Search results for: Moving Particle Semi-implicit (MPS) method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8825

Search results for: Moving Particle Semi-implicit (MPS) method

8435 Object Detection based Weighted-Center Surround Difference

Authors: Seung-Hun Kim, Kye-Hoon Jeon, Byoung-Doo Kang, I1-Kyun Jung

Abstract:

Intelligent traffic surveillance technology is an issue in the field of traffic data analysis. Therefore, we need the technology to detect moving objects in real-time while there are variations in background and natural light. In this paper, we proposed a Weighted-Center Surround Difference method for object detection in outdoor environments. The proposed system detects objects using the saliency map that is obtained by analyzing the weight of each layers of Gaussian pyramid. In order to validate the effectiveness of our system, we implemented the proposed method using a digital signal processor, TMS320DM6437. Experimental results show that blurred noisy around objects was effectively eliminated and the object detection accuracy is improved.

Keywords: Saliency Map, Center Surround Difference, Object Detection, Surveillance System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
8434 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693
8433 Dependence of Equilibrium, Kinetics and Thermodynamics of Zn (II) Ions Sorption from Water on Particle Size of Natural Hydroxyapatite Extracted from Bone Ash

Authors: Reza Bazargan-Lari, Mohammad Ebrahim Bahrololoom, Afshin Nemati

Abstract:

Heavy metals have bad effects on environment and soils and it can uptake by natural HAP .natural Hap is an inexpensive material that uptake large amounts of various heavy metals like Zn (II) .Natural HAP (N-HAP), extracted from bovine cortical bone ash, is a good choice for substitution of commercial HAP. Several experiments were done to investigate the sorption capacity of Zn (II) to N-HAP in various particles sizes, temperatures, initial concentrations, pH and reaction times. In this study, the sorption of Zinc ions from a Zn solution onto HAP particles with sizes of 1537.6 nm and 47.6 nm at three initial pH values of 4.50, 6.00 and 7.50 was studied. The results showed that better performance was obtained through a 47.6 nm particle size and higher pH values. The experimental data were analyzed using Langmuir, Freundlich, and Arrhenius equations for equilibrium, kinetic and thermodynamic studies. The analysis showed a maximum adsorption capacity of NHAP as being 1.562 mmol/g at a pH of 7.5 and small particle size. Kinetically, the prepared N-HAP is a feasible sorbent that retains Zn (II) ions through a favorable and spontaneous sorption process.

Keywords: Natural Hydroxyapatite, Heavy metal ions, Adsorption, Zn removal, kinetic model, bone ash

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
8432 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent

Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yang Yue, Tianqi Yue

Abstract:

In low permeability reservoirs, the reservoir pore throat is small and the micro heterogeneity is prominent. Conventional microsphere profile control agents generally have good injectability but poor plugging effect; however, profile control agents with good plugging effect generally have poor injectability, which makes it difficult for agent to realize deep profile control of reservoir. To solve this problem, styrene and acrylamide were used as monomers in the laboratory. Emulsion polymerization was used to prepare the Controllable Self-Aggregating Colloidal Particle (CSA), which was rich in amide group. The CSA microsphere dispersion solution with a particle diameter smaller than the pore throat diameter was injected into the reservoir to ensure that the profile control agent had good inject ability. After dispersing the CSA microsphere to the deep part of the reservoir, the CSA microspheres dispersed in static for a certain period of time will self-aggregate into large-sized particle clusters to achieve plugging of hypertonic channels. The CSA microsphere has the characteristics of low expansion and avoids shear fracture in the process of migration. It can be observed by transmission electron microscope that CSA microspheres still maintain regular and uniform spherical and core-shell heterogeneous structure after aging at 100 ºC for 35 days, and CSA microspheres have good thermal stability. The results of bottle test showed that with the increase of cation concentration, the aggregation time of CSA microspheres gradually shortened, and the influence of divalent cations was greater than that of monovalent ions. Physical simulation experiments show that CSA microspheres have good injectability, and the aggregated CSA particle clusters can produce effective plugging and migrate to the deep part of the reservoir for profile control.

Keywords: Heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463
8431 Definition and Implementation of a Simulation Model for the Physical Layer and the Radio Channel in Dedicated Short Range Communication Systems

Authors: Mounir Frikha, Michael Meincke, Semia Barouni

Abstract:

This paper proposes a vehicle-to-vehicle propagation model implemented with SDL. To estimate the channel characteristics for Inter-Vehicle communication, we first define a predicted propagation pathloss between the moving vehicles under three typical scenarios. A Ray-tracing method is used for the simple gamma model performance.

Keywords: Inter-vehicle communication (IVC), propagationmodel, road traffic, road vicinity, pathloss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
8430 Comparative Review of Modulation Techniques for Harmonic Minimization in Multilevel Inverter

Authors: M. Suresh Kumar, K. Ramani

Abstract:

This paper proposed the comparison made between Multi-Carrier Pulse Width Modulation, Sinusoidal Pulse Width Modulation and Selective Harmonic Elimination Pulse Width Modulation technique for minimization of Total Harmonic Distortion in Cascaded H-Bridge Multi-Level Inverter. In Multicarrier Pulse Width Modulation method by using Alternate Position of Disposition scheme for switching pulse generation to Multi-Level Inverter. Another carrier based approach; Sinusoidal Pulse Width Modulation method is also implemented to define the switching pulse generation system in the multi-level inverter. In Selective Harmonic Elimination method using Genetic Algorithm and Particle Swarm Optimization algorithm for define the required switching angles to eliminate low order harmonics from the inverter output voltage waveform and reduce the total harmonic distortion value. So, the results validate that the Selective Harmonic Elimination Pulse Width Modulation method does capably eliminate a great number of precise harmonics and minimize the Total Harmonic Distortion value in output voltage waveform in compared with Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method. In this paper, comparison of simulation results shows that the Selective Harmonic Elimination method can attain optimal harmonic minimization solution better than Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method.

Keywords: Multi-level inverter, Selective Harmonic Elimination Pulse Width Modulation, Multi-Carrier Pulse Width Modulation, Total Harmonic Distortion, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962
8429 Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network

Authors: Mei Shan Ngan, Chee Wei Tan

Abstract:

Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.

Keywords: Photovoltaic (PV), Partial Shading, Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3745
8428 A Robust Diverged Localization and Recognition of License Registration Characters

Authors: M. Sankari, R. Bremananth, C.Meena

Abstract:

Localization and Recognition of License registration characters from the moving vehicle is a computationally complex task in the field of machine vision and is of substantial interest because of its diverse applications such as cross border security, law enforcement and various other intelligent transportation applications. Previous research used the plate specific details such as aspect ratio, character style, color or dimensions of the plate in the complex task of plate localization. In this paper, license registration character is localized by Enhanced Weight based density map (EWBDM) method, which is independent of such constraints. In connection with our previous method, this paper proposes a method that relaxes constraints in lighting conditions, different fonts of character occurred in the plate and plates with hand-drawn characters in various aspect quotients. The robustness of this method is well suited for applications where the appearance of plates seems to be varied widely. Experimental results show that this approach is suited for recognizing license plates in different external environments. 

Keywords: Character segmentation, Connectivity checking, Edge detection, Image analysis, license plate localization, license number recognition, Quality frame selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
8427 Intuitive Robot Control Using Surface EMG and Accelerometer Signals

Authors: Kiwon Rhee, Kyung-Jin You, Hyun-Chool Shin

Abstract:

This paper proposes a method of remotely controlling robots with arm gestures using surface electromyography (EMG) and accelerometer sensors attached to the operator’s wrists. The EMG and accelerometer sensors receive signals from the arm gestures of the operator and infer the corresponding movements to execute the command to control the robot. The movements of the robot include moving forward and backward and turning left and right. The accuracy is over 99% and movements can be controlled in real time.

Keywords: EMG, accelerometer, K-nn, entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
8426 Characterization of HD-V2 Gafchromic Film for Measurement of Spatial Dose Distribution from Alpha Particle of 5.5 MeV

Authors: A. Aydarous, M. El Ghazaly

Abstract:

The purpose of this study was to investigate the response of the newly released Gafchromic HD-V2 film for alpha particle of 5.5 MeV. Gafchromic HD-V2 was exposed to alpha particles of energy 5 MeV from 241Am for different durations. Then the films were scanned with a flatbed scanner. The dose response curve up to 2200 Gy has been achieved. The film’s reproducibility and sensitivity were evaluated. The results obtained show that the net optical density increases almost exponentially with the increase in the exposure time, and it becomes saturated after prolonged exposure times. The red channel shows the highest sensitivity, with a value of 4 x 10-3 Gy-1 at netOD of 0.4. The inter-film reproducibility was measured and the relative uncertainty found was 1.7 %, 2.1 % and 2.3 % for grey, red and green channels, respectively.

Keywords: Alpha dosimetry, 241Am, Gafchromic film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3133
8425 Transmission Lines Loading Enhancement Using ADPSO Approach

Authors: M. Mahdavi, H. Monsef, A. Bagheri

Abstract:

Discrete particle swarm optimization (DPSO) is a powerful stochastic evolutionary algorithm that is used to solve the large-scale, discrete and nonlinear optimization problems. However, it has been observed that standard DPSO algorithm has premature convergence when solving a complex optimization problem like transmission expansion planning (TEP). To resolve this problem an advanced discrete particle swarm optimization (ADPSO) is proposed in this paper. The simulation result shows that optimization of lines loading in transmission expansion planning with ADPSO is better than DPSO from precision view point.

Keywords: ADPSO, TEP problem, Lines loading optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
8424 Effect of Cr and Fe Doping on the Structural and Optical Properties of ZnO Nanostructures

Authors: Prakash Chand, Anurag Gaur, Ashavani Kumar

Abstract:

In the present study, we have synthesized Cr and Fe doped zinc oxide (ZnO) nanostructures (Zn1-δCraFebO; where δ = a + b = 20%, a = 5, 6, 8 & 10% and b = 15, 14, 12 & 10%) via sol-gel method at different doping concentrations. The synthesized samples were characterized for structural properties by X-ray diffractrometer and field emission scanning electron microscope and the optical properties were carried out through photoluminescence and UVvisible spectroscopy. The particle size calculated through field emission scanning electron microscope varies from 41 to 96 nm for the samples synthesized at different doping concentrations. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 3.27 to 3.02 eV as the doping concentration of Cr increases and Fe decreases.

Keywords: Nanostructures, Optical Properties, Sol-gel method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4689
8423 Application of Computational Intelligence Techniques for Economic Load Dispatch

Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil

Abstract:

This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.

Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
8422 Thermophoresis Particle Precipitate on Heated Surfaces

Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak

Abstract:

This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.

Keywords: Thermophoresis, porous medium, variable surface heat flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
8421 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: Magnetic nanoparticles, MNPs, Differential magnetic susceptibility, DMS, Magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
8420 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems

Authors: Tomoaki Hashimoto

Abstract:

Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.

Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
8419 On Discretization of Second-order Derivatives in Smoothed Particle Hydrodynamics

Authors: R. Fatehi, M.A. Fayazbakhsh, M.T. Manzari

Abstract:

Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e. "double summation", "second-order kernel derivation", and "difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this paper, that regardless of the type of kernel function used and the size of smoothing radius, the double summation discretization form leads to non-physical oscillations which persist in the solution. Also, results show that when a second-order kernel derivative is used, a high-order kernel function shall be employed in such a way that the distance of inflection point from origin in the kernel function be less than the nearest particle distance. Otherwise, solutions may exhibit oscillations near discontinuities unlike the "difference scheme" which unconditionally produces monotone results.

Keywords: Heat conduction, Meshfree methods, Smoothed ParticleHydrodynamics (SPH), Second-order derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3078
8418 Preparation of ATO Conductive Particles with Narrow Size Distribution

Authors: Yueying Wu, Fengzhu Lv, Yihe Zhang, Zixian Xu

Abstract:

Antimosy-doped tin oxide (ATO) particles were prepared via chemical coprecipitation and reverse emulsion. The size and size distribution of ATO particles were obviously decreased via reverse microemulsion method. At the relatively high yield the ATO particles were nearly spherical in shape, meanwhile the crystalline structure and excellent conductivity were reserved, which could satisfy the requirement as composite fillers, such as dielectric filler of polyimide film.

Keywords: ATO particle, Conductivity, Distribution, Reverse emulsion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
8417 Particle Swarm Optimization Based Interconnected Hydro-Thermal AGC System Considering GRC and TCPS

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper represents performance of particle swarm optimisation (PSO) algorithm based integral (I) controller and proportional-integral controller (PI) for interconnected hydro-thermal automatic generation control (AGC) with generation rate constraint (GRC) and Thyristor controlled phase shifter (TCPS) in series with tie line. The control strategy of TCPS provides active control of system frequency. Conventional objective function integral square error (ISE) and another objective function considering square of derivative of change in frequencies of both areas and change in tie line power are considered. The aim of designing the objective function is to suppress oscillation in frequency deviations and change in tie line power oscillation. The controller parameters are searched by PSO algorithm by minimising the objective functions. The dynamic performance of the controllers I and PI, for both the objective functions, are compared with conventionally optimized I controller.

Keywords: Automatic generation control (AGC), Generation rate constraint (GRC), Thyristor control phase shifter (TCPS), Particle swarm optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
8416 Optical Flow Technique for Supersonic Jet Measurements

Authors: H. D. Lim, Jie Wu, T. H. New, Shengxian Shi

Abstract:

This paper outlines the development of an experimental technique in quantifying supersonic jet flows, in an attempt to avoid seeding particle problems frequently associated with particle-image velocimetry (PIV) techniques at high Mach numbers. Based on optical flow algorithms, the idea behind the technique involves using high speed cameras to capture Schlieren images of the supersonic jet shear layers, before they are subjected to an adapted optical flow algorithm based on the Horn-Schnuck method to determine the associated flow fields. The proposed method is capable of offering full-field unsteady flow information with potentially higher accuracy and resolution than existing point-measurements or PIV techniques. Preliminary study via numerical simulations of a circular de Laval jet nozzle successfully reveals flow and shock structures typically associated with supersonic jet flows, which serve as useful data for subsequent validation of the optical flow based experimental results. For experimental technique, a Z-type Schlieren setup is proposed with supersonic jet operated in cold mode, stagnation pressure of 4 bar and exit Mach of 1.5. High-speed singleframe or double-frame cameras are used to capture successive Schlieren images. As implementation of optical flow technique to supersonic flows remains rare, the current focus revolves around methodology validation through synthetic images. The results of validation test offers valuable insight into how the optical flow algorithm can be further improved to improve robustness and accuracy. Despite these challenges however, this supersonic flow measurement technique may potentially offer a simpler way to identify and quantify the fine spatial structures within the shock shear layer.

Keywords: Schlieren, optical flow, supersonic jets, shock shear layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
8415 Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate

Authors: I. Grigoraviciute-Puroniene, K. Tsuru, E. Garskaite, Z. Stankeviciute, A. Beganskiene, K. Ishikawa, A. Kareiva

Abstract:

Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.

Keywords: β-TCP, bone regeneration, wet chemical processing, polymeric precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
8414 Impact of Ship Traffic to PM2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area

Authors: Daniele Contini, Antonio Donateo, Andrea Gambaro, Athanasios Argiriou, Dimitrios Melas, Daniela Cesari, Anastasia Poupkou, Athanasios Karagiannidis, Apostolos Tsakis, Eva Merico, Rita Cesari, Adelaide Dinoi

Abstract:

Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at international level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work, an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.

Keywords: Ship emissions, PM2.5, particle number concentrations, impact of shipping to atmospheric aerosol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
8413 Solid State Fermentation of Cassava Peel with Trichoderma viride (ATCC 36316) for Protein Enrichment

Authors: Olufunke O. Ezekiel, Ogugua C. Aworh

Abstract:

Solid state fermentation of cassava peel with emphasis on protein enrichment using Trichoderma viride was evaluated. The effect of five variables: moisture content, pH, particle size (p), nitrogen source and incubation temperature; on the true protein and total sugars of cassava peel was investigated. The optimum fermentation period was established to be 8 days. Total sugars were 5-fold higher at pH 6 relative to pH 4 and 7-fold higher when cassava peels were fermented at 30oC relative to 25oC as well as using ammonium sulfate as the nitrogen source relative to urea or a combination of both. Total sugars ranged between 123.21mg/g at 50% initial moisture content to 374mg/g at 60% and from 190.59mg/g with particle size range of 2.00>p>1.41mm to 310.10mg/g with 4.00>p>3.35mm.True protein ranged from 229.70 mg/g at pH 4 to 284.05 mg/g at pH 6; from 200.87 mg/g with urea as nitrogen source and to 254.50mg/g with ammonium sulfate; from 213.82mg/g at 50% initial moisture content to 254.50mg/g at 60% moisture content, from 205.75mg/g in cassava peel with 5.6>p> 4.75mm to 268.30 in cassava peel with particle size 4.00>p>3.35mm, from 207.57mg/g at 25oC to 254.50mg/g at 30oC Cassava peel with particle size 4.00>p>3.35 mm and initial moisture content of 60% at pH 6.0, 30oC incubation temperature with ammonium sulfate (10g N / kg substrate) was most suitable for protein enrichment with Trichoderma viride. Crude protein increased from 4.21 % in unfermented cassava peel samples to 10.43 % in fermented samples.

Keywords: Cassava peel, Solid state fermentation, Trichoderma viride, Total sugars, True protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3330
8412 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration

Authors: C. Iraklis, G. Evmiridis, A. Iraklis

Abstract:

Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.

Keywords: Congestion, distribution networks, loss reduction, particle swarm optimization, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
8411 Chemical Characterization of Submicron Aerosol in Kanpur Region: a Source Apportionment Study

Authors: A. Chakraborty, T. Gupta

Abstract:

Several studies have shown the association between ambient particulate matter (PM) and adverse health effects and climate change, thus highlighting the need to limit the anthropogenic sources of PM. PM Exposure is commonly monitored as mass concentration of PM10 (particle aerodynamic diameter < 10μm) or PM2.5 (particle aerodynamic diameter < 2.5μm), although increasing toxicity with decreasing aerodynamic diameter has been reported due to increased surface area and enhanced chemical reactivity with other species. Additionally, the light scattering properties of PM increases with decreasing size. Hence, it is important to study the chemical characterization of finer fraction of the particulate matter and to identify their sources so that they can be controlled appropriately to a large extent at the sources before reaching to the receptors.

Keywords: PM1, PCA, source apportionment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
8410 Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor

Authors: C. Gunavathi, K. Premalatha

Abstract:

Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.

Keywords: Microarray, T-Statistics, Signal-to-Noise Ratio, FStatistics, Particle Swarm Optimization, Shuffled Frog Leaping, Naïve Bayes Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
8409 A Comparative Analysis of Artificial Neural Network and Autoregressive Integrated Moving Average Model on Modeling and Forecasting Exchange Rate

Authors: Mogari I. Rapoo, Diteboho Xaba

Abstract:

This paper examines the forecasting performance of Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) models with the published exchange rate obtained from South African Reserve Bank (SARB). ARIMA is one of the popular linear models in time series forecasting for the past decades. ARIMA and ANN models are often compared and literature revealed mixed results in terms of forecasting performance. The study used the MSE and MAE to measure the forecasting performance of the models. The empirical results obtained reveal the superiority of ARIMA model over ANN model. The findings further resolve and clarify the contradiction reported in literature over the superiority of ARIMA and ANN models.

Keywords: ARIMA, artificial neural networks models, error metrics, exchange rates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
8408 A Video-based Algorithm for Moving Objects Detection at Signalized Intersection

Authors: Juan Li, Chunfu Shao, Chunjiao Dong, Dan Zhao, Yinhong Liu

Abstract:

Mixed-traffic (e.g., pedestrians, bicycles, and vehicles) data at an intersection is one of the essential factors for intersection design and traffic control. However, some data such as pedestrian volume cannot be directly collected by common detectors (e.g. inductive loop, sonar and microwave sensors). In this paper, a video based detection algorithm is proposed for mixed-traffic data collection at intersections using surveillance cameras. The algorithm is derived from Gaussian Mixture Model (GMM), and uses a mergence time adjustment scheme to improve the traditional algorithm. Real-world video data were selected to test the algorithm. The results show that the proposed algorithm has the faster processing speed and more accuracy than the traditional algorithm. This indicates that the improved algorithm can be applied to detect mixed-traffic at signalized intersection, even when conflicts occur.

Keywords: detection, intersection, mixed traffic, moving objects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
8407 A Study on Algorithm Fusion for Recognition and Tracking of Moving Robot

Authors: Jungho Choi, Youngwan Cho

Abstract:

This paper presents an algorithm for the recognition and tracking of moving objects, 1/10 scale model car is used to verify performance of the algorithm. Presented algorithm for the recognition and tracking of moving objects in the paper is as follows. SURF algorithm is merged with Lucas-Kanade algorithm. SURF algorithm has strong performance on contrast, size, rotation changes and it recognizes objects but it is slow due to many computational complexities. Processing speed of Lucas-Kanade algorithm is fast but the recognition of objects is impossible. Its optical flow compares the previous and current frames so that can track the movement of a pixel. The fusion algorithm is created in order to solve problems which occurred using the Kalman Filter to estimate the position and the accumulated error compensation algorithm was implemented. Kalman filter is used to create presented algorithm to complement problems that is occurred when fusion two algorithms. Kalman filter is used to estimate next location, compensate for the accumulated error. The resolution of the camera (Vision Sensor) is fixed to be 640x480. To verify the performance of the fusion algorithm, test is compared to SURF algorithm under three situations, driving straight, curve, and recognizing cars behind the obstacles. Situation similar to the actual is possible using a model vehicle. Proposed fusion algorithm showed superior performance and accuracy than the existing object recognition and tracking algorithms. We will improve the performance of the algorithm, so that you can experiment with the images of the actual road environment.

Keywords: SURF, Optical Flow Lucas-Kanade, Kalman Filter, object recognition, object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283
8406 An Erosion-based Modeling of Abrasive Waterjet Turning

Authors: I. Zohourkari, M. Zohoor

Abstract:

In this paper, an erosion-based model for abrasive waterjet (AWJ) turning process is presented. By using modified Hashish erosion model, the volume of material removed by impacting of abrasive particles to surface of the rotating cylindrical specimen is estimated and radius reduction at each rotation is calculated. Different to previous works, the proposed model considers the continuous change in local impact angle due to change in workpiece diameter, axial traverse rate of the jet, the abrasive particle roundness and density. The accuracy of the proposed model is examined by experimental tests under various traverse rates. The final diameters estimated by the proposed model are in good accordance with experiments.

Keywords: Abrasive, Erosion, impact, Particle, Waterjet, Turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412