Search results for: conjugate gradient algorithm.
3273 Harmony Search-based K-Coverage Enhancement in Wireless Sensor Networks
Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit
Abstract:
Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.
Keywords: Wireless Sensor Networks (WSN), Harmony Search Algorithms, K-Coverage, Mobile WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21633272 Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem
Authors: D.Venkatesan, K.Kannan, S. Raja Balachandar
Abstract:
In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.
Keywords: Genetic Algorithm, Unbounded Knapsack Problem, Combinatorial Optimization, Meta-Heuristic, Center of Mass
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16983271 Robust Face Recognition Using Eigen Faces and Karhunen-Loeve Algorithm
Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Prateek Gupta
Abstract:
The current research paper is an implementation of Eigen Faces and Karhunen-Loeve Algorithm for face recognition. The designed program works in a manner where a unique identification number is given to each face under trial. These faces are kept in a database from where any particular face can be matched and found out of the available test faces. The Karhunen –Loeve Algorithm has been implemented to find out the appropriate right face (with same features) with respect to given input image as test data image having unique identification number. The procedure involves usage of Eigen faces for the recognition of faces.Keywords: Eigen Faces, Karhunen-Loeve Algorithm, FaceRecognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17373270 Mechanical and Thermal Stresses in Functionally Graded Cylinders
Authors: A. Kurşun, E. Kara, E. Çetin, Ş. Aksoy, A. Kesimli
Abstract:
In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson’s ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders.
Keywords: Functionally graded materials, hollow cylinder, thermoelasticity, thermomechanical load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30823269 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building
Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser
Abstract:
This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.Keywords: Building’s energy, control system, energy management, modelling, genetic optimization algorithm, renewable energy, greenhouse gases, energy storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7913268 A Diffusion Least-Mean Square Algorithm for Distributed Estimation over Sensor Networks
Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili
Abstract:
In this paper we consider the issue of distributed adaptive estimation over sensor networks. To deal with more realistic scenario, different variance for observation noise is assumed for sensors in the network. To solve the problem of different variance of observation noise, the proposed method is divided into two phases: I) Estimating each sensor-s observation noise variance and II) using the estimated variances to obtain the desired parameter. Our proposed algorithm is based on a diffusion least mean square (LMS) implementation with linear combiner model. In the proposed algorithm, the step-size parameter the coefficients of linear combiner are adjusted according to estimated observation noise variances. As the simulation results show, the proposed algorithm considerably improves the diffusion LMS algorithm given in literature.
Keywords: Adaptive filter, distributed estimation, sensor network, diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18633267 Applying Tabu Search Algorithm in Public Transport: A Case Study for University Students in Mauritius
Authors: J. Cheeneebash, S. Jugee
Abstract:
In this paper, the Tabu search algorithm is used to solve a transportation problem which consists of determining the shortest routes with the appropriate vehicle capacity to facilitate the travel of the students attending the University of Mauritius. The aim of this work is to minimize the total cost of the distance travelled by the vehicles in serving all the customers. An initial solution is obtained by the TOUR algorithm which basically constructs a giant tour containing all the customers and partitions it in an optimal way so as to produce a set of feasible routes. The Tabu search algorithm then makes use of a search procedure, a swapping procedure and the intensification and diversification mechanism to find the best set of feasible routes.Keywords: Tabu Search, Vehicle Routing, Transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16823266 Efficient Spectral Analysis of Quasi Stationary Time Series
Authors: Khalid M. Aamir, Mohammad A. Maud
Abstract:
Power Spectral Density (PSD) of quasi-stationary processes can be efficiently estimated using the short time Fourier series (STFT). In this paper, an algorithm has been proposed that computes the PSD of quasi-stationary process efficiently using offline autoregressive model order estimation algorithm, recursive parameter estimation technique and modified sliding window discrete Fourier Transform algorithm. The main difference in this algorithm and STFT is that the sliding window (SW) and window for spectral estimation (WSA) are separately defined. WSA is updated and its PSD is computed only when change in statistics is detected in the SW. The computational complexity of the proposed algorithm is found to be lesser than that for standard STFT technique.
Keywords: Power Spectral Density (PSD), quasi-stationarytime series, short time Fourier Transform, Sliding window DFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19653265 Classifying Bio-Chip Data using an Ant Colony System Algorithm
Authors: Minsoo Lee, Yearn Jeong Kim, Yun-mi Kim, Sujeung Cheong, Sookyung Song
Abstract:
Bio-chips are used for experiments on genes and contain various information such as genes, samples and so on. The two-dimensional bio-chips, in which one axis represent genes and the other represent samples, are widely being used these days. Instead of experimenting with real genes which cost lots of money and much time to get the results, bio-chips are being used for biological experiments. And extracting data from the bio-chips with high accuracy and finding out the patterns or useful information from such data is very important. Bio-chip analysis systems extract data from various kinds of bio-chips and mine the data in order to get useful information. One of the commonly used methods to mine the data is classification. The algorithm that is used to classify the data can be various depending on the data types or number characteristics and so on. Considering that bio-chip data is extremely large, an algorithm that imitates the ecosystem such as the ant algorithm is suitable to use as an algorithm for classification. This paper focuses on finding the classification rules from the bio-chip data using the Ant Colony algorithm which imitates the ecosystem. The developed system takes in consideration the accuracy of the discovered rules when it applies it to the bio-chip data in order to predict the classes.Keywords: Ant Colony System, DNA chip data, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14673264 Optimization of SAD Algorithm on VLIW DSP
Authors: Hui-Jae You, Sun-Tae Chung, Souhwan Jung
Abstract:
SAD (Sum of Absolute Difference) algorithm is heavily used in motion estimation which is computationally highly demanding process in motion picture encoding. To enhance the performance of motion picture encoding on a VLIW processor, an efficient implementation of SAD algorithm on the VLIW processor is essential. SAD algorithm is programmed as a nested loop with a conditional branch. In VLIW processors, loop is usually optimized by software pipelining, but researches on optimal scheduling of software pipelining for nested loops, especially nested loops with conditional branches are rare. In this paper, we propose an optimal scheduling and implementation of SAD algorithm with conditional branch on a VLIW DSP processor. The proposed optimal scheduling first transforms the nested loop with conditional branch into a single loop with conditional branch with consideration of full utilization of ILP capability of the VLIW processor and realization of earlier escape from the loop. Next, the proposed optimal scheduling applies a modulo scheduling technique developed for single loop. Based on this optimal scheduling strategy, optimal implementation of SAD algorithm on TMS320C67x, a VLIW DSP is presented. Through experiments on TMS320C6713 DSK, it is shown that H.263 encoder with the proposed SAD implementation performs better than other H.263 encoder with other SAD implementations, and that the code size of the optimal SAD implementation is small enough to be appropriate for embedded environments.Keywords: Optimal implementation, SAD algorithm, VLIW, TMS320C6713.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23443263 Power Efficient OFDM Signals with Reduced Symbol's Aperiodic Autocorrelation
Authors: Ibrahim M. Hussain
Abstract:
Three new algorithms based on minimization of autocorrelation of transmitted symbols and the SLM approach which are computationally less demanding have been proposed. In the first algorithm, autocorrelation of complex data sequence is minimized to a value of 1 that results in reduction of PAPR. Second algorithm generates multiple random sequences from the sequence generated in the first algorithm with same value of autocorrelation i.e. 1. Out of these, the sequence with minimum PAPR is transmitted. Third algorithm is an extension of the second algorithm and requires minimum side information to be transmitted. Multiple sequences are generated by modifying a fixed number of complex numbers in an OFDM data sequence using only one factor. The multiple sequences represent the same data sequence and the one giving minimum PAPR is transmitted. Simulation results for a 256 subcarrier OFDM system show that significant reduction in PAPR is achieved using the proposed algorithms.
Keywords: Aperiodic autocorrelation, OFDM, PAPR, SLM, wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17213262 An Algorithm for Detecting Seam Cracks in Steel Plates
Authors: Doo-chul Choi, Yong-Ju Jeon, Jong Pil Yun, Sung Wook Yun, Sang Woo Kim
Abstract:
In this study, we developed an algorithm for detecting seam cracks in a steel plate. Seam cracks are generated in the edge region of a steel plate. We used the Gabor filter and an adaptive double threshold method to detect them. To reduce the number of pseudo defects, features based on the shape of seam cracks were used. To evaluate the performance of the proposed algorithm, we tested 989 images with seam cracks and 9470 defect-free images. Experimental results show that the proposed algorithm is suitable for detecting seam cracks. However, it should be improved to increase the true positive rate.Keywords: Defect detection, Gabor filter, machine vision, surface inspection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25553261 Particle Simulation of Rarefied Gas Flows witha Superimposed Wall Surface Temperature Gradient in Microgeometries
Authors: V. Azadeh Ranjbar
Abstract:
Rarefied gas flows are often occurred in micro electro mechanical systems and classical CFD could not precisely anticipate the flow and thermal behavior due to the high Knudsen number. Therefore, the heat transfer and the fluid dynamics characteristics of rarefied gas flows in both a two-dimensional simple microchannel and geometry similar to single Knudsen compressor have been investigated with a goal of increasing performance of a actual Knudsen compressor by using a particle simulation method. Thermal transpiration and thermal creep, which are rarefied gas dynamic phenomena, that cause movement of the flow from less to higher temperature is generated by using two different longitude temperature gradients (Linear, Step) along the walls of the flow microchannel. In this study the influence of amount of temperature gradient and governing pressure in various Knudsen numbers and length-to-height ratios have been examined.Keywords: DSMC, Thermal transpiration, Thermal creep, MEMS, Knudsen Compressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12523260 Multidisciplinary and Multilevel Design Methodology of Unmanned Aerial Vehicles Using Enhanced Collaborative Optimization
Authors: Pedro F. Albuquerque, Pedro V. Gamboa, Miguel A. Silvestre
Abstract:
The present work describes the implementation of the Enhanced Collaborative Optimization (ECO) multilevel architecture with a gradient-based optimization algorithm with the aim of performing a multidisciplinary design optimization of a generic unmanned aerial vehicle with morphing technologies. The concepts of weighting coefficient and dynamic compatibility parameter are presented for the ECO architecture. A routine that calculates the aircraft performance for the user defined mission profile and vehicle’s performance requirements has been implemented using low fidelity models for the aerodynamics, stability, propulsion, weight, balance and flight performance. A benchmarking case study for evaluating the advantage of using a variable span wing within the optimization methodology developed is presented.
Keywords: Multidisciplinary, Multilevel, Morphing, Enhanced Collaborative Optimization (ECO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24923259 Landslide and Debris Flow Characteristics during Extreme Rainfall in Taiwan
Authors: C. Y. Chen
Abstract:
As the global climate changes, the threat from landslides and debris flows increases. Learning how a watershed initiates landslides under abnormal rainfall conditions and predicting landslide magnitude and frequency distribution is thus important. Landslides show a power-law distribution in the frequency-area distribution. The distribution curve shows an exponent gradient 1.0 in the Sandpile model test. Will the landslide frequency-area statistics show a distribution similar to the Sandpile model under extreme rainfall conditions? The purpose of the study is to identify the extreme rainfall-induced landslide frequency-area distribution in the Laonong River Basin in southern Taiwan. Results of the analysis show that a lower gradient of landslide frequency-area distribution could be attributed to the transportation and deposition of debris flow areas that are included in the landslide area.Keywords: Landslide, power-law distribution, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19423258 Numerical Investigation of Aerodynamic Analysis on Passenger Vehicle
Authors: Cafer Görkem Pınar, İlker Coşar, Serkan Uzun, Atahan Çelebi, Mehmet Ali Ersoy, Ali Pınarbaşı
Abstract:
In this study, it was numerically investigated that a 1:1 scale model of the Renault Clio MK4 SW brand vehicle aerodynamic analysis was performed in the commercial computational fluid dynamics (CFD) package program of ANSYS CFX 2021 R1 under steady, subsonic, and 3-D conditions. The model of vehicle used for the analysis was made independent of the number of mesh elements and the k-epsilon turbulence model was applied during the analysis. Results were interpreted as streamlines, pressure gradient, and turbulent kinetic energy contours around the vehicle at 50 km/h and 100 km/h speeds. In addition, the validity of the analysis was decided by comparing the drag coefficient of the vehicle with the values in the literature. As a result, the pressure gradient contours of the taillight of the Renault Clio MK4 SW vehicle were examined and the behavior of the total force at speeds of 50 km/h and 100 km/h was interpreted.
Keywords: CFD, k-epsilon, aerodynamics, drag coefficient, taillight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4483257 The Whale Optimization Algorithm and Its Implementation in MATLAB
Authors: S. Adhirai, R. P. Mahapatra, Paramjit Singh
Abstract:
Optimization is an important tool in making decisions and in analysing physical systems. In mathematical terms, an optimization problem is the problem of finding the best solution from among the set of all feasible solutions. The paper discusses the Whale Optimization Algorithm (WOA), and its applications in different fields. The algorithm is tested using MATLAB because of its unique and powerful features. The benchmark functions used in WOA algorithm are grouped as: unimodal (F1-F7), multimodal (F8-F13), and fixed-dimension multimodal (F14-F23). Out of these benchmark functions, we show the experimental results for F7, F11, and F19 for different number of iterations. The search space and objective space for the selected function are drawn, and finally, the best solution as well as the best optimal value of the objective function found by WOA is presented. The algorithmic results demonstrate that the WOA performs better than the state-of-the-art meta-heuristic and conventional algorithms.
Keywords: Optimization, optimal value, objective function, optimization problems, meta-heuristic optimization algorithms, Whale Optimization Algorithm, Implementation, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29003256 A Quantum-Inspired Evolutionary Algorithm forMultiobjective Image Segmentation
Authors: Hichem Talbi, Mohamed Batouche, Amer Draa
Abstract:
In this paper we present a new approach to deal with image segmentation. The fact that a single segmentation result do not generally allow a higher level process to take into account all the elements included in the image has motivated the consideration of image segmentation as a multiobjective optimization problem. The proposed algorithm adopts a split/merge strategy that uses the result of the k-means algorithm as input for a quantum evolutionary algorithm to establish a set of non-dominated solutions. The evaluation is made simultaneously according to two distinct features: intra-region homogeneity and inter-region heterogeneity. The experimentation of the new approach on natural images has proved its efficiency and usefulness.Keywords: Image segmentation, multiobjective optimization, quantum computing, evolutionary algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23573255 A Novel Microarray Biclustering Algorithm
Authors: Chieh-Yuan Tsai, Chuang-Cheng Chiu
Abstract:
Biclustering aims at identifying several biclusters that reveal potential local patterns from a microarray matrix. A bicluster is a sub-matrix of the microarray consisting of only a subset of genes co-regulates in a subset of conditions. In this study, we extend the motif of subspace clustering to present a K-biclusters clustering (KBC) algorithm for the microarray biclustering issue. Besides minimizing the dissimilarities between genes and bicluster centers within all biclusters, the objective function of the KBC algorithm additionally takes into account how to minimize the residues within all biclusters based on the mean square residue model. In addition, the objective function also maximizes the entropy of conditions to stimulate more conditions to contribute the identification of biclusters. The KBC algorithm adopts the K-means type clustering process to efficiently make the partition of K biclusters be optimized. A set of experiments on a practical microarray dataset are demonstrated to show the performance of the proposed KBC algorithm.Keywords: Microarray, Biclustering, Subspace clustering, Meansquare residue model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16143254 Novel Hybrid Approaches For Real Coded Genetic Algorithm to Compute the Optimal Control of a Single Stage Hybrid Manufacturing Systems
Authors: M. Senthil Arumugam, M.V.C. Rao
Abstract:
This paper presents a novel two-phase hybrid optimization algorithm with hybrid genetic operators to solve the optimal control problem of a single stage hybrid manufacturing system. The proposed hybrid real coded genetic algorithm (HRCGA) is developed in such a way that a simple real coded GA acts as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method is next employed to do fine tuning. The hybrid genetic operators involved in the proposed algorithm improve both the quality of the solution and convergence speed. The phase–1 uses conventional real coded genetic algorithm (RCGA), while optimisation by direct search and systematic reduction of the size of search region is employed in the phase – 2. A typical numerical example of an optimal control problem with the number of jobs varying from 10 to 50 is included to illustrate the efficacy of the proposed algorithm. Several statistical analyses are done to compare the validity of the proposed algorithm with the conventional RCGA and PSO techniques. Hypothesis t – test and analysis of variance (ANOVA) test are also carried out to validate the effectiveness of the proposed algorithm. The results clearly demonstrate that the proposed algorithm not only improves the quality but also is more efficient in converging to the optimal value faster. They can outperform the conventional real coded GA (RCGA) and the efficient particle swarm optimisation (PSO) algorithm in quality of the optimal solution and also in terms of convergence to the actual optimum value.
Keywords: Hybrid systems, optimal control, real coded genetic algorithm (RCGA), Particle swarm optimization (PSO), Hybrid real coded GA (HRCGA), and Hybrid genetic operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18973253 Effect of Geometrical Parameters on Natural Frequencies of FGM Cylindrical shell with Holes Under Various Boundary Conditions
Authors: Mostafa Ghayour, Mohammad Sadegh Golabi
Abstract:
In the recent years, functionally gradient materials (FGMs) have gained considerable attention in the high temperature environment applications. In this paper, free vibration of thin functionally graded cylindrical shell with hole composed of stainless steel and zirconia is studied. The mechanical properties vary smoothly and continuously from one surface to the other according to a volume fraction power-law distribution. The Influence of shell geometrical parameters, variations of volume fractions and boundary conditions on natural frequency is considered. The equations of motion are based on strains-displacement relations from Love-s shell theory and Rayleigh method. The results have been obtained for natural frequencies of cylindrical shell with holes for different shape, number and location in this paper.
Keywords: Functionally gradient material, Vibration, various boundary conditions, cylindrical shells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18073252 A Genetic Algorithm Based Permutation and Non-Permutation Scheduling Heuristics for Finite Capacity Material Requirement Planning Problem
Authors: Watchara Songserm, Teeradej Wuttipornpun
Abstract:
This paper presents a genetic algorithm based permutation and non-permutation scheduling heuristics (GAPNP) to solve a multi-stage finite capacity material requirement planning (FCMRP) problem in automotive assembly flow shop with unrelated parallel machines. In the algorithm, the sequences of orders are iteratively improved by the GA characteristics, whereas the required operations are scheduled based on the presented permutation and non-permutation heuristics. Finally, a linear programming is applied to minimize the total cost. The presented GAPNP algorithm is evaluated by using real datasets from automotive companies. The required parameters for GAPNP are intently tuned to obtain a common parameter setting for all case studies. The results show that GAPNP significantly outperforms the benchmark algorithm about 30% on average.
Keywords: Finite capacity MRP, genetic algorithm, linear programming, flow shop, unrelated parallel machines, application in industries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11063251 Particle Swarm Optimization with Reduction for Global Optimization Problems
Authors: Michiharu Maeda, Shinya Tsuda
Abstract:
This paper presents an algorithm of particle swarm optimization with reduction for global optimization problems. Particle swarm optimization is an algorithm which refers to the collective motion such as birds or fishes, and a multi-point search algorithm which finds a best solution using multiple particles. Particle swarm optimization is so flexible that it can adapt to a number of optimization problems. When an objective function has a lot of local minimums complicatedly, the particle may fall into a local minimum. For avoiding the local minimum, a number of particles are initially prepared and their positions are updated by particle swarm optimization. Particles sequentially reduce to reach a predetermined number of them grounded in evaluation value and particle swarm optimization continues until the termination condition is met. In order to show the effectiveness of the proposed algorithm, we examine the minimum by using test functions compared to existing algorithms. Furthermore the influence of best value on the initial number of particles for our algorithm is discussed.Keywords: Particle swarm optimization, Global optimization, Metaheuristics, Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16203250 Investigating Feed Mix Problem Approaches: An Overview and Potential Solution
Authors: Rosshairy Abd Rahman, Chooi-Leng Ang, Razamin Ramli
Abstract:
Feed is one of the factors which play an important role in determining a successful development of an aquaculture industry. It is always critical to produce the best aquaculture diet at a minimum cost in order to trim down the operational cost and gain more profit. However, the feed mix problem becomes increasingly difficult since many issues need to be considered simultaneously. Thus, the purpose of this paper is to review the current techniques used by nutritionist and researchers to tackle the issues. Additionally, this paper introduce an enhance algorithm which is deemed suitable to deal with all the issues arise. The proposed technique refers to Hybrid Genetic Algorithm which is expected to obtain the minimum cost diet for farmed animal, while satisfying nutritional requirements. Hybrid GA technique with artificial bee algorithm is expected to reduce the penalty function and provide a better solution for the feed mix problem.
Keywords: Artificial bee algorithm, feed mix problem, hybrid genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32093249 Frequency- and Content-Based Tag Cloud Font Distribution Algorithm
Authors: Ágnes Bogárdi-Mészöly, Takeshi Hashimoto, Shohei Yokoyama, Hiroshi Ishikawa
Abstract:
The spread of Web 2.0 has caused user-generated content explosion. Users can tag resources to describe and organize them. Tag clouds provide rough impression of relative importance of each tag within overall cloud in order to facilitate browsing among numerous tags and resources. The goal of our paper is to enrich visualization of tag clouds. A font distribution algorithm has been proposed to calculate a novel metric based on frequency and content, and to classify among classes from this metric based on power law distribution and percentages. The suggested algorithm has been validated and verified on the tag cloud of a real-world thesis portal.
Keywords: Tag cloud, font distribution algorithm, frequency-based, content-based, power law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20913248 New Iterative Algorithm for Improving Depth Resolution in Ionic Analysis: Effect of Iterations Number
Authors: N. Dahraoui, M. Boulakroune, D. Benatia
Abstract:
In this paper, the improvement by deconvolution of the depth resolution in Secondary Ion Mass Spectrometry (SIMS) analysis is considered. Indeed, we have developed a new Tikhonov- Miller deconvolution algorithm where a priori model of the solution is included. This is a denoisy and pre-deconvoluted signal obtained from: firstly, by the application of wavelet shrinkage algorithm, secondly by the introduction of the obtained denoisy signal in an iterative deconvolution algorithm. In particular, we have focused the light on the effect of the iterations number on the evolution of the deconvoluted signals. The SIMS profiles are multilayers of Boron in Silicon matrix.
Keywords: DRF, in-depth resolution, multiresolution deconvolution, SIMS, wavelet shrinkage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22193247 Identification of LTI Autonomous All Pole System Using Eigenvector Algorithm
Authors: Sudipta Majumdar
Abstract:
This paper presents a method for identification of a linear time invariant (LTI) autonomous all pole system using singular value decomposition. The novelty of this paper is two fold: First, MUSIC algorithm for estimating complex frequencies from real measurements is proposed. Secondly, using the proposed algorithm, we can identify the coefficients of differential equation that determines the LTI system by switching off our input signal. For this purpose, we need only to switch off the input, apply our complex MUSIC algorithm and determine the coefficients as symmetric polynomials in the complex frequencies. This method can be applied to unstable system and has higher resolution as compared to time series solution when, noisy data are used. The classical performance bound, Cramer Rao bound (CRB), has been used as a basis for performance comparison of the proposed method for multiple poles estimation in noisy exponential signal.Keywords: MUSIC algorithm, Cramer Rao bound, frequency estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9333246 A Hybrid Algorithm for Collaborative Transportation Planning among Carriers
Authors: Elham Jelodari Mamaghani, Christian Prins, Haoxun Chen
Abstract:
In this paper, there is concentration on collaborative transportation planning (CTP) among multiple carriers with pickup and delivery requests and time windows. This problem is a vehicle routing problem with constraints from standard vehicle routing problems and new constraints from a real-world application. In the problem, each carrier has a finite number of vehicles, and each request is a pickup and delivery request with time window. Moreover, each carrier has reserved requests, which must be served by itself, whereas its exchangeable requests can be outsourced to and served by other carriers. This collaboration among carriers can help them to reduce total transportation costs. A mixed integer programming model is proposed to the problem. To solve the model, a hybrid algorithm that combines Genetic Algorithm and Simulated Annealing (GASA) is proposed. This algorithm takes advantages of GASA at the same time. After tuning the parameters of the algorithm with the Taguchi method, the experiments are conducted and experimental results are provided for the hybrid algorithm. The results are compared with those obtained by a commercial solver. The comparison indicates that the GASA significantly outperforms the commercial solver.
Keywords: Centralized collaborative transportation, collaborative transportation with pickup and delivery, collaborative transportation with time windows, hybrid algorithm of GA and SA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8313245 Efficient Method for ECG Compression Using Two Dimensional Multiwavelet Transform
Authors: Morteza Moazami-Goudarzi, Mohammad H. Moradi, Ali Taheri
Abstract:
In this paper we introduce an effective ECG compression algorithm based on two dimensional multiwavelet transform. Multiwavelets offer simultaneous orthogonality, symmetry and short support, which is not possible with scalar two-channel wavelet systems. These features are known to be important in signal processing. Thus multiwavelet offers the possibility of superior performance for image processing applications. The SPIHT algorithm has achieved notable success in still image coding. We suggested applying SPIHT algorithm to 2-D multiwavelet transform of2-D arranged ECG signals. Experiments on selected records of ECG from MIT-BIH arrhythmia database revealed that the proposed algorithm is significantly more efficient in comparison with previously proposed ECG compression schemes.
Keywords: ECG signal compression, multi-rateprocessing, 2-D Multiwavelet, Prefiltering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20303244 Optimal Placement of Phasor Measurement Units Using Gravitational Search Method
Authors: Satyendra Pratap Singh, S. P. Singh
Abstract:
This paper presents a methodology using Gravitational Search Algorithm for optimal placement of Phasor Measurement Units (PMUs) in order to achieve complete observability of the power system. The objective of proposed algorithm is to minimize the total number of PMUs at the power system buses, which in turn minimize installation cost of the PMUs. In this algorithm, the searcher agents are collection of masses which interact with each other using Newton’s laws of gravity and motion. This new Gravitational Search Algorithm based method has been applied to the IEEE 14-bus, IEEE 30-bus and IEEE 118-bus test systems. Case studies reveal optimal number of PMUs with better observability by proposed method.
Keywords: Gravitational Search Algorithm (GSA), Law of Motion, Law of Gravity, Observability, Phasor Measurement Unit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904