Search results for: multiple polynomial regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2317

Search results for: multiple polynomial regression

1927 Empirical Mode Decomposition Based Multiscale Analysis of Physiological Signal

Authors: Young-Seok Choi

Abstract:

We present a refined multiscale Shannon entropy for analyzing electroencephalogram (EEG), which reflects the underlying dynamics of EEG over multiple scales. The rationale behind this method is that neurological signals such as EEG possess distinct dynamics over different spectral modes. To deal with the nonlinear and nonstationary nature of EEG, the recently developed empirical mode decomposition (EMD) is incorporated, allowing a decomposition of EEG into its inherent spectral components, referred to as intrinsic mode functions (IMFs). By calculating the Shannon entropy of IMFs in a time-dependent manner and summing them over adaptive multiple scales, it results in an adaptive subscale entropy measure of EEG. Simulation and experimental results show that the proposed entropy properly reveals the dynamical changes over multiple scales.

Keywords: EEG, subscale entropy, Empirical mode decomposition, Intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
1926 A Comparative Analysis of Multiple Criteria Decision Making Analysis Methods for Strategic, Tactical, and Operational Decisions in Military Fighter Aircraft Selection

Authors: C. Ardil

Abstract:

This paper considers a comparative analysis of multiple criteria decision making analysis methods for strategic, tactical, and operational decisions in military fighter aircraft selection for the air force fleet planning. The evaluation criteria governing the decision analysis process are determined from the literature for the three existing military combat aircraft. Military fighter aircraft selection problem is structured using "preference analysis for reference ideal solution (PARIS)” approach in multiple criteria decision analysis (MCDMA). Systematic comparisons were made with existing MCDMA methods (PARIS, and TOPSIS) to verify the stability and accuracy of the results obtained. The proposed integrated MCDMA systematic approach is expected to address the issues encountered in the aircraft selection process. The comparative analysis results show that the proposed method is an effective and accurate tool that can help analysts make better strategic, tactical, and operational decisions.

Keywords: aircraft, military fighter aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS, Saab Gripen, Dassault Rafale, Eurofighter Typhoon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 574
1925 Performance Enhancement of Cellular OFDM Based Wireless LANs by Exploiting Spatial Diversity Techniques

Authors: S. Ali. Tajer, Babak H. Khalaj

Abstract:

This paper represents an investigation on how exploiting multiple transmit antennas by OFDM based wireless LAN subscribers can mitigate physical layer error rate. Then by comparing the Wireless LANs that utilize spatial diversity techniques with the conventional ones it will reveal how PHY and TCP throughputs behaviors are ameliorated. In the next step it will assess the same issues based on a cellular context operation which is mainly introduced as an innovated solution that beside a multi cell operation scenario benefits spatio-temporal signaling schemes as well. Presented simulations will shed light on the improved performance of the wide range and high quality wireless LAN services provided by the proposed approach.

Keywords: Multiple Input Multiple Output (MIMO), Orthogonal Frequency Division Multiplexing (OFDM), and WirelessLocal Area Network (WLAN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
1924 Awareness of Value Addition of Sweet Potato (Ipomoea batatas (L.) Lam) In Osun State, Nigeria

Authors: A. M. Omoare, E. O. Fakoya, O. E. Fapojuwo, W. O. Oyediran

Abstract:

Awareness of value addition of sweet potato has received comparatively little attention in Nigeria despite its potential to reduce perishability and enhanced utilization of the crop in diverse products forms. This study assessed the awareness of value addition of sweet potato in Osun State, Nigeria. Multi-stage random sampling technique was used to select 120 respondents for the study. Data obtained were analyzed using descriptive statistics and multiple regression analysis. Findings showed that most (75.00%) of the respondents were male with mean age of 42.10 years and 96.70% of the respondents had formal education. The mean farm size was 2.30 hectares. Majority (75.00%) of the respondents had more than 10 years farming experience. Awareness of value addition of sweet potato was very low among the respondents. It was recommended that sweet potato farmers should be empowered through effective and efficient extension training on the use of modern processing techniques in order to enhance value addition of sweet potato. 

Keywords: Awareness, value addition, sweet potato, perishability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931
1923 A Comparison of Some Thresholding Selection Methods for Wavelet Regression

Authors: Alsaidi M. Altaher, Mohd T. Ismail

Abstract:

In wavelet regression, choosing threshold value is a crucial issue. A too large value cuts too many coefficients resulting in over smoothing. Conversely, a too small threshold value allows many coefficients to be included in reconstruction, giving a wiggly estimate which result in under smoothing. However, the proper choice of threshold can be considered as a careful balance of these principles. This paper gives a very brief introduction to some thresholding selection methods. These methods include: Universal, Sure, Ebays, Two fold cross validation and level dependent cross validation. A simulation study on a variety of sample sizes, test functions, signal-to-noise ratios is conducted to compare their numerical performances using three different noise structures. For Gaussian noise, EBayes outperforms in all cases for all used functions while Two fold cross validation provides the best results in the case of long tail noise. For large values of signal-to-noise ratios, level dependent cross validation works well under correlated noises case. As expected, increasing both sample size and level of signal to noise ratio, increases estimation efficiency.

Keywords: wavelet regression, simulation, Threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
1922 Fighter Aircraft Selection Using Neutrosophic Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

Fuzzy set and intuitionistic fuzzy set are dealing with the imprecision and uncertainty inherent in a complex decision problem. However, sometimes these theories are not sufficient to model indeterminate and inconsistent information encountered in real-life problems. To overcome this insufficiency, the neutrosophic set, which is useful in practical applications, is proposed, triangular neutrosophic numbers and trapezoidal neutrosophic numbers are examined, their definitions and applications are discussed. In this study, a decision making algorithm is developed using neutrosophic set processes and an application is given in fighter aircraft selection as an example of a decision making problem. The estimation of the fighter aircraft selection with the neutrosophic multiple criteria decision analysis method is examined.  

Keywords: neutrosophic set, multiple criteria decision making analysis, fighter aircraft selection, MCDMA, neutrosophic numbers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935
1921 Aircraft Selection Process Using Preference Analysis for Reference Ideal Solution (PARIS)

Authors: C. Ardil

Abstract:

Multiple criteria decision making analysis (MCDMA) methods are applied to many real - life problems in different fields of engineering science and technology. The "preference analysis for reference ideal solution (PARIS)" method is proposed for an efficient MCDMA evaluation of decision problems. The multiple criteria aircraft evaluation approach is based on the integrated the mean weight, entropy weight, PARIS, and TOPSIS method, which eliminates the subjective importance weight assignment process. The evaluation criteria were identified from an extensive literature review of aircraft selection process. The aim of this study is to propose an efficient methodology for handling the aircraft selection process in which the proposed method solves effectively the MCDMA problem. A numerical example is presented to demonstrate the applicability and validity of the proposed MCDMA approach. 

Keywords: aircraft selection, aircraft, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS, VIKOR, ELECTRE, PROMETHEE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
1920 Multi-Rate Exact Discretization based on Diagonalization of a Linear System - A Multiple-Real-Eigenvalue Case

Authors: T. Sakamoto, N. Hori

Abstract:

A multi-rate discrete-time model, whose response agrees exactly with that of a continuous-time original at all sampling instants for any sampling periods, is developed for a linear system, which is assumed to have multiple real eigenvalues. The sampling rates can be chosen arbitrarily and individually, so that their ratios can even be irrational. The state space model is obtained as a combination of a linear diagonal state equation and a nonlinear output equation. Unlike the usual lifted model, the order of the proposed model is the same as the number of sampling rates, which is less than or equal to the order of the original continuous-time system. The method is based on a nonlinear variable transformation, which can be considered as a generalization of linear similarity transformation, which cannot be applied to systems with multiple eigenvalues in general. An example and its simulation result show that the proposed multi-rate model gives exact responses at all sampling instants.

Keywords: Multi-rate discretization, linear systems, triangularization, similarity transformation, diagonalization, exponential transformation, multiple eigenvalues

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
1919 Hospital Facility Location Selection Using Permanent Analytics Process

Authors: C. Ardil

Abstract:

In this paper, a new MCDMA approach, the permanent analytics process is proposed to assess the immovable valuation criteria and their significance in the placement of the healthcare facility. Five decision factors are considered for the value and selection of immovables. In the multiple factor selection problems, the priority vector of the criteria used to compare several immovables is first determined using the permanent analytics method, a mathematical model for the multiple criteria decisionmaking process. Then, to demonstrate the viability and efficacy of the suggested approach, twenty potential candidate locations were evaluated using the hospital site selection problem's decision criteria. The ranking accuracy of estimation was evaluated using composite programming, which took into account both the permanent analytics process and the weighted multiplicative model. 

Keywords: Hospital Facility Location Selection, Permanent Analytics Process, Multiple Criteria Decision Making (MCDM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434
1918 The Role of Classroom Management Efficacy in Predicting Teacher Burnout

Authors: Yalçın Ozdemir

Abstract:

The purpose of this study was to examine to what extend classroom management efficacy, marital status, gender, and teaching experience predict burnout among primary school teachers. Participants of this study were 523 (345 female, 178 male) teachers who completed inventories. The results of multiple regression analysis indicated that three dimensions of teacher burnout (Emotional Exhaustion, Depersonalization, Personal Accomplishment) were affected differently from four predictor variables. Findings indicated that for the emotional exhaustion, classroom management efficacy, marital status and teaching experience; for depersonalization dimension, classroom management efficacy and marital status and finally for the personal accomplishment dimension, classroom management efficacy, gender, and teaching experience were significant predictors.

Keywords: Classroom management efficacy, teacher burnout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4941
1917 An Economic Analysis of Phu Kradueng National Park

Authors: Chutarat Boontho

Abstract:

The purposes of this study were as follows to evaluate the economic value of Phu Kradueng National Park by the travel cost method (TCM) and the contingent valuation method (CVM) and to estimate the demand for traveling and the willingness to pay. The data for this study were collected by conducting two large scale surveys on users and non-users. A total of 1,016 users and 1,034 non-users were interviewed. The data were analyzed using multiple linear regression analysis, logistic regression model and the consumer surplus (CS) was the integral of demand function for trips. The survey found, were as follows: 1)Using the travel cost method which provides an estimate of direct benefits to park users, we found that visitors- total willingness to pay per visit was 2,284.57 bath, of which 958.29 bath was travel cost, 1,129.82 bath was expenditure for accommodation, food, and services, and 166.66 bath was consumer surplus or the visitors -net gain or satisfaction from the visit (the integral of demand function for trips). 2) Thai visitors to Phu Kradueng National Park were further willing to pay an average of 646.84 bath per head per year to ensure the continued existence of Phu Kradueng National Park and to preserve their option to use it in the future. 3) Thai non-visitors, on the other hand, are willing to pay an average of 212.61 bath per head per year for the option and existence value provided by the Park. 4) The total economic value of Phu Kradueng National Park to Thai visitors and non-visitors taken together stands today at 9,249.55 million bath per year. 5) The users- average willingness to pay for access to Phu Kradueng National Park rises from 40 bath to 84.66 bath per head per trip for improved services such as road improvement, increased cleanliness, and upgraded information. This paper was needed to investigate of the potential market demand for bio prospecting in Phu Kradueng national Park and to investigate how a larger share of the economic benefits of tourism could be distributed income to the local residents.

Keywords: Contingent Valuation Method, Travel Cost Method, Consumer surplus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
1916 The Willingness of Business Students on T Innovative Behavior within the Theory of Planned Behavior

Authors: Mei L. Lin, Pi-Yueh Cheng

Abstract:

Classes on creativity, innovation, and entrepreneurship are becoming quite popular at universities throughout the world. However, it is not easy for business students to get involved to innovative activities, especially patent application. The present study investigated how to enhance business students- intention to participate in innovative activities and which incentives universities should consider. A 22-item research scale was used, and confirmatory factor analysis was conducted to verify its reliability and validity. Multiple regression and discriminant analyses were also conducted. The results demonstrate the effect of growth-need strength on innovative behavior and indicate that the theory of planned behavior can explain and predict business students- intention to participate in innovative activities. Additionally, the results suggest that applying our proposed model in practice would effectively strengthen business students- intentions to engage in innovative activities.

Keywords: discriminant analysis, growth need strength, innovative behavior, TPB model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
1915 Implementing an Intuitive Reasoner with a Large Weather Database

Authors: Yung-Chien Sun, O. Grant Clark

Abstract:

In this paper, the implementation of a rule-based intuitive reasoner is presented. The implementation included two parts: the rule induction module and the intuitive reasoner. A large weather database was acquired as the data source. Twelve weather variables from those data were chosen as the “target variables" whose values were predicted by the intuitive reasoner. A “complex" situation was simulated by making only subsets of the data available to the rule induction module. As a result, the rules induced were based on incomplete information with variable levels of certainty. The certainty level was modeled by a metric called "Strength of Belief", which was assigned to each rule or datum as ancillary information about the confidence in its accuracy. Two techniques were employed to induce rules from the data subsets: decision tree and multi-polynomial regression, respectively for the discrete and the continuous type of target variables. The intuitive reasoner was tested for its ability to use the induced rules to predict the classes of the discrete target variables and the values of the continuous target variables. The intuitive reasoner implemented two types of reasoning: fast and broad where, by analogy to human thought, the former corresponds to fast decision making and the latter to deeper contemplation. . For reference, a weather data analysis approach which had been applied on similar tasks was adopted to analyze the complete database and create predictive models for the same 12 target variables. The values predicted by the intuitive reasoner and the reference approach were compared with actual data. The intuitive reasoner reached near-100% accuracy for two continuous target variables. For the discrete target variables, the intuitive reasoner predicted at least 70% as accurately as the reference reasoner. Since the intuitive reasoner operated on rules derived from only about 10% of the total data, it demonstrated the potential advantages in dealing with sparse data sets as compared with conventional methods.

Keywords: Artificial intelligence, intuition, knowledge acquisition, limited certainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
1914 Target Signal Detection Using MUSIC Spectrum in Noise Environment

Authors: Sangjun Park, Sangbae Jeong, Moonsung Han, Minsoo hahn

Abstract:

In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.

Keywords: Beamforming, direction of arrival, multiple signal classification, target signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
1913 A Support System Applicable to Multiple APIs for Haptic VR Application Designers

Authors: Masaharu Isshiki, Kenji Murakami, Shun Ido

Abstract:

This paper describes a proposed support system which enables applications designers to effectively create VR applications using multiple haptic APIs. When the VR designers create applications, it is often difficult to handle and understand many parameters and functions that have to be set in the application program using documentation manuals only. This complication may disrupt creative imagination and result in inefficient coding. So, we proposed the support application which improved the efficiency of VR applications development and provided the interactive components of confirmation of operations with haptic sense previously. In this paper, we describe improvements of our former proposed support application, which was applicable to multiple APIs and haptic devices, and evaluate the new application by having participants complete VR program. Results from a preliminary experiment suggest that our application facilitates creation of VR applications.

Keywords: VR application, Support system, Haptic devices, Haptic APIs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
1912 A Training Course Development to Promote Learning Activities of 2nd Year, Faculty of Education Students using Multiple Intelligences Theory

Authors: Chaiwat Waree, Kalanyoo Petcharaporn

Abstract:

This research aims to develop and evaluate a training course to promote learning activities of 2nd year, Suan Sunandha Rajabhat University, faculty of education students using multiple intelligences theory. The process is divided into two phases: Phase 1 development of training course to promote learning activities consisting of principles, objectives of the course, structure, training duration, content, training materials, training activities, media training, monitoring, measurement and evaluation quality of the course. Phase 2 evaluation efficiency of training course was to use the improved curriculum with experimental group which is 2nd year, Suan Sunandha Rajabhat University, faculty of education students was drawn randomly 152 students. The experimental pattern was randomized Control Group Pre-Test Post-Test Design, Analysis Data by t-Test with the software SPFSS for Windows. Research has shown that: 1). the ability of teaching and learning according to the theory of multiple intelligences after training is higher than before training significantly in statistic at .01 level, 2). The satisfaction of students to the training courses was overall at the highest level.

Keywords: A training course, learning activities, multiple intelligences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
1911 Career Counseling Program for the Psychological Well-Being of Freshmen University Students

Authors: Sheila Marie G. Hocson

Abstract:

One of the vital developmental tasks that an individual faces during adolescence is choosing a career. Arriving at a career decision is difficult and anxious for many adolescents in the tertiary level. The main purpose of this study is to determine the factors relating to career indecision among freshmen college students as basis for the formulation of a comprehensive career counseling program for the psychological well-being of freshmen university students. The subjects were purposively selected. The Slovin-s formula was used in determining the sample size, using a 0.05 margin of error in getting the total number of samples per college and per major. The researcher made use of descriptive correlational study in determining significant factors relating to career indecision. Multiple Regression Analysis indicated that career thoughts, career decisions and vocational identity as factors related to career indecision.

Keywords: career decisions, career guidance program, career thoughts, vocational identity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4197
1910 Understanding Primary School Students’ Beliefs Regarding the Adoption of Pro-Environmental Behaviors

Authors: Astrid de Leeuw, Pierre Valois

Abstract:

Environmental education is the key to enhancing or changing students’ ways of thinking and acting in order to create an environmentally robust future for all. The present study investigates the beliefs of 812 primary school students, which merit consideration when developing educational interventions. Results of multiple regression analyses reveal that educational interventions should focus on promoting students’ feelings of control over pro-environmental behaviors (PEB). For example, schools could provide recycling bins on the premises. Furthermore, it is critical to develop positive attitudes in students by stressing the various benefits of PEB for keeping our planet clean and protecting wildlife. Unfortunately, our results indicate that students believe that PEB is boring and annoying. Suggestions are offered for making PEB more interesting and relevant. Further research is needed to test the effectiveness of interventions based on the present results.

Keywords: Pro-environmental behaviors, primary school students, theory of planned behavior, beliefs, educational interventions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2186
1909 Measurement Uncertainty Evaluation of Meteorological Model: CALMET

Authors: N. Miklavčič, U. Kugovnik, N. Galkina, P. Ribarič, R. Vončina

Abstract:

Today the need for weather predictions is deeply rooted in the everyday life of people as well as it is in industry. The forecasts influence final decision-making processes in multiple areas from agriculture and prevention of natural disasters to air traffic regulations and solutions on a national level for health, security, and economic problems. Namely in Slovenia, alongside other existing forms of application, weather forecasts are adopted for the prognosis of electrical current transmission through powerlines. Meteorological parameters are one of the key factors which need to be considered in estimations of the reliable supply of electrical energy to consumers. And like for any other measured value, the knowledge about measurement uncertainty is critical also for the secure and reliable supply of energy. The estimation of measurement uncertainty grants us a more accurate interpretation of data, a better quality of the end results, and even a possibility of improvement of weather forecast models.

Keywords: Measurement uncertainty, microscale meteorological model, CALMET meteorological station, orthogonal regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58
1908 A Study on the Assessment of Prosthetic Infection after Total Knee Replacement Surgery

Authors: Chang, Chun-Lang, Liu, Chun-Kai

Abstract:

This study, for its research subjects, uses patients who had undergone total knee replacement surgery from the database of the National Health Insurance Administration. Through the review of literatures and the interviews with physicians, important factors are selected after careful screening. Then using Cross Entropy Method, Genetic Algorithm Logistic Regression, and Particle Swarm Optimization, the weight of each factor is calculated and obtained. In the meantime, Excel VBA and Case Based Reasoning are combined and adopted to evaluate the system. Results show no significant difference found through Genetic Algorithm Logistic Regression and Particle Swarm Optimization with over 97% accuracy in both methods. Both ROC areas are above 0.87. This study can provide critical reference to medical personnel as clinical assessment to effectively enhance medical care quality and efficiency, prevent unnecessary waste, and provide practical advantages to resource allocation to medical institutes.

Keywords: Total knee replacement, Case Based Reasoning, Cross Entropy Method, Genetic Algorithm Logistic Regression, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
1907 Clustering for Detection of Population Groups at Risk from Anticholinergic Medication

Authors: Amirali Shirazibeheshti, Tarik Radwan, Alireza Ettefaghian, Farbod Khanizadeh, George Wilson, Cristina Luca

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. This work evaluates the association between the average risk score and measures of socioeconomic status (index of multiple deprivation) and health (index of health and disability). The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, suggesting that females are more at risk from this kind of multiple medication. The risk may be monitored and controlled in a healthcare management system that is well-equipped with tools implementing appropriate techniques of artificial intelligence.

Keywords: Anticholinergic medication, socioeconomic status, deprivation, clustering, risk analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1070
1906 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-Franc¸ois Plante, Michel Gamache

Abstract:

This study presents the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs’ processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW’s ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. We employ gradient descent and backpropagation to train ML-IDW. The performance of the proposed model is compared against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. Our results highlight the efficacy of ML-IDW, particularly in handling complex spatial dataset, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: Deep Learning, Multi-Layer Neural Networks, Gradient Descent, Spatial Interpolation, Inverse Distance Weighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39
1905 Extreme Rainfall Frequency Analysis for Meteorological Sub-Division 4 of India Using L-Moments

Authors: Th. Arti Devi, Parthasarthi Choudhury

Abstract:

Extreme rainfall frequency analysis for Meteorological Sub-Division 4 of India was analyzed using L-moments approach. Serial Correlation and Mann Kendall tests were conducted for checking serially independent and stationarity of the observations. The discordancy measure for the sites was conducted to detect the discordant sites. The regional homogeneity was tested by comparing with 500 generated homogeneous regions using a 4 parameter Kappa distribution. The best fit distribution was selected based on ZDIST statistics and L-moments ratio diagram from the five extreme value distributions GPD, GLO, GEV, P3 and LP3. The LN3 distribution was selected and regional rainfall frequency relationship was established using index-rainfall procedure. A regional mean rainfall relationship was developed using multiple linear regression with latitude and longitude of the sites as variables.

Keywords: L-moments, ZDIST statistics, Serial correlation, Mann Kendall test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
1904 Factors Related to Teachers’ Analysis of Classroom Assessments

Authors: Hussain A. Alkharusi, Said S. Aldhafri, Hilal Z. Alnabhani, Muna Alkalbani

Abstract:

Analyzing classroom assessments is one of the responsibilities of the teacher. It aims improving teacher’s instruction and assessment as well as student learning. The present study investigated factors that might explain variation in teachers’ practices regarding analysis of classroom assessments. The factors considered in the investigation included gender, in-service assessment training, teaching load, teaching experience, knowledge in assessment, attitude towards quantitative aspects of assessment, and self-perceived competence in analyzing assessments. Participants were 246 in-service teachers in Oman. Results of a stepwise multiple linear regression analysis revealed that self-perceived competence was the only significant factor explaining the variance in teachers’ analysis of assessments. Implications for research and practice are discussed.

 

Keywords: Analysis of assessment, Classroom assessment, In-service teachers, Self-competence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
1903 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform

Authors: Ashagrie Getnet Flattie

Abstract:

Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.

Keywords: BER, LTE, MIMO, path loss, UAV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
1902 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
1901 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 286
1900 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: Neural network, conformal prediction, cancer classification, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
1899 Towards Benchmarking English Residential Gas Consumption

Authors: J.Morris, D.Allinson, J.Harrison, K.J. Lomas

Abstract:

The UK Government has emphasized the role of Local Authorities as a key player in its flagship residential energy efficiency strategies, by identifying and targeting areas for energy efficiency improvements. Residential energy consumption in England is characterized by significant geographical variation in energy demand, which makes centralized targeting of areas for energy efficiency intervention difficult. This paper draws on research which aims to understand how demographic, social, economic, urban form and climatic factors influence the geographical variations in English residential gas consumption. The paper reports the findings of a multiple regression model that shows how 64% of the geographical variation in residential gas consumption is accounted for by variations in these factors. Results from this study, after further refinement and validation, can be used by Local Authorities to identify areas within their boundaries that have higher than expected gas consumption, these may be prime targets for energy efficiency initiatives.

Keywords: UK Housing, Heating Energy, Socio-Economics, Statistical Modelling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
1898 Relationship between Codependency, Perceived Social Support, and Depression in Mothers of Children with Intellectual Disability

Authors: Sajed Yaghoubnezhad, Mina Karimi, Seyede Marjan Modirkhazeni

Abstract:

The goal of this research was to study the relationship between codependency, perceived social support and depression in mothers of children with intellectual disability (ID). The correlational method was used in this study. The research population is comprised of mothers of educable children with ID in the age range of 25 to 61 years. From among this, a sample of 251 individuals, in the multistage cluster sampling method, was selected from educational districts in Tehran, who responded to the Spann-Fischer Codependency Scale (SFCDS), the Social Support Questionnaire and the Beck Depression Inventory (BDI). The findings of this study indicate that among mothers of children with ID depression has a positive and significant correlation with codependency (P<0.01, r=0.4) and a negative and significant correlation with the total score of social support (P<0.01, r=-0.34). Moreover, the results of stepwise multiple regression analysis showed that codependency is allocated a higher variance than social support in explaining depression (R2=0.023).

Keywords: Codependency, social support, depression, mothers of children with ID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472