Search results for: RASP Function.
1743 Potential of Energy Conservation of Daylight Linked Lighting System in India
Authors: Biswajit Biswas
Abstract:
Demand of energy is increasing faster than the generation. It leads shortage of power in all sectors of society. At peak hours this shortage is higher. Unless we utilize energy efficient technology, it is very difficult to minimize the shortage of energy. So energy efficiency program and energy conservation has an important role. Energy efficient technologies are cost intensive hence it is always not possible to implement in country like India. In the recent study, an educational building with operating hours from 10:00 a.m. to 05:00 p.m. has been selected to quantify the possibility of lighting energy conservation. As the operating hour is in daytime, integration of daylight with artificial lighting system will definitely reduce the lighting energy consumption. Moreover the initial investment has been given priority and hence the existing lighting installation was unaltered. An automatic controller has been designed which will be operated as a function of daylight through windows and the lighting system of the room will function accordingly. The result of the study of integrating daylight gave quite satisfactory for visual comfort as well as energy conservation.
Keywords: Lighting energy, energy efficiency, daylight, illumination, energy conservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19551742 Experimenting with Error Performance of Systems Employing Pulse Shaping Filters on a Software-Defined-Radio Platform
Authors: Chia-Yu Yao
Abstract:
This paper presents experimental results on testing the symbol-error-rate (SER) performance of quadrature amplitude modulation (QAM) systems employing symmetric pulse-shaping square-root (SR) filters designed by minimizing the roughness function and by minimizing the peak-to-average power ratio (PAR). The device used in the experiments is the 'bladeRF' software-defined-radio platform. PAR is a well-known measurement, whereas the roughness function is a concept for measuring the jitter-induced interference. The experimental results show that the system employing minimum-roughness pulse-shaping SR filters outperforms the system employing minimum-PAR pulse-shaping SR filters in the sense of SER performance.Keywords: Pulse-shaping filters, jitter, inter-symbol interference, symmetric FIR filters, QAM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11771741 Comparative Study Using Weka for Red Blood Cells Classification
Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.
Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29931740 Bandwidth Control Using Reconfigurable Antenna Elements
Authors: Sudhina H. K, Ravi M. Yadahalli, N. M. Shetti
Abstract:
Reconfigurable antennas represent a recent innovation in antenna design that changes from classical fixed-form, fixed function antennas to modifiable structures that can be adapted to fit the requirements of a time varying system.
The ability to control the operating band of an antenna system can have many useful applications. Systems that operate in an acquire-and-track configuration would see a benefit from active bandwidth control. In such systems a wide band search mode is first employed to find a desired signal then a narrow band track mode is used to follow only that signal. Utilizing active antenna bandwidth control, a single antenna would function for both the wide band and narrow band configurations providing the rejection of unwanted signals with the antenna hardware. This ability to move a portion of the RF filtering out of the receiver and onto the antenna itself will also aid in reducing the complexity of the often expensive RF processing subsystems.
Keywords: Designing methods, MEMS, stack, reconfigurable elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23031739 Bridging the Mental Gap between Convolution Approach and Compartmental Modeling in Functional Imaging: Typical Embedding of an Open Two-Compartment Model into the Systems Theory Approach of Indicator Dilution Theory
Authors: Gesine Hellwig
Abstract:
Functional imaging procedures for the non-invasive assessment of tissue microcirculation are highly requested, but require a mathematical approach describing the trans- and intercapillary passage of tracer particles. Up to now, two theoretical, for the moment different concepts have been established for tracer kinetic modeling of contrast agent transport in tissues: pharmacokinetic compartment models, which are usually written as coupled differential equations, and the indicator dilution theory, which can be generalized in accordance with the theory of lineartime- invariant (LTI) systems by using a convolution approach. Based on mathematical considerations, it can be shown that also in the case of an open two-compartment model well-known from functional imaging, the concentration-time course in tissue is given by a convolution, which allows a separation of the arterial input function from a system function being the impulse response function, summarizing the available information on tissue microcirculation. Due to this reason, it is possible to integrate the open two-compartment model into the system-theoretic concept of indicator dilution theory (IDT) and thus results known from IDT remain valid for the compartment approach. According to the long number of applications of compartmental analysis, even for a more general context similar solutions of the so-called forward problem can already be found in the extensively available appropriate literature of the seventies and early eighties. Nevertheless, to this day, within the field of biomedical imaging – not from the mathematical point of view – there seems to be a trench between both approaches, which the author would like to get over by exemplary analysis of the well-known model.
Keywords: Functional imaging, Tracer kinetic modeling, LTIsystem, Indicator dilution theory / convolution approach, Two-Compartment model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14171738 X-Corner Detection for Camera Calibration Using Saddle Points
Authors: Abdulrahman S. Alturki, John S. Loomis
Abstract:
This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.Keywords: Camera Calibration, Corner Detector, Saddle Points, X-Corners.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31511737 Yang-Lee Edge Singularity of the Infinite-Range Ising Model
Authors: Seung-Yeon Kim
Abstract:
The Ising ferromagnet, consisting of magnetic spins, is the simplest system showing phase transitions and critical phenomena at finite temperatures. The Ising ferromagnet has played a central role in our understanding of phase transitions and critical phenomena. Also, the Ising ferromagnet explains the gas-liquid phase transitions accurately. In particular, the Ising ferromagnet in a nonzero magnetic field has been one of the most intriguing and outstanding unsolved problems. We study analytically the partition function zeros in the complex magnetic-field plane and the Yang-Lee edge singularity of the infinite-range Ising ferromagnet in an external magnetic field. In addition, we compare the Yang-Lee edge singularity of the infinite-range Ising ferromagnet with that of the square-lattice Ising ferromagnet in an external magnetic field.
Keywords: Ising ferromagnet, Magnetic field, Partition function zeros, Yang-Lee edge singularity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32491736 Design of an Stable GPC for Nonminimum Phase LTI Systems
Authors: Mahdi Yaghobi, Mohammad Haeri
Abstract:
The current methods of predictive controllers are utilized for those processes in which the rate of output variations is not high. For such processes, therefore, stability can be achieved by implementing the constrained predictive controller or applying infinite prediction horizon. When the rate of the output growth is high (e.g. for unstable nonminimum phase process) the stabilization seems to be problematic. In order to avoid this, it is suggested to change the method in the way that: first, the prediction error growth should be decreased at the early stage of the prediction horizon, and second, the rate of the error variation should be penalized. The growth of the error is decreased through adjusting its weighting coefficients in the cost function. Reduction in the error variation is possible by adding the first order derivate of the error into the cost function. By studying different examples it is shown that using these two remedies together, the closed-loop stability of unstable nonminimum phase process can be achieved.Keywords: GPC, Stability, Varying Weighting Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12721735 Simplified Stress Gradient Method for Stress-Intensity Factor Determination
Authors: Jeries J. Abou-Hanna
Abstract:
Several techniques exist for determining stress-intensity factors in linear elastic fracture mechanics analysis. These techniques are based on analytical, numerical, and empirical approaches that have been well documented in literature and engineering handbooks. However, not all techniques share the same merit. In addition to overly-conservative results, the numerical methods that require extensive computational effort, and those requiring copious user parameters hinder practicing engineers from efficiently evaluating stress-intensity factors. This paper investigates the prospects of reducing the complexity and required variables to determine stress-intensity factors through the utilization of the stress gradient and a weighting function. The heart of this work resides in the understanding that fracture emanating from stress concentration locations cannot be explained by a single maximum stress value approach, but requires use of a critical volume in which the crack exists. In order to understand the effectiveness of this technique, this study investigated components of different notch geometry and varying levels of stress gradients. Two forms of weighting functions were employed to determine stress-intensity factors and results were compared to analytical exact methods. The results indicated that the “exponential” weighting function was superior to the “absolute” weighting function. An error band +/- 10% was met for cases ranging from a steep stress gradient in a sharp v-notch to the less severe stress transitions of a large circular notch. The incorporation of the proposed method has shown to be a worthwhile consideration.
Keywords: Fracture mechanics, finite element method, stress intensity factor, stress gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7651734 Analysis of Blind Decision Feedback Equalizer Convergence: Interest of a Soft Decision
Authors: S. Cherif, S. Marcos, M. Jaidane
Abstract:
In this paper the behavior of the decision feedback equalizers (DFEs) adapted by the decision-directed or the constant modulus blind algorithms is presented. An analysis of the error surface of the corresponding criterion cost functions is first developed. With the intention of avoiding the ill-convergence of the algorithm, the paper proposes to modify the shape of the cost function error surface by using a soft decision instead of the hard one. This was shown to reduce the influence of false decisions and to smooth the undesirable minima. Modified algorithms using the soft decision during a pseudo-training phase with an automatic switch to the properly tracking phase are then derived. Computer simulations show that these modified algorithms present better ability to avoid local minima than conventional ones.Keywords: Blind DFEs, decision-directed algorithm, constant modulus algorithm, cost function analysis, convergence analysis, soft decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18811733 Power and Delay Optimized Graph Representation for Combinational Logic Circuits
Authors: Padmanabhan Balasubramanian, Karthik Anantha
Abstract:
Structural representation and technology mapping of a Boolean function is an important problem in the design of nonregenerative digital logic circuits (also called combinational logic circuits). Library aware function manipulation offers a solution to this problem. Compact multi-level representation of binary networks, based on simple circuit structures, such as AND-Inverter Graphs (AIG) [1] [5], NAND Graphs, OR-Inverter Graphs (OIG), AND-OR Graphs (AOG), AND-OR-Inverter Graphs (AOIG), AND-XORInverter Graphs, Reduced Boolean Circuits [8] does exist in literature. In this work, we discuss a novel and efficient graph realization for combinational logic circuits, represented using a NAND-NOR-Inverter Graph (NNIG), which is composed of only two-input NAND (NAND2), NOR (NOR2) and inverter (INV) cells. The networks are constructed on the basis of irredundant disjunctive and conjunctive normal forms, after factoring, comprising terms with minimum support. Construction of a NNIG for a non-regenerative function in normal form would be straightforward, whereas for the complementary phase, it would be developed by considering a virtual instance of the function. However, the choice of best NNIG for a given function would be based upon literal count, cell count and DAG node count of the implementation at the technology independent stage. In case of a tie, the final decision would be made after extracting the physical design parameters. We have considered AIG representation for reduced disjunctive normal form and the best of OIG/AOG/AOIG for the minimized conjunctive normal forms. This is necessitated due to the nature of certain functions, such as Achilles- heel functions. NNIGs are found to exhibit 3.97% lesser node count compared to AIGs and OIG/AOG/AOIGs; consume 23.74% and 10.79% lesser library cells than AIGs and OIG/AOG/AOIGs for the various samples considered. We compare the power efficiency and delay improvement achieved by optimal NNIGs over minimal AIGs and OIG/AOG/AOIGs for various case studies. In comparison with functionally equivalent, irredundant and compact AIGs, NNIGs report mean savings in power and delay of 43.71% and 25.85% respectively, after technology mapping with a 0.35 micron TSMC CMOS process. For a comparison with OIG/AOG/AOIGs, NNIGs demonstrate average savings in power and delay by 47.51% and 24.83%. With respect to device count needed for implementation with static CMOS logic style, NNIGs utilize 37.85% and 33.95% lesser transistors than their AIG and OIG/AOG/AOIG counterparts.Keywords: AND-Inverter Graph, OR-Inverter Graph, DirectedAcyclic Graph, Low power design, Delay optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20491732 Integrated Approaches to Enhance Aggregate Production Planning with Inventory Uncertainty Based On Improved Harmony Search Algorithm
Authors: P. Luangpaiboon, P. Aungkulanon
Abstract:
This work presents a multiple objective linear programming (MOLP) model based on the desirability function approach for solving the aggregate production planning (APP) decision problem upon Masud and Hwang-s model. The proposed model minimises total production costs, carrying or backordering costs and rates of change in labor levels. An industrial case demonstrates the feasibility of applying the proposed model to the APP problems with three scenarios of inventory levels. The proposed model yields an efficient compromise solution and the overall levels of DM satisfaction with the multiple combined response levels. There has been a trend to solve complex planning problems using various metaheuristics. Therefore, in this paper, the multi-objective APP problem is solved by hybrid metaheuristics of the hunting search (HuSIHSA) and firefly (FAIHSA) mechanisms on the improved harmony search algorithm. Results obtained from the solution of are then compared. It is observed that the FAIHSA can be used as a successful alternative solution mechanism for solving APP problems over three scenarios. Furthermore, the FAIHSA provides a systematic framework for facilitating the decision-making process, enabling a decision maker interactively to modify the desirability function approach and related model parameters until a good optimal solution is obtained with proper selection of control parameters when compared.
Keywords: Aggregate Production Planning, Desirability Function Approach, Improved Harmony Search Algorithm, Hunting Search Algorithm and Firefly Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19261731 Scheduling Method for Electric Heater in HEMS Considering User’s Comfort
Authors: Yong-Sung Kim, Je-Seok Shin, Ho-Jun Jo Jin-O Kim
Abstract:
Home Energy Management System (HEMS), which makes the residential consumers, contribute to the demand response is attracting attention in recent years. An aim of HEMS is to minimize their electricity cost by controlling the use of their appliances according to electricity price. The use of appliances in HEMS may be affected by some conditions such as external temperature and electricity price. Therefore, the user’s usage pattern of appliances should be modeled according to the external conditions, and the resultant usage pattern is related to the user’s comfortability on use of each appliances. This paper proposes a methodology to model the usage pattern based on the historical data with the copula function. Through copula function, the usage range of each appliance can be obtained and is able to satisfy the appropriate user’s comfort according to the external conditions for next day. Within the usage range, an optimal scheduling for appliances would be conducted so as to minimize an electricity cost with considering user’s comfort. Among the home appliance, electric heater (EH) is a representative appliance, which is affected by the external temperature. In this paper, an optimal scheduling algorithm for an electric heater (EH) is addressed based on the method of branch and bound. As a result, scenarios for the EH usage are obtained according to user’s comfort levels and then the residential consumer would select the best scenario. The case study shows the effects of the proposed algorithm compared with the traditional operation of the EH, and it represents impacts of the comfort level on the scheduling result.
Keywords: Load scheduling, usage pattern, user’s comfort, copula function, branch, bound, electric heater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20741730 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.
Keywords: Radial basis function network, Hybrid learning, Multi-objective optimization, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22511729 Promoting Biofuels in India: Assessing Land Use Shifts Using Econometric Acreage Response Models
Authors: Y. Bhatt, N. Ghosh, N. Tiwari
Abstract:
Acreage response function are modeled taking account of expected harvest prices, weather related variables and other non-price variables allowing for partial adjustment possibility. At the outset, based on the literature on price expectation formation, we explored suitable formulations for estimating the farmer’s expected prices. Assuming that farmers form expectations rationally, the prices of food and biofuel crops are modeled using time-series methods for possible ARCH/GARCH effects to account for volatility. The prices projected on the basis of the models are then inserted to proxy for the expected prices in the acreage response functions. Food crop acreages in different growing states are found sensitive to their prices relative to those of one or more of the biofuel crops considered. The required percentage improvement in food crop yields is worked to offset the acreage loss.
Keywords: Acreage response function, biofuel, food security, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14141728 Predictors of Social Participation of Children with Cerebral Palsy in Primary Schools in Czech Republic
Authors: Marija Zulić, Vanda Hájková, Nina Brkić-Jovanović, Linda Rathousová, Sanja Tomić
Abstract:
Cerebral palsy is primarily reflected in the disorder of the development of movement and posture, which may be accompanied by sensory disturbances, disturbances of perception, cognition and communication, behavioural disorders and epilepsy. According to current inclusive attitudes towards people with disabilities implies that full social participation of children with cerebral palsy means inclusion in all activities in family, peer, school and leisure environments in the same scope and to the same extent as is the case with the children of proper development and without physical difficulties. Due to the fact that it has been established that the quality of children's participation in primary school is directly related to their social inclusion in future life, the aim of the paper is to identify predictors of social participation, respectively, and in particular, factors that could to improve the quality of social participation of children with cerebral palsy, in the primary school environment in Czech Republic. The study includes children with cerebral palsy (n = 75) in the Czech Republic, aged between six and 12 years who attend mainstream or special primary schools to the sixth grade. The main instrument used was the first and third part of the School function assessment questionnaire. It will also take into account the type of damage assessed according to a scale the Gross motor function classification system, five–level classification system for cerebral palsy. The research results will provide detailed insight into the degree of social participation of children with cerebral palsy and the factors that would be a potential cause of their levels of participation, in regular and special primary schools, in different socioeconomic environments in Czech Republic.
Keywords: Cerebral palsy, social participation, Czech Republic, school function assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12441727 Evolution of Quality Function Deployment (QFD) via Fuzzy Concepts and Neural Networks
Authors: M. Haghighi, M. Zowghi, B. Zohouri
Abstract:
Quality Function Deployment (QFD) is an expounded, multi-step planning method for delivering commodity, services, and processes to customers, both external and internal to an organization. It is a way to convert between the diverse customer languages expressing demands (Voice of the Customer), and the organization-s languages expressing results that sate those demands. The policy is to establish one or more matrices that inter-relate producer and consumer reciprocal expectations. Due to its visual presence is called the “House of Quality" (HOQ). In this paper, we assumed HOQ in multi attribute decision making (MADM) pattern and through a proposed MADM method, rank technical specifications. Thereafter compute satisfaction degree of customer requirements and for it, we apply vagueness and uncertainty conditions in decision making by fuzzy set theory. This approach would propound supervised neural network (perceptron) for MADM problem solving.
Keywords: MADM, fuzzy set, QFD, supervised neural network (perceptron).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17411726 The Effects of Rain and Overland Flow Powers on Agricultural Soil Erodibility
Authors: A. Moussouni, L. Mouzai, M. Bouhadef
Abstract:
The purpose of this investigation is to relate the rain power and the overland flow power to soil erodibility to assess the effects of both parameters on soil erosion using variable rainfall intensity on remoulded agricultural soil. Six rainfall intensities were used to simulate the natural rainfall and are as follows: 12.4mm/h, 20.3mm/h, 28.6mm/h, 52mm/h, 73.5mm/h and 103mm/h. The results have shown that the relationship between overland flow power and rain power is best represented by a linear function (R2=0.99). As regards the relationships between soil erodibility factor and rain and overland flow powers, the evolution of both parameters with the erodibility factor follow a polynomial function with high coefficient of determination. From their coefficients of determination (R2=0.95) for rain power and (R2=0.96) for overland flow power, we can conclude that the flow has more power to detach particles than rain. This could be explained by the fact that the presence of particles, already detached by rain and transported by the flow, give the flow more weight and then contribute to the detachment of particles by collision.Keywords: Laboratory experiments, soil erosion, flow power, erodibility, rainfall intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20611725 A Utilitarian Approach to Modeling Information Flows in Social Networks
Authors: Usha Sridhar, Sridhar Mandyam
Abstract:
We propose a multi-agent based utilitarian approach to model and understand information flows in social networks that lead to Pareto optimal informational exchanges. We model the individual expected utility function of the agents to reflect the net value of information received. We show how this model, adapted from a theorem by Karl Borch dealing with an actuarial Risk Exchange concept in the Insurance industry, can be used for social network analysis. We develop a utilitarian framework that allows us to interpret Pareto optimal exchanges of value as potential information flows, while achieving a maximization of a sum of expected utilities of information of the group of agents. We examine some interesting conditions on the utility function under which the flows are optimal. We illustrate the promise of this new approach to attach economic value to information in networks with a synthetic example.Keywords: Borch's Theorem , Economic value of information, Information Exchange, Pareto Optimal Solution, Social Networks, Utility Functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041724 Planning a Supply Chain with Risk and Environmental Objectives
Authors: Ghanima Al-Sharrah, Haitham M. Lababidi, Yusuf I. Ali
Abstract:
The main objective of the current work is to introduce sustainability factors in optimizing the supply chain model for process industries. The supply chain models are normally based on purely economic considerations related to costs and profits. To account for sustainability, two additional factors have been introduced; environment and risk. A supply chain for an entire petroleum organization has been considered for implementing and testing the proposed optimization models. The environmental and risk factors were introduced as indicators reflecting the anticipated impact of the optimal production scenarios on sustainability. The aggregation method used in extending the single objective function to multi-objective function is proven to be quite effective in balancing the contribution of each objective term. The results indicate that introducing sustainability factor would slightly reduce the economic benefit while improving the environmental and risk reduction performances of the process industries.Keywords: Supply chain, optimization, LP models, risk, environmental indicators, multi-objective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14991723 Simulation and Validation of Spur Gear Heated by Induction using 3d Model
Authors: A. Chebak, N. Barka, A. Menou, J. Brousseau, D. S. Ramdenee
Abstract:
This paper presents the study of hardness profile of spur gear heated by induction heating process in function of the machine parameters, such as the power (kW), the heating time (s) and the generator frequency (kHz). The global work is realized by 3D finite-element simulation applied to the process by coupling and resolving the electromagnetic field and the heat transfer problems, and it was performed in three distinguished steps. First, a Comsol 3D model was built using an adequate formulation and taking into account the material properties and the machine parameters. Second, the convergence study was conducted to optimize the mesh. Then, the surface temperatures and the case depths were deeply analyzed in function of the initial current density and the heating time in medium frequency (MF) and high frequency (HF) heating modes and the edge effect were studied. Finally, the simulations results are validated using experimental tests.
Keywords: Induction heating, simulation, experimental validation, 3D model, hardness profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16511722 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting
Authors: I. Falconett, K. Nagasaka
Abstract:
This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.
Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15351721 Reliability Approximation through the Discretization of Random Variables using Reversed Hazard Rate Function
Authors: Tirthankar Ghosh, Dilip Roy, Nimai Kumar Chandra
Abstract:
Sometime it is difficult to determine the exact reliability for complex systems in analytical procedures. Approximate solution of this problem can be provided through discretization of random variables. In this paper we describe the usefulness of discretization of a random variable using the reversed hazard rate function of its continuous version. Discretization of the exponential distribution has been demonstrated. Applications of this approach have also been cited. Numerical calculations indicate that the proposed approach gives very good approximation of reliability of complex systems under stress-strength set-up. The performance of the proposed approach is better than the existing discrete concentration method of discretization. This approach is conceptually simple, handles analytic intractability and reduces computational time. The approach can be applied in manufacturing industries for producing high-reliable items.
Keywords: Discretization, Reversed Hazard Rate, Exponential distribution, reliability approximation, engineering item.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26181720 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.
Keywords: Generalized autoregressive score model, stock returns, time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10331719 Utility Assessment Model for Wireless Technology in Construction
Authors: Y. Abdelrazig, A. Ghanem
Abstract:
Construction projects are information intensive in nature and involve many activities that are related to each other. Wireless technologies can be used to improve the accuracy and timeliness of data collected from construction sites and shares it with appropriate parties. Nonetheless, the construction industry tends to be conservative and shows hesitation to adopt new technologies. A main concern for owners, contractors or any person in charge on a job site is the cost of the technology in question. Wireless technologies are not cheap. There are a lot of expenses to be taken into consideration, and a study should be completed to make sure that the importance and savings resulting from the usage of this technology is worth the expenses. This research attempts to assess the effectiveness of using the appropriate wireless technologies based on criteria such as performance, reliability, and risk. The assessment is based on a utility function model that breaks down the selection issue into alternatives attribute. Then the attributes are assigned weights and single attributes are measured. Finally, single attribute are combined to develop one single aggregate utility index for each alternative.Keywords: Analytic Hierarchy Process, Utility Function, Wireless Technologies, construction management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19211718 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks
Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing
Abstract:
The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.
Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15201717 Aircraft Supplier Selection Process with Fuzzy Proximity Measure Method using Multiple Criteria Group Decision Making Analysis
Authors: C. Ardil
Abstract:
Being effective in every organizational activity has become necessary due to the escalating level of competition in all areas of corporate life. In the context of supply chain management, aircraft supplier selection is currently one of the most crucial activities. It is possible to choose the best aircraft supplier and deliver efficiency in terms of cost, quality, delivery time, economic status, and institutionalization if a systematic supplier selection approach is used. In this study, an effective multiple criteria decision-making methodology, proximity measure method (PMM), is used within a fuzzy environment based on the vague structure of the real working environment. The best appropriate aircraft suppliers are identified and ranked after the proposed multiple criteria decision making technique is used in a real-life scenario.
Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3421716 Investigation of Stoneley Waves in Multilayered Plates
Authors: Bing Li, Tong Lu, Lei Qiang
Abstract:
Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.
Keywords: Characteristic equation, interface waves, dispersion curves, potential function, Stoneley waves, wave structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16831715 Closely Parametrical Model for an Electrical Arc Furnace
Authors: Labar Hocine, Dgeghader Yacine, Kelaiaia Mounia Samira, Bounaya Kamel
Abstract:
To maximise furnace production it-s necessary to optimise furnace control, with the objectives of achieving maximum power input into the melting process, minimum network distortion and power-off time, without compromise on quality and safety. This can be achieved with on the one hand by an appropriate electrode control and on the other hand by a minimum of AC transformer switching. Electrical arc is a stochastic process; witch is the principal cause of power quality problems, including voltages dips, harmonic distortion, unbalance loads and flicker. So it is difficult to make an appropriate model for an Electrical Arc Furnace (EAF). The factors that effect EAF operation are the melting or refining materials, melting stage, electrode position (arc length), electrode arm control and short circuit power of the feeder. So arc voltages, current and power are defined as a nonlinear function of the arc length. In this article we propose our own empirical function of the EAF and model, for the mean stages of the melting process, thanks to the measurements in the steel factory.Keywords: Modelling, electrical arc, melting, power, EAF, steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32451714 Improving Image Segmentation Performance via Edge Preserving Regularization
Authors: Ying-jie Zhang, Li-ling Ge
Abstract:
This paper presents an improved image segmentation model with edge preserving regularization based on the piecewise-smooth Mumford-Shah functional. A level set formulation is considered for the Mumford-Shah functional minimization in segmentation, and the corresponding partial difference equations are solved by the backward Euler discretization. Aiming at encouraging edge preserving regularization, a new edge indicator function is introduced at level set frame. In which all the grid points which is used to locate the level set curve are considered to avoid blurring the edges and a nonlinear smooth constraint function as regularization term is applied to smooth the image in the isophote direction instead of the gradient direction. In implementation, some strategies such as a new scheme for extension of u+ and u- computation of the grid points and speedup of the convergence are studied to improve the efficacy of the algorithm. The resulting algorithm has been implemented and compared with the previous methods, and has been proved efficiently by several cases.Keywords: Energy minimization, image segmentation, level sets, edge regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497