Search results for: Markov Decision Process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6495

Search results for: Markov Decision Process

6105 On the Symbol Based Decision Feedback Equalizer

Authors: Mohammed Nafie

Abstract:

Decision Feedback equalizers (DFEs) usually outperform linear equalizers for channels with intersymbol interference. However, the DFE performance is highly dependent on the availability of reliable past decisions. Hence, in coded systems, where reliable decisions are only available after decoding the full block, the performance of the DFE will be affected. A symbol based DFE is a DFE that only uses the decision after the block is decoded. In this paper we derive the optimal settings of both the feedforward and feedback taps of the symbol based equalizer. We present a novel symbol based DFE filterbank, and derive its taps optimal settings. We also show that it outperforms the classic DFE in terms of complexity and/or performance.

Keywords: Coding, DFE, Equalization, Exponential Channelmodels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
6104 A Multi-Criteria Evaluation Incorporating Linguistic Computing for Service Innovation Performance

Authors: Wen-Pai Wang

Abstract:

The growing influence of service industries has prompted greater attention being paid to service operations management. However, service managers often have difficulty articulating the veritable effects of their service innovation. Especially, the performance evaluation process of service innovation problems generally involves uncertain and imprecise data. This paper presents a 2-tuple fuzzy linguistic computing approach to dealing with heterogeneous information and information loss problems while the processes of subjective evaluation integration. The proposed method based on group decision-making scenario to assist business managers in measuring performance of service innovation manipulates the heterogeneity integration processes and avoids the information loss effectively.

Keywords: Group decision-making, Heterogeneity, Linguisticcomputing, Multi-criteria, Service innovation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
6103 Knowledge and Attitude among Women and Men in Decision Making on Pap Smear Screening in Kelantan, Malaysia

Authors: Siti Waringin Oon, Rashidah Shuib, Siti Hawa Ali, Nik Hazlina Nik Hussain, Juwita Shaaban, Harmy Mohd Yusoff

Abstract:

This paper explores the knowledge and attitude of women and men in decision making on pap smear screening. This qualitative study recruited 52 respondents with 44 women and 8 men, using the purposive sampling with snowballing technique through indepth interviews. This study demonstrates several key findings: Female respondents have better knowledge compared to male. Most of the women perceived that pap smear screening is beneficial and important, but to proceed with the test is still doubtful. Male respondents were supportive in terms of sending their spouses to the health facilities or give more freedom to their wives to choose and making decision on their own health due to prominent reason that women know best on their own health. It is expected that the results from this study will provide useful guideline for healthcare providers to prepare any action/intervention to provide an extensive education to improve people-s knowledge and attitude towards pap smear.

Keywords: Attitude, decision making, knowledge, pap smearscreening..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
6102 Hybrid Machine Learning Approach for Text Categorization

Authors: Nerijus Remeikis, Ignas Skucas, Vida Melninkaite

Abstract:

Text categorization - the assignment of natural language documents to one or more predefined categories based on their semantic content - is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization with decision tree classifier for improving text categorization accuracy. An adaptation of the algorithm is proposed in which a decision tree from root node until a final leave is used for initialization of multilayer neural network. The experimental evaluation demonstrates this approach provides better classification accuracy with Reuters-21578 corpus, one of the standard benchmarks for text categorization tasks. We present results comparing the accuracy of this approach with multilayer neural network initialized with traditional random method and decision tree classifiers.

Keywords: Text categorization, decision trees, neural networks, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
6101 Assessing the Adaptive Re-Use Potential of Buildings as Part of the Disaster Management Process

Authors: A. Esra İdemen, Sinan M. Şener, Emrah Acar

Abstract:

The technological paradigm of the disaster management field, especially in the case of governmental intervention strategies, is generally based on rapid and flexible accommodation solutions. From various technical solution patterns used to address the immediate housing needs of disaster victims, the adaptive re-use of existing buildings can be considered to be both low-cost and practical. However, there is a scarcity of analytical methods to screen, select and adapt buildings to help decision makers in cases of emergency. Following an extensive literature review, this paper aims to highlight key points and problem areas associated with the adaptive re-use of buildings within the disaster management context. In other disciplines such as real estate management, the adaptive re-use potential (ARP) of existing buildings is typically based on the prioritization of a set of technical and non-technical criteria which are then weighted to arrive at an economically viable investment decision. After a disaster, however, the assessment of the ARP of buildings requires consideration of different/additional layers of analysis which stem from general disaster management principles and the peculiarities of different types of disasters, as well as of their victims. In this paper, a discussion of the development of an adaptive re-use potential (ARP) assessment model is presented. It is thought that governmental and non-governmental decision makers who are required to take quick decisions to accommodate displaced masses following disasters are likely to benefit from the implementation of such a model.

Keywords: Adaptive re-use of buildings, assessment model, disaster management, temporary housing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
6100 Determination of Cu and Mo Potential Targets in the Khatunabad Based on Analytical Hierarchy Process, West of Mianeh, Iran

Authors: R. Noori, F. Feizi, M.R. Jafari

Abstract:

Khatunabad area is situated geologically in Urmieh- Dokhtar magmatic belt in NW of Iran. In this research, studied area has been investigated in order to recognize the potential copper and molybdenum-bearing target areas. The survey layers include the lithologic units, alteration, geochemical result, tectonics and copper and molybdenum occurrence. As an accurate decision can have a considerable effect on exploration plans, so in this efforts have been made to make use of new combination method. For this purpose, the analytical hierarchy process was used and revealed highly potential copper and molybdenum mineralization areas. Based on achieved results, geological perspective in north of studied area is appropriate for advance stage, especially for subsurface exploration in future.

Keywords: Analytical hierarchy process, Potential targets, Khatunabad, Iran

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
6099 Application of Intuitionistic Fuzzy Cross Entropy Measure in Decision Making for Medical Diagnosis

Authors: Shikha Maheshwari, Amit Srivastava

Abstract:

In medical investigations, uncertainty is a major challenging problem in making decision for doctors/experts to identify the diseases with a common set of symptoms and also has been extensively increasing in medical diagnosis problems. The theory of cross entropy for intuitionistic fuzzy sets (IFS) is an effective approach in coping uncertainty in decision making for medical diagnosis problem. The main focus of this paper is to propose a new intuitionistic fuzzy cross entropy measure (IFCEM), which aid in reducing the uncertainty and doctors/experts will take their decision easily in context of patient’s disease. It is shown that the proposed measure has some elegant properties, which demonstrates its potency. Further, it is also exemplified in detail the efficiency and utility of the proposed measure by using a real life case study of diagnosis the disease in medical science.

Keywords: Intuitionistic fuzzy cross entropy (IFCEM), intuitionistic fuzzy set (IFS), medical diagnosis, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
6098 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer

Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner

Abstract:

Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.

Keywords: Calculation of risk factor, fuzzy logic, fuzzy programming for ship, safe navigation of ships.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
6097 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: Data mining, knowledge discovery in databases, prediction models, student success.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
6096 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
6095 Learning Monte Carlo Data for Circuit Path Length

Authors: Namal A. Senanayake, A. Beg, Withana C. Prasad

Abstract:

This paper analyzes the patterns of the Monte Carlo data for a large number of variables and minterms, in order to characterize the circuit path length behavior. We propose models that are determined by training process of shortest path length derived from a wide range of binary decision diagram (BDD) simulations. The creation of the model was done use of feed forward neural network (NN) modeling methodology. Experimental results for ISCAS benchmark circuits show an RMS error of 0.102 for the shortest path length complexity estimation predicted by the NN model (NNM). Use of such a model can help reduce the time complexity of very large scale integrated (VLSI) circuitries and related computer-aided design (CAD) tools that use BDDs.

Keywords: Monte Carlo data, Binary decision diagrams, Neural network modeling, Shortest path length estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
6094 On the Fast Convergence of DD-LMS DFE Using a Good Strategy Initialization

Authors: Y.Ben Jemaa, M.Jaidane

Abstract:

In wireless communication system, a Decision Feedback Equalizer (DFE) to cancel the intersymbol interference (ISI) is required. In this paper, an exact convergence analysis of the (DFE) adapted by the Least Mean Square (LMS) algorithm during the training phase is derived by taking into account the finite alphabet context of data transmission. This allows us to determine the shortest training sequence that allows to reach a given Mean Square Error (MSE). With the intention of avoiding the problem of ill-convergence, the paper proposes an initialization strategy for the blind decision directed (DD) algorithm. This then yields a semi-blind DFE with high speed and good convergence.

Keywords: Adaptive Decision Feedback Equalizer, PerformanceAnalysis, Finite Alphabet Case, Ill-Convergence, Convergence speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
6093 International Tourists’ Travel Motivation by Push-Pull Factors and the Decision Making for Selecting Thailand as Destination Choice

Authors: Siripen Yiamjanya, Kevin Wongleedee

Abstract:

This research paper aims to identify travel motivation by push and pull factors that affected decision making of international tourists in selecting Thailand as their destination choice. A total of 200 international tourists who traveled to Thailand during January and February, 2014 were used as the sample in this study. A questionnaire was employed as a tool in collecting the data, conducted in Bangkok. The list consisted of 30 attributes representing both psychological factors as “push- based factors” and destination factors as “pull-based factors”. Mean and standard deviation were used in order to find the top ten travel motives that were important determinants in the respondents’ decision making process to select Thailand as their destination choice. The finding revealed the top ten travel motivations influencing international tourists to select Thailand as their destination choice included [i] getting experience in foreign land; [ii] Thai food; [iii] learning new culture; [iv] relaxing in foreign land; [v] wanting to learn new things; [vi] being interested in Thai culture, and traditional markets; [vii] escaping from same daily life; [viii] enjoying activities; [ix] adventure; and [x] good weather. Classification of push- based and pull- based motives suggested that getting experience in foreign land was the most important push motive for international tourists to travel, while Thai food portrayed its highest significance as pull motive. Discussion and suggestions were also made for tourism industry of Thailand.

Keywords: Decision Making, Destination Choice, International Tourist, Pull Factor, Push Factor, Thailand, Travel Motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16395
6092 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach

Authors: D. Tedesco, G. Feletti, P. Trucco

Abstract:

The present study aims to develop a Decision Support System (DSS) to support operational decisions in Emergency Medical Service (EMS) systems regarding the assignment of medical emergency requests to Emergency Departments (ED). This problem is called “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of a first phase of review of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a mission. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the travelling time and to free-up the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs also considering the expected time performance in the subsequent phases of the process, such as the case mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to compare different hospital selection policies. The model was implemented with the AnyLogic software and finally validated on a realistic case. The hospital selection policy that returned the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, based on a retrospective estimation of the TTP, and a dynamic approach, focused on a predictive estimation of the TTP which is determined with a constantly updated Winters forecasting model. Findings reveal that considering the minimization of TTP is the best hospital selection policy. It allows to significantly reducing service throughput times in the ED with a negligible increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms on TTP estimation, than a retrospective approach. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.

Keywords: Emergency medical services, hospital selection, discrete event simulation, forecast model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 241
6091 Development of Decision Support System for House Evaluation and Purchasing

Authors: Chia-Yu Hsu, Julaimin Goh, Pei-Chann Chang

Abstract:

Home is important for Chinese people. Because the information regarding the house attributes and surrounding environments is incomplete in most real estate agency, most house buyers are difficult to consider the overall factors effectively and only can search candidates by sorting-based approach. This study aims to develop a decision support system for housing purchasing, in which surrounding facilities of each house are quantified. Then, all considered house factors and customer preferences are incorporated into Simple Multi-Attribute Ranking Technique (SMART) to support the housing evaluation. To evaluate the validity of proposed approach, an empirical study was conducted from a real estate agency. Based on the customer requirement and preferences, the proposed approach can identify better candidate house with consider the overall house attributes and surrounding facilities.

Keywords: decision support system, real estate, decision analysis, housing evaluation, SMART

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
6090 Civic E-Participation in Central and Eastern Europe: A Comparative Analysis

Authors: Izabela Kapsa

Abstract:

Civic participation is an important aspect of democracy. The contemporary model of democracy is based on citizens' participation in political decision-making (deliberative democracy, participatory democracy). This participation takes many forms of activities like display of slogans and symbols, voting, social consultations, political demonstrations, membership in political parties or organizing civil disobedience. The countries of Central and Eastern Europe after 1989 are characterized by great social, economic and political diversity. Civil society is also part of the process of democratization. Civil society, funded by the rule of law, civil rights, such as freedom of speech and association and private ownership, was to play a central role in the development of liberal democracy. Among the many interpretations of concepts, defining the concept of contemporary democracy, one can assume that the terms civil society and democracy, although different in meaning, nowadays overlap. In the post-communist countries, the process of shaping and maturing societies took place in the context of a struggle with a state governed by undemocratic power. State fraud or repudiation of the institution is a representative state, which in the past was the only way to manifest and defend its identity, but after the breakthrough became one of the main obstacles to the development of civil society. In Central and Eastern Europe, there are many obstacles to the development of civil society, for example, the elimination of economic poverty, the implementation of educational campaigns, consciousness-related obstacles, the formation of social capital and the deficit of social activity. Obviously, civil society does not only entail an electoral turnout but a broader participation in the decision-making process, which is impossible without direct and participative democratic institutions. This article considers such broad forms of civic participation and their characteristics in Central and Eastern Europe. The paper is attempts to analyze the functioning of electronic forms of civic participation in Central and Eastern European states. This is not accompanied by a referendum or a referendum initiative, and other forms of political participation, such as public consultations, participative budgets, or e-Government. However, this paper will broadly present electronic administration tools, the application of which results from both legal regulations and increasingly common practice in state and city management. In the comparative analysis, the experiences of post-communist bloc countries will be summed up to indicate the challenges and possible goals for further development of this form of citizen participation in the political process. The author argues that for to function efficiently and effectively, states need to involve their citizens in the political decision-making process, especially with the use of electronic tools.

Keywords: Central and Eastern Europe, e-participation, e-government, post-communism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
6089 The Ethio-Eritrea Claims Commission on Use of Force: Issue of Self-Defense or Violation of Sovereignty

Authors: Isaias Teklia Berhe

Abstract:

A decision that deals with international disputes, be it arbitral or judicial, has to properly reflect objectivity and coherence with existing rules of international law. This paper shows the decision of the Ethio-Eritrea Claims Commission on the jus ad bellum case is bereft of objectivity and coherence, which contributed a disservice to international law on many aspects. The Commission’s decision that holds Eritrea in contravention to Art 2(4) of the UN Charter based on Ethiopia’s contention is flawed. It fails to consider: the illegitimacy of an actual authority established over contested territory through hostile acts, the proper determination of effectivites under international law, the sanctity of colonially determined boundaries, Ethiopia’s prior firm political recognition and undergirds to respect colonial boundary, and Ethio-Eritrea Border Commission’s decision. The paper will also argue that the Commission confused Eritrea’s right of self-defense with the rule against the non-use of force to settle territorial disputes; wherefore its decision sanitizes or sterilizes unlawful change of territory resulted through unlawful use of force to the effect of advantaging aggressions. The paper likewise argues that the decision is so sacrilegious that it disregards the ossified legal finality of colonial boundaries. Moreover, its approach toward armed attack does not reflect the peculiarity of the jus ad bellum case rather it brings about definitional uncertainties and sustains the perception that the law on self-defense is unsettled.

Keywords: Armed attack, self-defense, territorial integrity, use of force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
6088 Estimating Shortest Circuit Path Length Complexity

Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake

Abstract:

When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.

Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
6087 A Study of Priority Evaluation and Resource Allocation for Revitalization of Cultural Heritages in the Urban Development

Authors: Wann-Ming Wey, Yi-Chih Huang

Abstract:

Proper maintenance and preservation of significant cultural heritages or historic buildings is necessary. It can not only enhance environmental benefits and a sense of community, but also preserve a city's history and people’s memory. It allows the next generation to be able to get a glimpse of our past, and achieve the goal of sustainable preserved cultural assets. However, the management of maintenance work has not been appropriate for many designated heritages or historic buildings so far. The planning and implementation of the reuse has yet to have a breakthrough specification. It leads the heritages to a mere formality of being “reserved”, instead of the real meaning of “conservation”. For the restoration and preservation of cultural heritages study issues, it is very important due to the consideration of historical significance, symbolism, and economic benefits effects. However, the decision makers such as the officials from public sector they often encounter which heritage should be prioritized to be restored first under the available limited budgets. Only very few techniques are available today to determine the appropriately restoration priorities for the diverse historical heritages, perhaps because of a lack of systematized decision-making aids been proposed before. In the past, the discussions of management and maintenance towards cultural assets were limited to the selection of reuse alternatives instead of the allocation of resources. In view of this, this research will adopt some integrated research methods to solve the existing problems that decision-makers might encounter when allocating resources in the management and maintenance of heritages and historic buildings.

The purpose of this study is to develop a sustainable decision making model for local governments to resolve these problems. We propose an alternative decision support model to prioritize restoration needs within the limited budgets. The model is constructed based on fuzzy Delphi, fuzzy analysis network process (FANP) and goal programming (GP) methods. In order to avoid misallocate resources; this research proposes a precise procedure that can take multi-stakeholders views, limited costs and resources into consideration. Also, the combination of many factors and goals has been taken into account to find the highest priority and feasible solution results. To illustrate the approach we propose in this research, seven cultural heritages in Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.

Keywords: Cultural Heritage, Historic Buildings, Priority Evaluation, Multi-Criteria Decision Making, Goal Programming, Fuzzy Analytic Network Process, Resource Allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
6086 Logistical Optimization of Nuclear Waste Flows during Decommissioning

Authors: G. Dottavio, M. F. Andrade, F. Renard, V. Cheutet, A.-L. L. S. Vercraene, P. Hoang, S. Briet, R. Dachicourt, Y. Baizet

Abstract:

An important number of technological equipment and high-skilled workers over long periods of time have to be mobilized during nuclear decommissioning processes. The related operations generate complex flows of waste and high inventory levels, associated to information flows of heterogeneous types. Taking into account that more than 10 decommissioning operations are on-going in France and about 50 are expected toward 2025: A big challenge is addressed today. The management of decommissioning and dismantling of nuclear installations represents an important part of the nuclear-based energy lifecycle, since it has an environmental impact as well as an important influence on the electricity cost and therefore the price for end-users. Bringing new technologies and new solutions into decommissioning methodologies is thus mandatory to improve the quality, cost and delay efficiency of these operations. The purpose of our project is to improve decommissioning management efficiency by developing a decision-support framework dedicated to plan nuclear facility decommissioning operations and to optimize waste evacuation by means of a logistic approach. The target is to create an easy-to-handle tool capable of i) predicting waste flows and proposing the best decommissioning logistics scenario and ii) managing information during all the steps of the process and following the progress: planning, resources, delays, authorizations, saturation zones, waste volume, etc. In this article we present our results from waste nuclear flows simulation during decommissioning process, including discrete-event simulation supported by FLEXSIM 3-D software. This approach was successfully tested and our works confirms its ability to improve this type of industrial process by identifying the critical points of the chain and optimizing it by identifying improvement actions. This type of simulation, executed before the start of the process operations on the basis of a first conception, allow ‘what-if’ process evaluation and help to ensure quality of the process in an uncertain context. The simulation of nuclear waste flows before evacuation from the site will help reducing the cost and duration of the decommissioning process by optimizing the planning and the use of resources, transitional storage and expensive radioactive waste containers. Additional benefits are expected for the governance system of the waste evacuation since it will enable a shared responsibility of the waste flows.

Keywords: Nuclear decommissioning, logistical optimization, decision-support framework, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
6085 Scheduled Maintenance and Downtime Cost in Aircraft Maintenance Management

Authors: Remzi Saltoglu, Nazmia Humaira, Gokhan Inalhan

Abstract:

During aircraft maintenance scheduling, operator calculates the budget of the maintenance. Usually, this calculation includes only the costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. However, in some of those, downtime cost is neglected claiming that grounding is a natural fact of maintenance; therefore, it is not considered as part of the analytical decision-making process. Based on the normalized data, we introduce downtime cost with its monetary value and add its seasonal character. We envision that the rest of the model, which works together with the downtime cost, could be checked with the real life cases, through the review of MRO cost and airline spending in the particular and scheduled maintenance events.

Keywords: Aircraft maintenance, downtime, downtime cost, maintenance cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4427
6084 Decision Support System “Crop-9-DSS“ for Identified Crops

Authors: Ganesan V.

Abstract:

Application of Expert System in the area of agriculture would take the form of Integrated Crop Management decision aids and would encompass water management, fertilizer management, crop protection systems and identification of implements. In order to remain competitive, the modern farmer often relies on agricultural specialists and advisors to provide information for decision-making. An expert system normally composed of a knowledge base (information, heuristics, etc.), inference engine (analyzes knowledge base), and end user interface (accepting inputs, generating outputs). Software named 'CROP-9-DSS' incorporating all modern features like, graphics, photos, video clippings etc. has been developed. This package will aid as a decision support system for identification of pest and diseases with control measures, fertilizer recommendation system, water management system and identification of farm implements for leading crops of Kerala (India) namely Coconut, Rice, Cashew, Pepper, Banana, four vegetables like Amaranthus, Bhindi, Brinjal and Cucurbits. 'CROP-9-DSS' will act as an expert system to agricultural officers, scientists in the field of agriculture and extension workers for decision-making and help them in suggesting suitable recommendations.

Keywords: Diagnostic, inference engine, knowledge base and user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063
6083 Vague Multiple Criteria Decision Making Analysis Method for Fighter Aircraft Selection

Authors: C. Ardil

Abstract:

Fighter aircraft selection is one of the most critical strategies for defense multiple criteria decision-making analysis to increase the decisive power of air defense and its superior power in the defense strategy. Vague set theory is an adequate approach for modeling vagueness, uncertainty, and imprecision in decision-making problems. This study integrates vague set theory and the technique for order of preference by similarity to ideal solution (TOPSIS) to support fighter aircraft selection. The proposed method is applied in the selection of fighter aircraft for the Air Force. In the proposed approach, the ratings of alternatives and the importance weights of criteria for fighter aircraft selection are represented by the vague set theory. Finally, an illustrative example for fighter aircraft selection is given to demonstrate the applicability and effectiveness of the proposed approach. The fighter aircraft candidates were selected under six criteria including costability, payloadability, maneuverability, speedability, stealthility, and survivability. Analysis results show that the best fighter aircraft is selected with the highest closeness coefficient value. The proposed method can also be applied to solve other multiple criteria decision analysis problems. 

Keywords: fighter aircraft selection, vague set theory, fuzzy set theory, neutrosophic set theory, multiple criteria decision making analysis, MCDMA, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
6082 Uncertainty Multiple Criteria Decision Making Analysis for Stealth Combat Aircraft Selection

Authors: C. Ardil

Abstract:

Fuzzy set theory and its extensions (intuitionistic fuzzy sets, picture fuzzy sets, and neutrosophic sets) have been widely used to address imprecision and uncertainty in complex decision-making. However, they may struggle with inherent indeterminacy and inconsistency in real-world situations. This study introduces uncertainty sets as a promising alternative, offering a structured framework for incorporating both types of uncertainty into decision-making processes.This work explores the theoretical foundations and applications of uncertainty sets. A novel decision-making algorithm based on uncertainty set-based proximity measures is developed and demonstrated through a practical application: selecting the most suitable stealth combat aircraft.

The results highlight the effectiveness of uncertainty sets in ranking alternatives under uncertainty. Uncertainty sets offer several advantages, including structured uncertainty representation, robust ranking mechanisms, and enhanced decision-making capabilities due to their ability to account for ambiguity.Future research directions are also outlined, including comparative analysis with existing MCDM methods under uncertainty, sensitivity analysis to assess the robustness of rankings,and broader application to various MCDM problems with diverse complexities. By exploring these avenues, uncertainty sets can be further established as a valuable tool for navigating uncertainty in complex decision-making scenarios.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty proximity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200
6081 Decision Tree Modeling in Emergency Logistics Planning

Authors: Yousef Abu Nahleh, Arun Kumar, Fugen Daver, Reham Al-Hindawi

Abstract:

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Keywords: Decision tree modeling, Forecasting, Humanitarian relief, emergency supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310
6080 Augmented Reality for Maintenance Operator for Problem Inspections

Authors: Chong-Yang Qiao, Teeravarunyou Sakol

Abstract:

Current production-oriented factories need maintenance operators to work in shifts monitoring and inspecting complex systems and different equipment in the situation of mechanical breakdown. Augmented reality (AR) is an emerging technology that embeds data into the environment for situation awareness to help maintenance operators make decisions and solve problems. An application was designed to identify the problem of steam generators and inspection centrifugal pumps. The objective of this research was to find the best medium of AR and type of problem solving strategies among analogy, focal object method and mean-ends analysis. Two scenarios of inspecting leakage were temperature and vibration. Two experiments were used in usability evaluation and future innovation, which included decision-making process and problem-solving strategy. This study found that maintenance operators prefer build-in magnifier to zoom the components (55.6%), 3D exploded view to track the problem parts (50%), and line chart to find the alter data or information (61.1%). There is a significant difference in the use of analogy (44.4%), focal objects (38.9%) and mean-ends strategy (16.7%). The marked differences between maintainers and operators are of the application of a problem solving strategy. However, future work should explore multimedia information retrieval which supports maintenance operators for decision-making.

Keywords: Augmented reality, situation awareness, decision-making, problem-solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
6079 Optimal Measures in Production Developing an Universal Decision Supporter for Evaluating Measures in a Production

Authors: Michael Grigutsch, Marco Kennemann, Peter Nyhuis

Abstract:

Due to the recovering global economy, enterprises are increasingly focusing on logistics. Investing in logistic measures for a production generates a large potential for achieving a good starting point within a competitive field. Unlike during the global economic crisis, enterprises are now challenged with investing available capital to maximize profits. In order to be able to create an informed and quantifiably comprehensible basis for a decision, enterprises need an adequate model for logistically and monetarily evaluating measures in production. The Collaborate Research Centre 489 (SFB 489) at the Institute for Production Systems (IFA) developed a Logistic Information System which provides support in making decisions and is designed specifically for the forging industry. The aim of a project that has been applied for is to now transfer this process in order to develop a universal approach to logistically and monetarily evaluate measures in production.

Keywords: Measures in Production, Logistic Operating Curves, Transfer Functions, Production Logistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
6078 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
6077 Portfolio Management for Construction Company during Covid-19 Using AHP Technique

Authors: Sareh Rajabi, Salwa Bheiry

Abstract:

In general, Covid-19 created many financial and non-financial damages to the economy and community. Level and severity of covid-19 as pandemic case varies over the region and due to different types of the projects. Covid-19 virus emerged as one of the most imperative risk management factors word-wide recently. Therefore, as part of portfolio management assessment, it is essential to evaluate severity of such risk on the project and program in portfolio management level to avoid any risky portfolio. Covid-19 appeared very effectively in South America, part of Europe and Middle East. Such pandemic infection affected the whole universe, due to lock down, interruption in supply chain management, health and safety requirements, transportations and commercial impacts. Therefore, this research proposes Analytical Hierarchy Process (AHP) to analyze and assess such pandemic case like Covid-19 and its impacts on the construction projects. The AHP technique uses four sub-criteria: Health and safety, commercial risk, completion risk and contractual risk to evaluate the project and program. The result will provide the decision makers with information which project has higher or lower risk in case of Covid-19 and pandemic scenario. Therefore, the decision makers can have most feasible solution based on effective weighted criteria for project selection within their portfolio to match with the organization’s strategies.

Keywords: Portfolio management, risk management, COVID-19, analytical hierarchy process technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
6076 Integrating Decision Tree and Spatial Cluster Analysis for Landslide Susceptibility Zonation

Authors: Chien-Min Chu, Bor-Wen Tsai, Kang-Tsung Chang

Abstract:

Landslide susceptibility map delineates the potential zones for landslide occurrence. Previous works have applied multivariate methods and neural networks for mapping landslide susceptibility. This study proposed a new approach to integrate decision tree model and spatial cluster statistic for assessing landslide susceptibility spatially. A total of 2057 landslide cells were digitized for developing the landslide decision tree model. The relationships of landslides and instability factors were explicitly represented by using tree graphs in the model. The local Getis-Ord statistics were used to cluster cells with high landslide probability. The analytic result from the local Getis-Ord statistics was classed to create a map of landslide susceptibility zones. The map was validated using new landslide data with 482 cells. Results of validation show an accuracy rate of 86.1% in predicting new landslide occurrence. This indicates that the proposed approach is useful for improving landslide susceptibility mapping.

Keywords: Landslide susceptibility Zonation, Decision treemodel, Spatial cluster, Local Getis-Ord statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945