Search results for: Optimal Termination Model
8191 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting
Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun
Abstract:
In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution.Keywords: Multi-objective optimization, random drift particle swarm optimization, crowding distance, Pareto optimal solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14708190 Optimization of Microwave-Assisted Extraction of Cherry Laurel (Prunus laurocerasus L.) Fruit Using Response Surface Methodology
Authors: Ivana T. Karabegović, Saša S. Stojičević, Dragan T. Veličković, Nada Č. Nikolić, Miodrag L. Lazić
Abstract:
Optimization of a microwave-assisted extraction of cherry laurel (Prunus laurocerasus) fruit using methanol was studied. The influence of process parameters (microwave power, plant material-to-solvent ratio and the extraction time) on the extraction efficiency were optimized by using response surface methodology. The predicted maximum yield of extractive substances (41.85 g/100 g fresh plant material) was obtained at microwave power of 600 W and plant material to solvent ratio of 0.2 g/cm3 after 26 minutes of extraction, while a mean value of 40.80±0.41 g/100 g fresh plant material was obtained from laboratory experiments. This proves applicability of the model in predicting optimal extraction conditions with minimal laborious and time consuming. The results indicated that all process parameters were effective on the extraction efficiency, while the most important factor was extraction time. In order to rationalize production the optimal economical condition which gave a large total extract yield with minimal energy and solvent consumption was found.
Keywords: Cherry laurel, Extraction, Multiple regression modeling, Microwave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22318189 Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms
Authors: Mohamed Hamdaoui, Jean-Baptiste Mouret, Stephane Doncieux, Pierre Sagaut
Abstract:
The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.
Keywords: Flight physics, evolutionary algorithm, optimization, Pareto surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16468188 Approximation Approach to Linear Filtering Problem with Correlated Noise
Authors: Hong Son Hoang, Remy Baraille
Abstract:
The (sub)-optimal soolution of linear filtering problem with correlated noises is considered. The special recursive form of the class of filters and criteria for selecting the best estimator are the essential elements of the design method. The properties of the proposed filter are studied. In particular, for Markovian observation noise, the approximate filter becomes an optimal Gevers-Kailath filter subject to a special choice of the parameter in the class of given linear recursive filters.Keywords: Linear dynamical system, filtering, minimum meansquare filter, correlated noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13768187 Unmanned Aerial Vehicle Landing Based on Ultra-Wideband Localization System and Optimal Strategy for Searching Optimal Landing Point
Authors: Meng Wu
Abstract:
Unmanned aerial vehicle (UAV) landing technology is a common task that is required to be fulfilled by fly robots. In this paper, the Crazyflie 2.0 is located by ultra-wideband (UWB) localization system that contains four UWB anchors. Another UWB anchor is introduced and installed on a stationary platform. One cost function is designed to find the minimum distance between Crazyflie 2.0 and the anchor installed on the stationary platform. The coordinates of the anchor are unknown in advance, and the goal of the cost function is to define the location of the anchor, which can be considered as an optimal landing point. When the cost function reaches the minimum value, the corresponding coordinates of the UWB anchor fixed on the stationary platform can be calculated and defined as the landing point. The simulation shows the effectiveness of the method in this paper.
Keywords: Unmanned aerial vehicle landing, ultra-wideband localization system, ultra-wideband anchor, cost function, stationary platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228186 Developing a Cybernetic Model of Interdepartmental Logistic Interactions in SME
Authors: Jonas Mayer, Kai-Frederic Seitz, Thorben Kuprat
Abstract:
In today’s competitive environment production’s logistic objectives such as ‘delivery reliability’ and ‘delivery time’ and distribution’s logistic objectives such as ‘service level’ and ‘delivery delay’ are attributed great importance. Especially for small and mid-sized enterprises (SME) attaining these objectives pose a key challenge. Within this context, one of the difficulties is that interactions between departments within the enterprise and their specific objectives are insufficiently taken into account and aligned. Interdepartmental independencies along with contradicting targets set within the different departments result in enterprises having sub-optimal logistic performance capability. This paper presents a research project which will systematically describe the interactions between departments and convert them into a quantifiable form.
Keywords: Department-specific actuating and control variables, interdepartmental interactions, cybernetic model, logistic objectives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15578185 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique
Authors: Antonio Vitale, Nicola Genito, Giovanni Cuciniello, Ferdinando Montemari
Abstract:
The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.
Keywords: Flapping Dynamics, Flight Dynamics, System Identification, Tilt-Rotor Modeling and Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12878184 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market
Authors: Cristian Păuna
Abstract:
After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.
Keywords: Algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13748183 Active Linear Quadratic Gaussian Secondary Suspension Control of Flexible Bodied Railway Vehicle
Authors: Kaushalendra K. Khadanga, Lee Hee Hyol
Abstract:
Passenger comfort has been paramount in the design of suspension systems of high speed cars. To analyze the effect of vibration on vehicle ride quality, a vertical model of a six degree of freedom railway passenger vehicle, with front and rear suspension, is built. It includes car body flexible effects and vertical rigid modes. A second order linear shaping filter is constructed to model Gaussian white noise into random rail excitation. The temporal correlation between the front and rear wheels is given by a second order Pade approximation. The complete track and the vehicle model are then designed. An active secondary suspension system based on a Linear Quadratic Gaussian (LQG) optimal control method is designed. The results show that the LQG control method reduces the vertical acceleration, pitching acceleration and vertical bending vibration of the car body as compared to the passive system.
Keywords: Active suspension, bending vibration, railway vehicle, vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7198182 Representation of Power System for Electromagnetic Transient Calculation
Authors: P. Sowa
Abstract:
The new idea of analyze of power system failure with use of artificial neural network is proposed. An analysis of the possibility of simulating phenomena accompanying system faults and restitution is described. It was indicated that the universal model for the simulation of phenomena in whole analyzed range does not exist. The main classic method of search of optimal structure and parameter identification are described shortly. The example with results of calculation is shown.Keywords: Dynamic equivalents, Network reduction, Neural networks, Power system analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18978181 A New Heuristic Approach for the Large-Scale Generalized Assignment Problem
Authors: S. Raja Balachandar, K.Kannan
Abstract:
This paper presents a heuristic approach to solve the Generalized Assignment Problem (GAP) which is NP-hard. It is worth mentioning that many researches used to develop algorithms for identifying the redundant constraints and variables in linear programming model. Some of the algorithms are presented using intercept matrix of the constraints to identify redundant constraints and variables prior to the start of the solution process. Here a new heuristic approach based on the dominance property of the intercept matrix to find optimal or near optimal solution of the GAP is proposed. In this heuristic, redundant variables of the GAP are identified by applying the dominance property of the intercept matrix repeatedly. This heuristic approach is tested for 90 benchmark problems of sizes upto 4000, taken from OR-library and the results are compared with optimum solutions. Computational complexity is proved to be O(mn2) of solving GAP using this approach. The performance of our heuristic is compared with the best state-ofthe- art heuristic algorithms with respect to both the quality of the solutions. The encouraging results especially for relatively large size test problems indicate that this heuristic approach can successfully be used for finding good solutions for highly constrained NP-hard problems.
Keywords: Combinatorial Optimization Problem, Generalized Assignment Problem, Intercept Matrix, Heuristic, Computational Complexity, NP-Hard Problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23498180 Parameter Estimation for Viewing Rank Distribution of Video-on-Demand
Authors: Hyoup-Sang Yoon
Abstract:
Video-on-demand (VOD) is designed by using content delivery networks (CDN) to minimize the overall operational cost and to maximize scalability. Estimation of the viewing pattern (i.e., the relationship between the number of viewings and the ranking of VOD contents) plays an important role in minimizing the total operational cost and maximizing the performance of the VOD systems. In this paper, we have analyzed a large body of commercial VOD viewing data and found that the viewing rank distribution fits well with the parabolic fractal distribution. The weighted linear model fitting function is used to estimate the parameters (coefficients) of the parabolic fractal distribution. This paper presents an analytical basis for designing an optimal hierarchical VOD contents distribution system in terms of its cost and performance.
Keywords: VOD, CDN, parabolic fractal distribution, viewing rank, weighted linear model fitting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17908179 A Linearization and Decomposition Based Approach to Minimize the Non-Productive Time in Transfer Lines
Authors: Hany Osman, M. F. Baki
Abstract:
We address the balancing problem of transfer lines in this paper to find the optimal line balancing that minimizes the nonproductive time. We focus on the tool change time and face orientation change time both of which influence the makespane. We consider machine capacity limitations and technological constraints associated with the manufacturing process of auto cylinder heads. The problem is represented by a mixed integer programming model that aims at distributing the design features to workstations and sequencing the machining processes at a minimum non-productive time. The proposed model is solved by an algorithm established using linearization schemes and Benders- decomposition approach. The experiments show the efficiency of the algorithm in reaching the exact solution of small and medium problem instances at reasonable time.Keywords: Transfer line balancing, Benders' decomposition, Linearization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17318178 Bidirectional Pendulum Vibration Absorbers with Homogeneous Variable Tangential Friction: Modelling and Design
Authors: Emiliano Matta
Abstract:
Passive resonant vibration absorbers are among the most widely used dynamic control systems in civil engineering. They typically consist in a single-degree-of-freedom mechanical appendage of the main structure, tuned to one structural target mode through frequency and damping optimization. One classical scheme is the pendulum absorber, whose mass is constrained to move along a curved trajectory and is damped by viscous dashpots. Even though the principle is well known, the search for improved arrangements is still under way. In recent years this investigation inspired a type of bidirectional pendulum absorber (BPA), consisting of a mass constrained to move along an optimal three-dimensional (3D) concave surface. For such a BPA, the surface principal curvatures are designed to ensure a bidirectional tuning of the absorber to both principal modes of the main structure, while damping is produced either by horizontal viscous dashpots or by vertical friction dashpots, connecting the BPA to the main structure. In this paper, a variant of BPA is proposed, where damping originates from the variable tangential friction force which develops between the pendulum mass and the 3D surface as a result of a spatially-varying friction coefficient pattern. Namely, a friction coefficient is proposed that varies along the pendulum surface in proportion to the modulus of the 3D surface gradient. With such an assumption, the dissipative model of the absorber can be proven to be nonlinear homogeneous in the small displacement domain. The resulting homogeneous BPA (HBPA) has a fundamental advantage over conventional friction-type absorbers, because its equivalent damping ratio results independent on the amplitude of oscillations, and therefore its optimal performance does not depend on the excitation level. On the other hand, the HBPA is more compact than viscously damped BPAs because it does not need the installation of dampers. This paper presents the analytical model of the HBPA and an optimal methodology for its design. Numerical simulations of single- and multi-story building structures under wind and earthquake loads are presented to compare the HBPA with classical viscously damped BPAs. It is shown that the HBPA is a promising alternative to existing BPA types and that homogeneous tangential friction is an effective means to realize systems provided with amplitude-independent damping.
Keywords: Amplitude-independent damping, Homogeneous friction, Pendulum nonlinear dynamics, Structural control, Vibration resonant absorbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7328177 Optimal Algorithm for Constructing the Delaunay Triangulation in Ed
Authors: V. Tereshchenko, D. Taran
Abstract:
In this paper we propose a new approach to constructing the Delaunay Triangulation and the optimum algorithm for the case of multidimensional spaces (d ≥ 2). Analysing the modern state, it is possible to draw a conclusion, that the ideas for the existing effective algorithms developed for the case of d ≥ 2 are not simple to generalize on a multidimensional case, without the loss of efficiency. We offer for the solving this problem an effective algorithm that satisfies all the given requirements. But theoretical complexity of the problem it is impossible to improve as the Worst - Case Optimality for algorithms of solving such a problem is proved.
Keywords: Delaunay triangulation, multidimensional space, Voronoi Diagram, optimal algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19818176 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery
Authors: Chun-Wei Lin, Yu-Lin Chen
Abstract:
As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.
Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19888175 An H1-Galerkin Mixed Method for the Coupled Burgers Equation
Authors: Xianbiao Jia, Hong Li, Yang Liu, Zhichao Fang
Abstract:
In this paper, an H1-Galerkin mixed finite element method is discussed for the coupled Burgers equations. The optimal error estimates of the semi-discrete and fully discrete schemes of the coupled Burgers equation are derived.
Keywords: The coupled Burgers equation, H1-Galerkin mixed finite element method, Backward Euler's method, Optimal error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15508174 Fluid Flow and Heat Transfer Structures of Oscillating Pipe Flows
Authors: Yan Su, Jane H. Davidson, F. A. Kulacki
Abstract:
The RANS method with Saffman-s turbulence model was employed to solve the time-dependent turbulent Navier-Stokes and energy equations for oscillating pipe flows. The method of partial sums of the Fourier series is used to analyze the harmonic velocity and temperature results. The complete structures of the oscillating pipe flows and the averaged Nusselt numbers on the tube wall are provided by numerical simulation over wide ranges of ReA and ReR. Present numerical code is validated by comparing the laminar flow results to analytic solutions and turbulence flow results to published experimental data at lower and higher Reynolds numbers respectively. The effects of ReA and ReR on the velocity, temperature and Nusselt number distributions have been di scussed. The enhancement of the heat transfer due to oscillating flows has also been presented. By the way of analyzing the overall Nusselt number over wide ranges of the Reynolds number Re and Keulegan- Carpenter number KC, the optimal ratio of the tube diameter over the oscillation amplitude is obtained based on the existence of a nearly constant optimal KC number. The potential application of the present results in sea water cooling has also been discussed.Keywords: Keulegan-Carpenter number, Nusselt number, Oscillating pipe flows, Reynolds number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24758173 A Generalised Relational Data Model
Authors: Georgia Garani
Abstract:
A generalised relational data model is formalised for the representation of data with nested structure of arbitrary depth. A recursive algebra for the proposed model is presented. All the operations are formally defined. The proposed model is proved to be a superset of the conventional relational model (CRM). The functionality and validity of the model is shown by a prototype implementation that has been undertaken in the functional programming language Miranda.Keywords: nested relations, recursive algebra, recursive nested operations, relational data model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15598172 An Agent-Based Scheduling Framework for Flexible Manufacturing Systems
Authors: Iman Badr
Abstract:
The concept of flexible manufacturing is highly appealing in gaining a competitive edge in the market by quickly adapting to the changing customer needs. Scheduling jobs on flexible manufacturing systems (FMSs) is a challenging task of managing the available flexibility on the shop floor to react to the dynamics of the environment in real-time. In this paper, an agent-oriented scheduling framework that can be integrated with a real or a simulated FMS is proposed. This framework works in stochastic environments with a dynamic model of job arrival. It supports a hierarchical cooperative scheduling that builds on the available flexibility of the shop floor. Testing the framework on a model of a real FMS showed the capability of the proposed approach to overcome the drawbacks of the conventional approaches and maintain a near optimal solution despite the dynamics of the operational environment.Keywords: Autonomous agents, Flexible manufacturing systems(FMS), Manufacturing scheduling, Real-time systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18208171 Approximate Solution of Nonlinear Fredholm Integral Equations of the First Kind via Converting to Optimization Problems
Authors: Akbar H. Borzabadi, Omid S. Fard
Abstract:
In this paper we introduce an approach via optimization methods to find approximate solutions for nonlinear Fredholm integral equations of the first kind. To this purpose, we consider two stages of approximation. First we convert the integral equation to a moment problem and then we modify the new problem to two classes of optimization problems, non-constraint optimization problems and optimal control problems. Finally numerical examples is proposed.Keywords: Fredholm integral equation, Optimization method, Optimal control, Nonlinear and linear programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17748170 Network-Constrained AC Unit Commitment under Uncertainty Using a Bender’s Decomposition Approach
Authors: B. Janani, S. Thiruvenkadam
Abstract:
In this work, the system evaluates the impact of considering a stochastic approach on the day ahead basis Unit Commitment. Comparisons between stochastic and deterministic Unit Commitment solutions are provided. The Unit Commitment model consists in the minimization of the total operation costs considering unit’s technical constraints like ramping rates, minimum up and down time. Load shedding and wind power spilling is acceptable, but at inflated operational costs. The evaluation process consists in the calculation of the optimal unit commitment and in verifying the fulfillment of the considered constraints. For the calculation of the optimal unit commitment, an algorithm based on the Benders Decomposition, namely on the Dual Dynamic Programming, was developed. Two approaches were considered on the construction of stochastic solutions. Data related to wind power outputs from two different operational days are considered on the analysis. Stochastic and deterministic solutions are compared based on the actual measured wind power output at the operational day. Through a technique capability of finding representative wind power scenarios and its probabilities, the system can analyze a more detailed process about the expected final operational cost.
Keywords: Benders’ decomposition, network constrained AC unit commitment, stochastic programming, wind power uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13128169 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines
Authors: Anis Gharbi
Abstract:
This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.
Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20028168 Retaining Structural System Active Vibration Control
Authors: Ming-Hui Lee, Shou-Jen Hsu
Abstract:
This study presents an active vibration control technique to reduce the earthquake responses of a retained structural system. The proposed technique is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. The AIEM can estimate an unknown system input online. The LQG controller offers optimal control forces to suppress wall-structural system vibration. The numerical results show robust performance in the active vibration control technique.Keywords: Active vibration control, AIEM, LQG, Optimal control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18698167 Monte Carlo Simulation of Copolymer Heterogeneity in Atom Transfer Radical Copolymerization of Styrene and N-Butyl Acrylate
Authors: Mohammad Najafi, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi, Vahid Haddadi-Asl
Abstract:
A high-performance Monte Carlo simulation, which simultaneously takes diffusion-controlled and chain-length-dependent bimolecular termination reactions into account, is developed to simulate atom transfer radical copolymerization of styrene and nbutyl acrylate. As expected, increasing initial feed fraction of styrene raises the fraction of styrene-styrene dyads (fAA) and reduces that of n-butyl acrylate dyads (fBB). The trend of variation in randomness parameter (fAB) during the copolymerization also varies significantly. Also, there is a drift in copolymer heterogeneity and the highest drift occurs in the initial feeds containing lower percentages of styrene, i.e. 20% and 5%.Keywords: Atom Transfer Radical Copolymerization, MonteCarlo Simulation, Copolymer Heterogeneity, Styrene n-ButylAcrylate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16018166 A TIPSO-SVM Expert System for Efficient Classification of TSTO Surrogates
Authors: Ali Sarosh, Dong Yun-Feng, Muhammad Umer
Abstract:
Fully reusable spaceplanes do not exist as yet. This implies that design-qualification for optimized highly-integrated forebody-inlet configuration of booster-stage vehicle cannot be based on archival data of other spaceplanes. Therefore, this paper proposes a novel TIPSO-SVM expert system methodology. A non-trivial problem related to optimization and classification of hypersonic forebody-inlet configuration in conjunction with mass-model of the two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic machine learning methodology is based on two-step improved particle swarm optimizer (TIPSO) algorithm and two-step support vector machine (SVM) data classification method. The efficacy of method is tested by first evolving an optimal configuration for hypersonic compression system using TIPSO algorithm; thereafter, classifying the results using two-step SVM method. In the first step extensive but non-classified mass-model training data for multiple optimized configurations is segregated and pre-classified for learning of SVM algorithm. In second step the TIPSO optimized mass-model data is classified using the SVM classification. Results showed remarkable improvement in configuration and mass-model along with sizing parameters.
Keywords: TIPSO-SVM expert system, TIPSO algorithm, two-step SVM method, aerothermodynamics, mass-modeling, TSTO vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23188165 Meta Model Based EA for Complex Optimization
Authors: Maumita Bhattacharya
Abstract:
Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiencyKeywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20678164 Stability and Kinetic Analysis during Vermicomposting of Sewage Sludge
Authors: Ashish Kumar Nayak, Dhamodharan K., Ajay S. Kalamdhad
Abstract:
The present study is aimed at alteration of sewage sludge into stable compost product using vermicomposting of sewage sludge mixed with cattle manure and saw dust in five different proportions based on C/N ratios (C/N 15 (R1), 20 (R2), 25 (R3) and 30 (R4); and control (R5)) by employing an epigeic earthworm Eisenia fetida. Higher reductions in C/N ratio, CO2 evolution and OUR were observed in R4 demonstrated the compost stability. In addition, R4 proved to be best combination for the growth of the earthworms. In order to observe the optimal degradation, kinetics for degradation of organic matter in vermicomposting were quantitatively evaluated. An approach model was developed by assuming that composting process is carried out in a homogeneous way and the kinetics for decomposition reaction is represented by a Monod-type equation. The results exhibit comparable variations in the kinetic constants Km and K3 under varying parameters during vermicomposting process. Results suggested that higher R2 value in R4, enhanced suitability towards Lineweaver-Burke plot. R4 yields higher degradability coefficient (K) reveals that the occurrence of optimal nutrient balance, which not only enhanced the affinity of enzymes towards substrate but also improved its degradation process. Therefore, it can be proved that R4 provided to be the best feed combination for vermicomposting process as compared to other reactors.
Keywords: Vermicomposting, Eisenia fetida, Sewage sludge, C/N ratio, Stability, Enzyme kinetics concept.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23508163 Comparative Analysis of Various Multiuser Detection Techniques in SDMA-OFDM System Over the Correlated MIMO Channel Model for IEEE 802.16n
Authors: Susmita Das, Kala Praveen Bagadi
Abstract:
SDMA (Space-Division Multiple Access) is a MIMO (Multiple-Input and Multiple-Output) based wireless communication network architecture which has the potential to significantly increase the spectral efficiency and the system performance. The maximum likelihood (ML) detection provides the optimal performance, but its complexity increases exponentially with the constellation size of modulation and number of users. The QR decomposition (QRD) MUD can be a substitute to ML detection due its low complexity and near optimal performance. The minimum mean-squared-error (MMSE) multiuser detection (MUD) minimises the mean square error (MSE), which may not give guarantee that the BER of the system is also minimum. But the minimum bit error rate (MBER) MUD performs better than the classic MMSE MUD in term of minimum probability of error by directly minimising the BER cost function. Also the MBER MUD is able to support more users than the number of receiving antennas, whereas the rest of MUDs fail in this scenario. In this paper the performance of various MUD techniques is verified for the correlated MIMO channel models based on IEEE 802.16n standard.Keywords: Multiple input multiple output, multiuser detection, orthogonal frequency division multiplexing, space division multiple access, Bit error rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19258162 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System
Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari
Abstract:
This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901