationship with power consumption of mobile application.Keywords: Battery endurance, software metrics, mobile application, power consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943101 Corporate Credit Rating using Multiclass Classification Models with order Information
Authors: Hyunchul Ahn, Kyoung-Jae Kim
Abstract:
Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.Keywords: Artificial neural network, Corporate credit rating, Support vector machines, Ordinal pairwise partitioning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3441100 Assessing Pre-Service Teachers' Computer PhobiaLevels in terms of Gender and Experience, Turkish Sample
Authors: Ö.F. Ursavas, H. Karal
Abstract:
In this study it is aimed to determine the level of preservice teachers- computer phobia. Whether or not computer phobia meaningfully varies statistically according to gender and computer experience has been tested in the study. The study was performed on 430 pre-service teachers at the Education Faculty in Rize/Turkey. Data in the study were collected through the Computer Phobia Scale consisting of the “Personal Knowledge Questionnaire", “Computer Anxiety Rating Scale", and “Computer Thought Survey". In this study, data were analyzed with statistical processes such as t test, and correlation analysis. According to results of statistical analyses, computer phobia of male pre-service teachers does not statistically vary depending on their gender. Although male preservice teachers have higher computer anxiety scores, they have lower computer thought scores. It was also observed that there is a negative and intensive relation between computer experience and computer anxiety. Meanwhile it was found out that pre-service teachers using computer regularly indicated lower computer anxiety. Obtained results were tried to be discussed in terms of the number of computer classes in the Education Faculty curriculum, hours of computer class and the computer availability of student teachers.
Keywords: Computer phobia, computer anxiety, computer thought, pre-service teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222999 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks
Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar
Abstract:
DNA Barcode provides good sources of needed information to classify living species. The classification problem has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use the similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. However, all the used methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. In fact, our method permits to avoid the complex problem of form and structure in different classes of organisms. The empirical data and their classification performances are compared with other methods. Evenly, in this study, we present our system which is consisted of three phases. The first one, is called transformation, is composed of three sub steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. Moreover, the second phase step is an approximation; it is empowered by the use of Multi Library Wavelet Neural Networks (MLWNN). Finally, the third one, is called the classification of DNA Barcodes, is realized by applying the algorithm of hierarchical classification.Keywords: DNA Barcode, Electron-Ion Interaction Pseudopotential, Multi Library Wavelet Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196798 Random Subspace Neural Classifier for Meteor Recognition in the Night Sky
Authors: Carlos Vera, Tetyana Baydyk, Ernst Kussul, Graciela Velasco, Miguel Aparicio
Abstract:
This article describes the Random Subspace Neural Classifier (RSC) for the recognition of meteors in the night sky. We used images of meteors entering the atmosphere at night between 8:00 p.m.-5: 00 a.m. The objective of this project is to classify meteor and star images (with stars as the image background). The monitoring of the sky and the classification of meteors are made for future applications by scientists. The image database was collected from different websites. We worked with RGB-type images with dimensions of 220x220 pixels stored in the BitMap Protocol (BMP) format. Subsequent window scanning and processing were carried out for each image. The scan window where the characteristics were extracted had the size of 20x20 pixels with a scanning step size of 10 pixels. Brightness, contrast and contour orientation histograms were used as inputs for the RSC. The RSC worked with two classes and classified into: 1) with meteors and 2) without meteors. Different tests were carried out by varying the number of training cycles and the number of images for training and recognition. The percentage error for the neural classifier was calculated. The results show a good RSC classifier response with 89% correct recognition. The results of these experiments are presented and discussed.
Keywords: Contour orientation histogram, meteors, night sky, RSC neural classifier, stars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41197 Pupils´ Questions at School Attendance Beginning and Teachers´ Teaching Strategy
Authors: Marie Pavelková, Hana Lukášová
Abstract:
Pupils´ inquisitiveness at the beginning of their school attendance is reflected by characteristics of the questions they ask. Clearly most of the classroom communication sequences are initiated by the teacher. But the teaching process also includes questions initiated by pupils in the need to satisfy their need for knowledge. The purpose of our research is to present the results of our pre-research strategy of occurrence of pupil-initiated questions in math lessons at the lower elementary school level, and to reveal the extent to which they are influenced by the teacher´s teaching strategy. We used the research methods of direct and indirect observations of fifth year classes in primary school. We focused on questions asked by the pupils in their math lessons. Our research sample for the pre-research observation method was a collection of video recordings available online. We used them for analysing the nature of pupils´ questions identified there. On the basis of the analysis, we hereby present the results concerning the nature of pupils´ questions asked in math lessons on the lower elementary school level. The interpretation of the collected results will be the starting point for the selection of research strategies in the next research stages concerning pupils’ questions in the future.
Keywords: Alternative strategies, 1ower elementary school level, pupil´s question, teaching strategies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63996 Tidal Data Analysis using ANN
Authors: Ritu Vijay, Rekha Govil
Abstract:
The design of a complete expansion that allows for compact representation of certain relevant classes of signals is a central problem in signal processing applications. Achieving such a representation means knowing the signal features for the purpose of denoising, classification, interpolation and forecasting. Multilayer Neural Networks are relatively a new class of techniques that are mathematically proven to approximate any continuous function arbitrarily well. Radial Basis Function Networks, which make use of Gaussian activation function, are also shown to be a universal approximator. In this age of ever-increasing digitization in the storage, processing, analysis and communication of information, there are numerous examples of applications where one needs to construct a continuously defined function or numerical algorithm to approximate, represent and reconstruct the given discrete data of a signal. Many a times one wishes to manipulate the data in a way that requires information not included explicitly in the data, which is done through interpolation and/or extrapolation. Tidal data are a very perfect example of time series and many statistical techniques have been applied for tidal data analysis and representation. ANN is recent addition to such techniques. In the present paper we describe the time series representation capabilities of a special type of ANN- Radial Basis Function networks and present the results of tidal data representation using RBF. Tidal data analysis & representation is one of the important requirements in marine science for forecasting.Keywords: ANN, RBF, Tidal Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165795 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127294 Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application
Authors: Asma Rabaoui, Zied Lachiri, Noureddine Ellouze
Abstract:
Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.Keywords: Sounds recognition, HMM classifier, Multi-style training, Environmental Adaptation, Feature combinations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164793 ECG-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.
Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19392 Educational Experiences in Engineering in the COVID-19 Era and Their Comparative Analysis: Spain, March-June 2020
Authors: Borja Bordel, Ramón Alcarria, Marina Pérez
Abstract:
In March 2020, in Spain, a sanitary and unexpected crisis caused by COVID-19 was declared. All of a sudden, all degrees, classes and evaluation tests and projects had to be transformed into online activities. However, the chaotic situation generated by a complex operation like that, executed without any well-established procedure, led to very different experiences and, finally, results. In this paper, we are describing three experiences in two different Universities in Madrid. On the one hand, the Technical University of Madrid, a public university with little experience in online education was considered. On the other hand, Alfonso X el Sabio University, a private university with more than five years of experience in online teaching was involved. All analyzed subjects were related to computer engineering. Professors and students answered a survey and personal interviews were also carried out. Besides, the professors’ workload and the students’ academic results were also compared. From the comparative analysis of all these experiences, we are extracting the most successful strategies, methodologies, and activities. The recommendations in this paper will be useful for courses during the next months when the sanitary situation is still affecting an educational organization. While, at the same time, they will be considered as input for the upcoming digitalization process of higher education.
Keywords: educational experience, online education, higher education digitalization, COVID, Spain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45991 Development of Elementary Literacy in the Czech Republic
Authors: Iva Košek Bartošová
Abstract:
There is great attention being paid in the field of development of first reading, thus early literacy skills in the Czech Republic. Yet inconclusive results of PISA and PIRLS force us to think over the teacher´s work, his/her roles in the education process and methods and forms used in lessons. There is also a significant importance to monitor the family environment and the pupil, themselves. The aim of the publishing output is to focus on one side dealing with methods of practicing reading technique and their results in the process of comprehension. In the first part of the contribution there are the goals of development of reading literacy and the methods used in reading practice in some EU countries and a follow-up comparison of research implemented by the help of modern technology of an eye tracker device in the year 2015 and a research conducted at the Institute of Education and Psychological Counselling of the Czech Republic in the year 2011/12. These are the results of a diagnostic test of reading in first classes of primary schools, taught by the genetic method and analytic-synthetic method. The results show that in the first stage of practice there are no statistically significant differences between any researched subjects taught by different methods of reading practice (with the use of several diagnostic texts focused on reading technique and its comprehension). Different results are shown at the end of Grade One and during Grade Two of primary school.
Keywords: Elementary literacy, eye tracker device, diagnostic reading tests, reading teaching method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108390 The Effect of an Al Andalus Fused Curriculum Model on the Learning Outcomes of Elementary School Students
Authors: Sobhy Fathy A. Hashesh
Abstract:
The study was carried out in the Elementary Classes of Andalus Private Schools, girls section using control and experimental groups formed by Random Assignment Strategy. The study aimed at investigating the effect of Al-Andalus Fused Curriculum (AFC) model of learning and the effect of separate subjects’ approach on the development of students’ conceptual learning and skills acquiring. The society of the study composed of Al-Andalus Private Schools, elementary school students, Girls Section (N=240), while the sample of the study composed of two randomly assigned groups (N=28) with one experimental group and one control group. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences between students’ conceptual learning and skills acquiring for the favor of the experimental group. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.
Keywords: AFC, Lego Education, mechatronics, STEAM, Al-Andalus Fused Curriculum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87689 Active Intra-ONU Scheduling with Cooperative Prediction Mechanism in EPONs
Authors: Chuan-Ching Sue, Shi-Zhou Chen, Ting-Yu Huang
Abstract:
Dynamic bandwidth allocation in EPONs can be generally separated into inter-ONU scheduling and intra-ONU scheduling. In our previous work, the active intra-ONU scheduling (AS) utilizes multiple queue reports (QRs) in each report message to cooperate with the inter-ONU scheduling and makes the granted bandwidth fully utilized without leaving unused slot remainder (USR). This scheme successfully solves the USR problem originating from the inseparability of Ethernet frame. However, without proper setting of threshold value in AS, the number of QRs constrained by the IEEE 802.3ah standard is not enough, especially in the unbalanced traffic environment. This limitation may be solved by enlarging the threshold value. The large threshold implies the large gap between the adjacent QRs, thus resulting in the large difference between the best granted bandwidth and the real granted bandwidth. In this paper, we integrate AS with a cooperative prediction mechanism and distribute multiple QRs to reduce the penalty brought by the prediction error. Furthermore, to improve the QoS and save the usage of queue reports, the highest priority (EF) traffic which comes during the waiting time is granted automatically by OLT and is not considered in the requested bandwidth of ONU. The simulation results show that the proposed scheme has better performance metrics in terms of bandwidth utilization and average delay for different classes of packets.Keywords: EPON, Inter-ONU and Intra-ONU scheduling, Prediction, Unused slot remainder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159688 A Neural Network Classifier for Estimation of the Degree of Infestation by Late Blight on Tomato Leaves
Authors: Gizelle K. Vianna, Gabriel V. Cunha, Gustavo S. Oliveira
Abstract:
Foliage diseases in plants can cause a reduction in both quality and quantity of agricultural production. Intelligent detection of plant diseases is an essential research topic as it may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. This work investigates ways to recognize the late blight disease from the analysis of tomato digital images, collected directly from the field. A pair of multilayer perceptron neural network analyzes the digital images, using data from both RGB and HSL color models, and classifies each image pixel. One neural network is responsible for the identification of healthy regions of the tomato leaf, while the other identifies the injured regions. The outputs of both networks are combined to generate the final classification of each pixel from the image and the pixel classes are used to repaint the original tomato images by using a color representation that highlights the injuries on the plant. The new images will have only green, red or black pixels, if they came from healthy or injured portions of the leaf, or from the background of the image, respectively. The system presented an accuracy of 97% in detection and estimation of the level of damage on the tomato leaves caused by late blight.
Keywords: Artificial neural networks, digital image processing, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255487 Closing the Achievement Gap Within Reading and Mathematics Classrooms by Fostering Hispanic Students- Educational Resilience
Authors: Hersh C. Waxman, Yolanda N. Padrón, Jee-Young Shin, Héctor H. Rivera
Abstract:
While many studies have conducted the achievement gap between groups of students in school districts, few studies have utilized resilience research to investigate achievement gaps within classrooms. This paper aims to summarize and discuss some recent studies Waxman, Padr├│n, and their colleagues conducted, in which they examined learning environment differences between resilient and nonresilient students in reading and mathematics classrooms. The classes consist of predominantly Hispanic elementary school students from low-income families. These studies all incorporated learning environment questionnaires and systematic observation methods. Significant differences were found between resilient and nonresilient students on their classroom learning environments and classroom behaviors. The observation results indicate that the amount and quality of teacher and student academic interaction are two of the most influential variables that promote student outcomes. This paper concludes by suggesting the following teacher practices to promote resiliency in schools: (a) using feedback from classroom observation and learning environment measures, (b) employing explicit teaching practices; and (c) understanding students on a social and personal level.Keywords: achievement gap, classroom learning environments, educational resilience, systematic classroom observation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198486 A Study on the Average Information Ratio of Perfect Secret-Sharing Schemes for Access Structures Based On Bipartite Graphs
Authors: Hui-Chuan Lu
Abstract:
A perfect secret-sharing scheme is a method to distribute a secret among a set of participants in such a way that only qualified subsets of participants can recover the secret and the joint share of participants in any unqualified subset is statistically independent of the secret. The collection of all qualified subsets is called the access structure of the perfect secret-sharing scheme. In a graph-based access structure, each vertex of a graph G represents a participant and each edge of G represents a minimal qualified subset. The average information ratio of a perfect secret-sharing scheme realizing the access structure based on G is defined as AR = (Pv2V (G) H(v))/(|V (G)|H(s)), where s is the secret and v is the share of v, both are random variables from and H is the Shannon entropy. The infimum of the average information ratio of all possible perfect secret-sharing schemes realizing a given access structure is called the optimal average information ratio of that access structure. Most known results about the optimal average information ratio give upper bounds or lower bounds on it. In this present structures based on bipartite graphs and determine the exact values of the optimal average information ratio of some infinite classes of them.
Keywords: secret-sharing scheme, average information ratio, star covering, core sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158185 Impact on Course Registration and SGPA of the Students of BSc in EEE Programme due to Online Teaching during the COVID-19 Pandemic
Authors: Muhibul Haque Bhuyan
Abstract:
Most educational institutions were compelled to switch over to the online mode of teaching, learning, and assessment due to the lockdown when the corona pandemic started around the globe in the early part of the year 2020. However, they faced a unique set of challenges in delivering knowledge and skills to their students as well as formulating a proper assessment policy. This paper investigates whether there is an impact on the student Semester Grade Point Average (SGPA) due to the online mode of teaching and learning assessment at the Department of Electrical and Electronic Engineering (EEE) of Southeast University (SEU). Details of student assessments are discussed. Then students’ grades were analyzed to find out the impact on SGPA based on the z-test by finding the standard deviation (). It also pointed out the challenges associated with the online classes and assessment strategies to be adopted during the online assessment. The student admission, course advising, and registration statistics were also presented in several tables and analyzed based on the change in percentage to observe the impact on it due to the pandemic. In summary, it was observed that the students’ SGPAs are not affected but student course advising and registration were affected slightly by the pandemic. Finally, the paper provides some recommendations to improve the online teaching, learning, assessment, and evaluation system.
Keywords: electrical and electronic engineering students, impact on course grading and SGPA, online assessment, online teaching, student registration, semester result
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40984 Spectra Analysis in Sunset Color Demonstrations with a White-Color LED as a Light Source
Authors: Makoto Hasegawa, Seika Tokumitsu
Abstract:
Spectra of light beams emitted from white-color LED torches are different from those of conventional electric torches. In order to confirm if white-color LED torches can be used as light sources for popular sunset color demonstrations in spite of such differences, spectra of travelled light beams and scattered light beams with each of a white-color LED torch (composed of a blue LED and yellow-color fluorescent material) and a conventional electric torch as a light source were measured and compared with each other in a 50 cm-long water tank for sunset color demonstration experiments. Suspension liquid was prepared from acryl-emulsion and tap-water in the water tank, and light beams from the white-color LED torch or the conventional electric torch were allowed to travel in this suspension liquid. Sunset-like color was actually observed when the white-color LED torch was used as the light source in sunset color demonstrations. However, the observed colors when viewed with naked eye look slightly different from those obtainable with the conventional electric torch. At the same time, with the white-color LED, changes in colors in short to middle wavelength regions were recognized with careful observations. From those results, white-color LED torches are confirmed to be applicable as light sources in sunset color demonstrations, although certain attentions have to be paid. Further advanced classes will be successfully performed with white-color LED torches as light sources.Keywords: Blue sky demonstration, sunset color demonstration, white LED torch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122783 Computational Modeling in Strategic Marketing
Authors: Petr Cernohorsky, Jan Voracek
Abstract:
Well-developed strategic marketing planning is the essential prerequisite for establishment of the right and unique competitive advantage. Typical market, however, is a heterogeneous and decentralized structure with natural involvement of individual or group subjectivity and irrationality. These features cannot be fully expressed with one-shot rigorous formal models based on, e.g. mathematics, statistics or empirical formulas. We present an innovative solution, extending the domain of agent based computational economics towards the concept of hybrid modeling in service provider and consumer market such as telecommunications. The behavior of the market is described by two classes of agents - consumer and service provider agents - whose internal dynamics are fundamentally different. Customers are rather free multi-state structures, adjusting behavior and preferences quickly in accordance with time and changing environment. Producers, on the contrary, are traditionally structured companies with comparable internal processes and specific managerial policies. Their business momentum is higher and immediate reaction possibilities limited. This limitation underlines importance of proper strategic planning as the main process advising managers in time whether to continue with more or less the same business or whether to consider the need for future structural changes that would ensure retention of existing customers or acquisition of new ones.Keywords: Agent-based computational economics, hybrid modeling, strategic marketing, system dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164282 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks
Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra
Abstract:
The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175981 Featured based Segmentation of Color Textured Images using GLCM and Markov Random Field Model
Authors: Dipti Patra, Mridula J
Abstract:
In this paper, we propose a new image segmentation approach for colour textured images. The proposed method for image segmentation consists of two stages. In the first stage, textural features using gray level co-occurrence matrix(GLCM) are computed for regions of interest (ROI) considered for each class. ROI acts as ground truth for the classes. Ohta model (I1, I2, I3) is the colour model used for segmentation. Statistical mean feature at certain inter pixel distance (IPD) of I2 component was considered to be the optimized textural feature for further segmentation. In the second stage, the feature matrix obtained is assumed to be the degraded version of the image labels and modeled as Markov Random Field (MRF) model to model the unknown image labels. The labels are estimated through maximum a posteriori (MAP) estimation criterion using ICM algorithm. The performance of the proposed approach is compared with that of the existing schemes, JSEG and another scheme which uses GLCM and MRF in RGB colour space. The proposed method is found to be outperforming the existing ones in terms of segmentation accuracy with acceptable rate of convergence. The results are validated with synthetic and real textured images.
Keywords: Texture Image Segmentation, Gray Level Cooccurrence Matrix, Markov Random Field Model, Ohta colour space, ICM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217380 Trajectory Guided Recognition of Hand Gestures having only Global Motions
Authors: M. K. Bhuyan, P. K. Bora, D. Ghosh
Abstract:
One very interesting field of research in Pattern Recognition that has gained much attention in recent times is Gesture Recognition. In this paper, we consider a form of dynamic hand gestures that are characterized by total movement of the hand (arm) in space. For these types of gestures, the shape of the hand (palm) during gesturing does not bear any significance. In our work, we propose a model-based method for tracking hand motion in space, thereby estimating the hand motion trajectory. We employ the dynamic time warping (DTW) algorithm for time alignment and normalization of spatio-temporal variations that exist among samples belonging to the same gesture class. During training, one template trajectory and one prototype feature vector are generated for every gesture class. Features used in our work include some static and dynamic motion trajectory features. Recognition is accomplished in two stages. In the first stage, all unlikely gesture classes are eliminated by comparing the input gesture trajectory to all the template trajectories. In the next stage, feature vector extracted from the input gesture is compared to all the class prototype feature vectors using a distance classifier. Experimental results demonstrate that our proposed trajectory estimator and classifier is suitable for Human Computer Interaction (HCI) platform.
Keywords: Hand gesture, human computer interaction, key video object plane, dynamic time warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 274279 Can Exams Be Shortened? Using a New Empirical Approach to Test in Finance Courses
Authors: Eric S. Lee, Connie Bygrave, Jordan Mahar, Naina Garg, Suzanne Cottreau
Abstract:
Marking exams is universally detested by lecturers. Final exams in many higher education courses often last 3.0 hrs. Do exams really need to be so long? Can we justifiably reduce the number of questions on them? Surprisingly few have researched these questions, arguably because of the complexity and difficulty of using traditional methods. To answer these questions empirically, we used a new approach based on three key elements: Use of an unusual variation of a true experimental design, equivalence hypothesis testing, and an expanded set of six psychometric criteria to be met by any shortened exam if it is to replace a current 3.0-hr exam (reliability, validity, justifiability, number of exam questions, correspondence, and equivalence). We compared student performance on each official 3.0-hr exam with that on five shortened exams having proportionately fewer questions (2.5, 2.0, 1.5, 1.0, and 0.5 hours) in a series of four experiments conducted in two classes in each of two finance courses (224 students in total). We found strong evidence that, in these courses, shortening of final exams to 2.0 hrs was warranted on all six psychometric criteria. Shortening these exams by one hour should result in a substantial one-third reduction in lecturer time and effort spent marking, lower student stress, and more time for students to prepare for other exams. Our approach provides a relatively simple, easy-to-use methodology that lecturers can use to examine the effect of shortening their own exams.
Keywords: Exam length, psychometric criteria, synthetic experimental designs, test length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150378 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control
Authors: Rami N. Khushaba, Adel Al-Jumaily
Abstract:
The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738