Search results for: generator function
2065 Image Mapping with Cumulative Distribution Function for Quick Convergence of Counter Propagation Neural Networks in Image Compression
Authors: S. Anna Durai, E. Anna Saro
Abstract:
In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Counter Propagation Neural Network, it takes longer time to converge. The reason for this is that the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbor with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative Distribution Function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used the Counter Propagation Neural Network yield high compression ratio as well as it converges quickly.Keywords: Correlation, Counter Propagation Neural Networks, Cummulative Distribution Function, Image compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16802064 Surrogate based Evolutionary Algorithm for Design Optimization
Authors: Maumita Bhattacharya
Abstract:
Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model presented in our earlier work [14] reduced computation time by controlled use of meta-models to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the meta-model are generated from a single uniform model. Situations like model formation involving variable input dimensions and noisy data certainly can not be covered by this assumption. In this paper we present an enhanced version of DAFHEA that incorporates a multiple-model based learning approach for the SVM approximator. DAFHEA-II (the enhanced version of the DAFHEA framework) also overcomes the high computational expense involved with additional clustering requirements of the original DAFHEA framework. The proposed framework has been tested on several benchmark functions and the empirical results illustrate the advantages of the proposed technique.Keywords: Evolutionary algorithm, Fitness function, Optimization, Meta-model, Stochastic method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15842063 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems
Authors: Eleni Aggelogiannaki, Haralambos Sarimveis
Abstract:
In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.
Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14242062 Locating Center Points for Radial Basis Function Networks Using Instance Reduction Techniques
Authors: Rana Yousef, Khalil el Hindi
Abstract:
The behavior of Radial Basis Function (RBF) Networks greatly depends on how the center points of the basis functions are selected. In this work we investigate the use of instance reduction techniques, originally developed to reduce the storage requirements of instance based learners, for this purpose. Five Instance-Based Reduction Techniques were used to determine the set of center points, and RBF networks were trained using these sets of centers. The performance of the RBF networks is studied in terms of classification accuracy and training time. The results obtained were compared with two Radial Basis Function Networks: RBF networks that use all instances of the training set as center points (RBF-ALL) and Probabilistic Neural Networks (PNN). The former achieves high classification accuracies and the latter requires smaller training time. Results showed that RBF networks trained using sets of centers located by noise-filtering techniques (ALLKNN and ENN) rather than pure reduction techniques produce the best results in terms of classification accuracy. The results show that these networks require smaller training time than that of RBF-ALL and higher classification accuracy than that of PNN. Thus, using ALLKNN and ENN to select center points gives better combination of classification accuracy and training time. Our experiments also show that using the reduced sets to train the networks is beneficial especially in the presence of noise in the original training sets.
Keywords: Radial basis function networks, Instance-based reduction, PNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16942061 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance
Authors: Loai AbdAllah, Mahmoud Kaiyal
Abstract:
Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.Keywords: Missing values, distance metric, Bhattacharyya distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7892060 ASC – A Stream Cipher with Built – In MAC Functionality
Authors: Kai-Thorsten Wirt
Abstract:
In this paper we present the design of a new encryption scheme. The scheme we propose is a very exible encryption and authentication primitive. We build this scheme on two relatively new design principles: t-functions and fast pseudo hadamard transforms. We recapitulate the theory behind these principles and analyze their security properties and efficiency. In more detail we propose a streamcipher which outputs a message authentication tag along with theencrypted data stream with only little overhead. Moreover we proposesecurity-speed tradeoffs. Our scheme is faster than other comparablet-function based designs while offering the same security level.
Keywords: Cryptography, Combined Primitives, Stream Cipher, MAC, T-Function, FPHT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19402059 Labyrinth Fractal on a Convex Quadrilateral
Authors: Harsha Gopalakrishnan, Srijanani Anurag Prasad
Abstract:
Quadrilateral Labyrinth Fractals are a type of fractals presented in this paper. They belong to a unique class of fractals on any plane quadrilateral. The previously researched labyrinth fractals on the unit square and triangle inspire this form of fractal. This work describes how to construct a quadrilateral labyrinth fractal and looks at the circumstances in which it can be understood as the attractor of an iterated function system. Furthermore, some of its topological properties and the Hausdorff and box-counting dimensions of the quadrilateral labyrinth fractals are studied.
Keywords: Fractals, labyrinth fractals, dendrites, iterated function system, non-self similar, non-self affine, connected, path connected.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892058 Characterization of Indoor Power Lines as Data Communication Channels Experimental Details and Results
Authors: Sheroz Khan, A. F. Salami, W. A. Lawal, AHM Zahirul Alam, Shihab Abdel Hameed, M. J. E.Salami
Abstract:
In this paper, a multi-branch power line is modeled using ABCD matrix to show its worth as a communication channel. The model is simulated using MATLAB in an effort to investigate the effects of multiple loading, multipath, and those as a result of load mismatching. The channel transfer function is obtained and investigated using different cable lengths, and different number of bridge taps under given loading conditions.
Keywords: Power line Communication, Transfer Function, Channel Modeling, Signal Transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19372057 Selective Mutation for Genetic Algorithms
Authors: Sung Hoon Jung
Abstract:
In this paper, we propose a selective mutation method for improving the performances of genetic algorithms. In selective mutation, individuals are first ranked and then additionally mutated one bit in a part of their strings which is selected corresponding to their ranks. This selective mutation helps genetic algorithms to fast approach the global optimum and to quickly escape local optima. This results in increasing the performances of genetic algorithms. We measured the effects of selective mutation with four function optimization problems. It was found from extensive experiments that the selective mutation can significantly enhance the performances of genetic algorithms.Keywords: Genetic algorithm, selective mutation, function optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18452056 A Modification on Newton's Method for Solving Systems of Nonlinear Equations
Authors: Jafar Biazar, Behzad Ghanbari
Abstract:
In this paper, we are concerned with the further study for system of nonlinear equations. Since systems with inaccurate function values or problems with high computational cost arise frequently in science and engineering, recently such systems have attracted researcher-s interest. In this work we present a new method which is independent of function evolutions and has a quadratic convergence. This method can be viewed as a extension of some recent methods for solving mentioned systems of nonlinear equations. Numerical results of applying this method to some test problems show the efficiently and reliability of method.
Keywords: System of nonlinear equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16002055 Distance Transmission Line Protection Based on Radial Basis Function Neural Network
Authors: Anant Oonsivilai, Sanom Saichoomdee
Abstract:
To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.
Keywords: radial basis function neural network, transmission lines protection, relaying, power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23722054 Physical Conserved Quantities for the Axisymmetric Liquid, Free and Wall Jets
Authors: Rehana Naz, D. P. Mason, Fazal Mahomed
Abstract:
A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl-s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the two velocity components. The basis consists of two conserved vectors. By integrating the corresponding conservation laws across the jet and imposing the boundary conditions, conserved quantities are derived for the axisymmetric liquid and free jet. The multiplier approach applied to the third-order partial differential equation for the stream function yields two local conserved vectors one of which is a non-local conserved vector for the system. One of the conserved vectors gives the conserved quantity for the axisymmetric free jet but the conserved quantity for the wall jet is not obtained from the second conserved vector. The conserved quantity for the axisymmetric wall jet is derived from a non-local conserved vector of the third-order partial differential equation for the stream function. This non-local conserved vector for the third-order partial differential equation for the stream function is obtained by using the stream function as multiplier.
Keywords: Axisymmetric jet, liquid jet, free jet, wall jet, conservation laws, conserved quantity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14732053 Multi-Label Hierarchical Classification for Protein Function Prediction
Authors: Helyane B. Borges, Julio Cesar Nievola
Abstract:
Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.
Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23882052 A New Composition Method of Admissible Support Vector Kernel Based on Reproducing Kernel
Authors: Wei Zhang, Xin Zhao, Yi-Fan Zhu, Xin-Jian Zhang
Abstract:
Kernel function, which allows the formulation of nonlinear variants of any algorithm that can be cast in terms of dot products, makes the Support Vector Machines (SVM) have been successfully applied in many fields, e.g. classification and regression. The importance of kernel has motivated many studies on its composition. It-s well-known that reproducing kernel (R.K) is a useful kernel function which possesses many properties, e.g. positive definiteness, reproducing property and composing complex R.K by simple operation. There are two popular ways to compute the R.K with explicit form. One is to construct and solve a specific differential equation with boundary value whose handicap is incapable of obtaining a unified form of R.K. The other is using a piecewise integral of the Green function associated with a differential operator L. The latter benefits the computation of a R.K with a unified explicit form and theoretical analysis, whereas there are relatively later studies and fewer practical computations. In this paper, a new algorithm for computing a R.K is presented. It can obtain the unified explicit form of R.K in general reproducing kernel Hilbert space. It avoids constructing and solving the complex differential equations manually and benefits an automatic, flexible and rigorous computation for more general RKHS. In order to validate that the R.K computed by the algorithm can be used in SVM well, some illustrative examples and a comparison between R.K and Gaussian kernel (RBF) in support vector regression are presented. The result shows that the performance of R.K is close or slightly superior to that of RBF.
Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, Green function, support vectorregression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15522051 Study on Optimal Control Strategy of PM2.5 in Wuhan, China
Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun
Abstract:
In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.
Keywords: Grey relational degree, multiple linear regression, membership function, nonlinear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14182050 Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function
Authors: Anupama Pande, Vishik Goel
Abstract:
A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.
Keywords: Complex valued neural network, Radial BasisFunction, Image recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24182049 Optimal Control Problem, Quasi-Assignment Problem and Genetic Algorithm
Authors: Omid S. Fard, Akbar H. Borzabadi
Abstract:
In this paper we apply one of approaches in category of heuristic methods as Genetic Algorithms for obtaining approximate solution of optimal control problems. The firs we convert optimal control problem to a quasi Assignment Problem by defining some usual characters as defined in Genetic algorithm applications. Then we obtain approximate optimal control function as an piecewise constant function. Finally the numerical examples are given.Keywords: Optimal control, Integer programming, Genetic algorithm, Discrete approximation, Linear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13002048 A New Distribution and Application on the Lifetime Data
Authors: Gamze Ozel, Selen Cakmakyapan
Abstract:
We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of a simulation study.
Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13932047 Model and Control of Renewable Energy Systems
Authors: Yelena Chaiko
Abstract:
This paper presents a developed method for controlling multi-renewable energy generators. The control system depends basically on three sensors (wind anemometer, solar sensor, and voltage sensor). These sensors represent PLC-s analogue inputs. Controlling the output voltage supply can be achieved by an enhanced method of interlocking between the renewable energy generators, depending on those sensors and output contactors.Keywords: Renewable, energy, control, model, generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15012046 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks
Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy
Abstract:
With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.
Keywords: Localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15342045 A System Functions Set-Up through Near Field Communication of a Smartphone
Authors: Jaemyoung Lee
Abstract:
We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.Keywords: System set-up, near field communication, smartphone, Android.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17152044 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing
Authors: Yehjune Heo
Abstract:
As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.
Keywords: Anti-spoofing, CNN, fingerprint recognition, loss function, optimizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4342043 The Global Stability Using Lyapunov Function
Authors: R. Kongnuy, E. Naowanich, T. Kruehong
Abstract:
An important technique in stability theory for differential equations is known as the direct method of Lyapunov. In this work we deal global stability properties of Leptospirosis transmission model by age group in Thailand. First we consider the data from Division of Epidemiology Ministry of Public Health, Thailand between 1997-2011. Then we construct the mathematical model for leptospirosis transmission by eight age groups. The Lyapunov functions are used for our model which takes the forms of an Ordinary Differential Equation system. The globally asymptotically for equilibrium states are analyzed.Keywords: Age Group, Leptospirosis, Lyapunov Function, Ordinary Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21592042 Design and Analysis of Universal Multifunctional Leaf Spring Main Landing Gear for Light Aircraft
Authors: Meiyuan Zheng, Jingwu He, Yuexi Xiong
Abstract:
A universal multi-function leaf spring main landing gear was designed for light aircraft. The main landing gear combined with the leaf spring, skidding, and wheels enables it to have a good takeoff and landing performance on various grounds such as the hard, snow, grass and sand grounds. Firstly, the characteristics of different landing sites were studied in this paper in order to analyze the load of the main landing gear on different types of grounds. Based on this analysis, the structural design optimization along with the strength and stiffness characteristics of the main landing gear has been done, which enables it to have good takeoff and landing performance on different types of grounds given the relevant regulations and standards. Additionally, the impact of the skidding on the aircraft during the flight was also taken into consideration. Finally, a universal multi-function leaf spring type of the main landing gear suitable for light aircraft has been developed.
Keywords: Landing gear, multi-function, leaf spring, skidding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20062041 New Fuzzy Preference Relations and its Application in Group Decision Making
Authors: Nur Syibrah Muhamad Naim, Mohd Lazim Abdullah, Che Mohd Imran Che Taib, Abu OsmanMd. Tap
Abstract:
Decision making preferences to certain criteria usually focus on positive degrees without considering the negative degrees. However, in real life situation, evaluation becomes more comprehensive if negative degrees are considered concurrently. Preference is expected to be more effective when considering both positive and negative degrees of preference to evaluate the best selection. Therefore, the aim of this paper is to propose the conflicting bifuzzy preference relations in group decision making by utilization of a novel score function. The conflicting bifuzzy preference relation is obtained by introducing some modifications on intuitionistic fuzzy preference relations. Releasing the intuitionistic condition by taking into account positive and negative degrees simultaneously and utilizing the novel score function are the main modifications to establish the proposed preference model. The proposed model is tested with a numerical example and proved to be simple and practical. The four-step decision model shows the efficiency of obtaining preference in group decision making.Keywords: Fuzzy preference relations, score function, conflicting bifuzzy, decision making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14392040 Aircraft Supplier Selection using Multiple Criteria Group Decision Making Process with Proximity Measure Method for Determinate Fuzzy Set Ranking Analysis
Authors: C. Ardil
Abstract:
Aircraft supplier selection process, which is considered as a fundamental supply chain problem, is a multi-criteria group decision problem that has a significant impact on the performance of the entire supply chain. In practical situations are frequently incomplete and uncertain information, making it difficult for decision-makers to communicate their opinions on candidates with precise and definite values. To solve the aircraft supplier selection problem in an environment of incomplete and uncertain information, proximity measure method is proposed. It uses determinate fuzzy numbers. The weights of each decision maker are equally predetermined and the entropic criteria weights are calculated using each decision maker's decision matrix. Additionally, determinate fuzzy numbers, it is proposed to use the weighted normalized Minkowski distance function and Hausdorff distance function to determine the ranking order patterns of alternatives. A numerical example for aircraft supplier selection is provided to further demonstrate the applicability, effectiveness, validity and rationality of the proposed method.
Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Minkowski distance function, Hausdorff distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4072039 Optimization Approaches for a Complex Dairy Farm Simulation Model
Authors: Jagannath Aryal, Don Kulasiri, Dishi Liu
Abstract:
This paper describes the optimization of a complex dairy farm simulation model using two quite different methods of optimization, the Genetic algorithm (GA) and the Lipschitz Branch-and-Bound (LBB) algorithm. These techniques have been used to improve an agricultural system model developed by Dexcel Limited, New Zealand, which describes a detailed representation of pastoral dairying scenarios and contains an 8-dimensional parameter space. The model incorporates the sub-models of pasture growth and animal metabolism, which are themselves complex in many cases. Each evaluation of the objective function, a composite 'Farm Performance Index (FPI)', requires simulation of at least a one-year period of farm operation with a daily time-step, and is therefore computationally expensive. The problem of visualization of the objective function (response surface) in high-dimensional spaces is also considered in the context of the farm optimization problem. Adaptations of the sammon mapping and parallel coordinates visualization are described which help visualize some important properties of the model-s output topography. From this study, it is found that GA requires fewer function evaluations in optimization than the LBB algorithm.Keywords: Genetic Algorithm, Linux Cluster, LipschitzBranch-and-Bound, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21202038 The Effects of Food Deprivation on Hematological Indices and Blood Indicators of Liver Function in Oxyleotris marmorata
Authors: N. Sridee, S. Boonanuntanasarn
Abstract:
Oxyleotris marmorata is considered as undomesticated fish, and its culture occasionally faces a problem of food deprivation. The present study aims to evaluate alteration of hematological indices, blood chemical associated with liver function during 4 weeks of fasting. A non-linear relationships between fasting days and hematological parameters (red blood cell number; y = - 0.002x2 + 0.041x + 1.249; R2=0.915, P<0.05, hemoglobin; y = - 0.002x2 + 0.030x + 3.470; R2=0.460, P>0.05), mean corpuscular volume; y = -0.180x2 + 2.183x + 149.61; R2=0.732, P>0.05, mean corpuscular hemoglobin; y = -0.041x2 + 0.862x + 29.864; R2=0.818, P>0.05 and mean corpuscular hemoglobin concentration; y = - 0.044x2 + 0.711x + 21.580; R2=0.730, P>0.05) were demonstrated. Significant change in hematocrit (Ht) during fasting period was observed. Ht elevated sharply increase at the first weeks of fasting period. Higher Ht also was detected during week 2-4 of fasting time. The significant reduction of hepatosomatic index was observed (y = - 0.007x2 - 0.096x + 1.414; R2=0.968, P<0.05). Moreover, alteration of enzyme associated with liver function was evaluated during 4 weeks of fasting (alkalin phosphatase; y = -0.026x2 - 0.935x + 12.188; R2=0.737, P>0.05, serum glutamic oxaloacetic transaminase; y = 0.005x2 – 0.201x2 + 1.297x + 33.256; R2=1, P<0.01, serum glutamic pyruvic transaminase; y = 0.007x2 – 0.274x2 + 2.277x + 25.257; R2=0.807, P>0.05). Taken together, prolonged fasting has deleterious effects on hematological indices, liver mass and enzyme associated in liver function. The marked adverse effects occurred after the first week of fasting state.Keywords: food deprivation, Oxyleotris marmorata, hematology, alkaline phosphatase, SGOT, SGPT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19802037 Investigating the Performance of Minimax Search and Aggregate Mahalanobis Distance Function in Evolving an Ayo/Awale Player
Authors: Randle O. A., Olugbara, O. O., Lall M.
Abstract:
In this paper we describe a hybrid technique of Minimax search and aggregate Mahalanobis distance function synthesis to evolve Awale game player. The hybrid technique helps to suggest a move in a short amount of time without looking into endgame database. However, the effectiveness of the technique is heavily dependent on the training dataset of the Awale strategies utilized. The evolved player was tested against Awale shareware program and the result is appealing.
Keywords: Minimax Search, Mahalanobis Distance, Strategic Game, Awale
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16582036 Using Hermite Function for Solving Thomas-Fermi Equation
Authors: F. Bayatbabolghani, K. Parand
Abstract:
In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.
Keywords: Collocation method, Hermite function, Semi-infinite, Thomas-Fermi equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159