Search results for: Data Vortex
7162 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
Authors: Karima Qayumi, Alex Norta
Abstract:
The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.
Keywords: Agent-oriented modeling, business Intelligence management, distributed data mining, multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13747161 Abnormal IP Packets on 3G Mobile Data Networks
Authors: Joo-Hyung Oh, Dongwan Kang, JunHyung Cho, Chaetae Im
Abstract:
As the mobile Internet has become widespread in recent years, communication based on mobile networks is increasing. As a result, security threats have been posed with regard to the abnormal traffic of mobile networks, but mobile security has been handled with focus on threats posed by mobile malicious codes, and researches on security threats to the mobile network itself have not attracted much attention. In mobile networks, the IP address of the data packet is a very important factor for billing purposes. If one mobile terminal use an incorrect IP address that either does not exist or could be assigned to another mobile terminal, billing policy will cause problems. We monitor and analyze 3G mobile data networks traffics for a period of time and finds some abnormal IP packets. In this paper, we analyze the reason for abnormal IP packets on 3G Mobile Data Networks. And we also propose an algorithm based on IP address table that contains addresses currently in use within the mobile data network to detect abnormal IP packets.
Keywords: WCDMA, 3G, Abnormal IP address, Mobile Data Network Attack
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23377160 Ontology for a Voice Transcription of OpenStreetMap Data: The Case of Space Apprehension by Visually Impaired Persons
Authors: Said Boularouk, Didier Josselin, Eitan Altman
Abstract:
In this paper, we present a vocal ontology of OpenStreetMap data for the apprehension of space by visually impaired people. Indeed, the platform based on produsage gives a freedom to data producers to choose the descriptors of geocoded locations. Unfortunately, this freedom, called also folksonomy leads to complicate subsequent searches of data. We try to solve this issue in a simple but usable method to extract data from OSM databases in order to send them to visually impaired people using Text To Speech technology. We focus on how to help people suffering from visual disability to plan their itinerary, to comprehend a map by querying computer and getting information about surrounding environment in a mono-modal human-computer dialogue.Keywords: Ontology, OpenStreetMap, visually impaired people, TTS, taxonomy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8887159 A Data Mining Model for Detecting Financial and Operational Risk Indicators of SMEs
Authors: Ali Serhan Koyuncugil, Nermin Ozgulbas
Abstract:
In this paper, a data mining model to SMEs for detecting financial and operational risk indicators by data mining is presenting. The identification of the risk factors by clarifying the relationship between the variables defines the discovery of knowledge from the financial and operational variables. Automatic and estimation oriented information discovery process coincides the definition of data mining. During the formation of model; an easy to understand, easy to interpret and easy to apply utilitarian model that is far from the requirement of theoretical background is targeted by the discovery of the implicit relationships between the data and the identification of effect level of every factor. In addition, this paper is based on a project which was funded by The Scientific and Technological Research Council of Turkey (TUBITAK).
Keywords: Risk Management, Financial Risk, Operational Risk, Financial Early Warning System, Data Mining, CHAID Decision Tree Algorithm, SMEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31237158 Satellite Data Classification Accuracy Assessment Based from Reference Dataset
Authors: Mohd Hasmadi Ismail, Kamaruzaman Jusoff
Abstract:
In order to develop forest management strategies in tropical forest in Malaysia, surveying the forest resources and monitoring the forest area affected by logging activities is essential. There are tremendous effort has been done in classification of land cover related to forest resource management in this country as it is a priority in all aspects of forest mapping using remote sensing and related technology such as GIS. In fact classification process is a compulsory step in any remote sensing research. Therefore, the main objective of this paper is to assess classification accuracy of classified forest map on Landsat TM data from difference number of reference data (200 and 388 reference data). This comparison was made through observation (200 reference data), and interpretation and observation approaches (388 reference data). Five land cover classes namely primary forest, logged over forest, water bodies, bare land and agricultural crop/mixed horticultural can be identified by the differences in spectral wavelength. Result showed that an overall accuracy from 200 reference data was 83.5 % (kappa value 0.7502459; kappa variance 0.002871), which was considered acceptable or good for optical data. However, when 200 reference data was increased to 388 in the confusion matrix, the accuracy slightly improved from 83.5% to 89.17%, with Kappa statistic increased from 0.7502459 to 0.8026135, respectively. The accuracy in this classification suggested that this strategy for the selection of training area, interpretation approaches and number of reference data used were importance to perform better classification result.Keywords: Image Classification, Reference Data, Accuracy Assessment, Kappa Statistic, Forest Land Cover
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31417157 Analysis of Diverse Cluster Ensemble Techniques
Authors: S. Sarumathi, N. Shanthi, P. Ranjetha
Abstract:
Data mining is the procedure of determining interesting patterns from the huge amount of data. With the intention of accessing the data faster the most supporting processes needed is clustering. Clustering is the process of identifying similarity between data according to the individuality present in the data and grouping associated data objects into clusters. Cluster ensemble is the technique to combine various runs of different clustering algorithms to obtain a general partition of the original dataset, aiming for consolidation of outcomes from a collection of individual clustering outcomes. The performances of clustering ensembles are mainly affecting by two principal factors such as diversity and quality. This paper presents the overview about the different cluster ensemble algorithm along with their methods used in cluster ensemble to improve the diversity and quality in the several cluster ensemble related papers and shows the comparative analysis of different cluster ensemble also summarize various cluster ensemble methods. Henceforth this clear analysis will be very useful for the world of clustering experts and also helps in deciding the most appropriate one to determine the problem in hand.Keywords: Cluster Ensemble, Consensus Function, CSPA, Diversity, HGPA, MCLA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18417156 A Distributed Approach to Extract High Utility Itemsets from XML Data
Authors: S. Kannimuthu, K. Premalatha
Abstract:
This paper investigates a new data mining capability that entails mining of High Utility Itemsets (HUI) in a distributed environment. Existing research in data mining deals with only presence or absence of an items and do not consider the semantic measures like weight or cost of the items. Thus, HUI mining algorithm has evolved. HUI mining is the one kind of utility mining concept, aims to identify itemsets whose utility satisfies a given threshold. Although, the approach of mining HUIs in a distributed environment and mining of the same from XML data have not explored yet. In this work, a novel approach is proposed to mine HUIs from the XML based data in a distributed environment. This work utilizes Service Oriented Computing (SOC) paradigm which provides Knowledge as a Service (KaaS). The interesting patterns are provided via the web services with the help of knowledge server to answer the queries of the consumers. The performance of the approach is evaluated on various databases using execution time and memory consumption.
Keywords: Data mining, Knowledge as a Service, service oriented computing, utility mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24547155 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.
Keywords: Activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28717154 Performance and Availability Analyses of PV Generation Systems in Taiwan
Authors: H. S. Huang, J. C. Jao, K. L. Yen, C. T. Tsai
Abstract:
The purpose of this article applies the monthly final energy yield and failure data of 202 PV systems installed in Taiwan to analyze the PV operational performance and system availability. This data is collected by Industrial Technology Research Institute through manual records. Bad data detection and failure data estimation approaches are proposed to guarantee the quality of the received information. The performance ratio value and system availability are then calculated and compared with those of other countries. It is indicated that the average performance ratio of Taiwan-s PV systems is 0.74 and the availability is 95.7%. These results are similar with those of Germany, Switzerland, Italy and Japan.Keywords: availability, performance ratio, PV system, Taiwan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44397153 Stealthy Network Transfer of Data
Authors: N. Veerasamy, C. J. Cheyne
Abstract:
Users of computer systems may often require the private transfer of messages/communications between parties across a network. Information warfare and the protection and dominance of information in the military context is a prime example of an application area in which the confidentiality of data needs to be maintained. The safe transportation of critical data is therefore often a vital requirement for many private communications. However, unwanted interception/sniffing of communications is also a possibility. An elementary stealthy transfer scheme is therefore proposed by the authors. This scheme makes use of encoding, splitting of a message and the use of a hashing algorithm to verify the correctness of the reconstructed message. For this proof-of-concept purpose, the authors have experimented with the random sending of encoded parts of a message and the construction thereof to demonstrate how data can stealthily be transferred across a network so as to prevent the obvious retrieval of data.Keywords: Construction, encode, interception, stealthy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11967152 Survey on Arabic Sentiment Analysis in Twitter
Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb
Abstract:
Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.
Keywords: Big Data, Social Networks, Sentiment Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43487151 Mean Shift-based Preprocessing Methodology for Improved 3D Buildings Reconstruction
Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour
Abstract:
In this work, we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20067150 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential
Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag
Abstract:
Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.
Keywords: Climate, reanalysis, renewable energy, solar radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9067149 Explorative Data Mining of Constructivist Learning Experiences and Activities with Multiple Dimensions
Authors: Patrick Wessa, Bart Baesens
Abstract:
This paper discusses the use of explorative data mining tools that allow the educator to explore new relationships between reported learning experiences and actual activities, even if there are multiple dimensions with a large number of measured items. The underlying technology is based on the so-called Compendium Platform for Reproducible Computing (http://www.freestatistics.org) which was built on top the computational R Framework (http://www.wessa.net).Keywords: Reproducible computing, data mining, explorative data analysis, compendium technology, computer assisted education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12537148 Analysis of Textual Data Based On Multiple 2-Class Classification Models
Authors: Shigeaki Sakurai, Ryohei Orihara
Abstract:
This paper proposes a new method for analyzing textual data. The method deals with items of textual data, where each item is described based on various viewpoints. The method acquires 2- class classification models of the viewpoints by applying an inductive learning method to items with multiple viewpoints. The method infers whether the viewpoints are assigned to the new items or not by using the models. The method extracts expressions from the new items classified into the viewpoints and extracts characteristic expressions corresponding to the viewpoints by comparing the frequency of expressions among the viewpoints. This paper also applies the method to questionnaire data given by guests at a hotel and verifies its effect through numerical experiments.
Keywords: Text mining, Multiple viewpoints, Differential analysis, Questionnaire data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12907147 Using Automated Database Reverse Engineering for Database Integration
Authors: M. R. Abbasifard, M. Rahgozar, A. Bayati, P. Pournemati
Abstract:
One important problem in today organizations is the existence of non-integrated information systems, inconsistency and lack of suitable correlations between legacy and modern systems. One main solution is to transfer the local databases into a global one. In this regards we need to extract the data structures from the legacy systems and integrate them with the new technology systems. In legacy systems, huge amounts of a data are stored in legacy databases. They require particular attention since they need more efforts to be normalized, reformatted and moved to the modern database environments. Designing the new integrated (global) database architecture and applying the reverse engineering requires data normalization. This paper proposes the use of database reverse engineering in order to integrate legacy and modern databases in organizations. The suggested approach consists of methods and techniques for generating data transformation rules needed for the data structure normalization.Keywords: Reverse Engineering, Database Integration, System Integration, Data Structure Normalization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18527146 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement
Authors: Wang Lin, Li Zhiqiang
Abstract:
The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.Keywords: Behavior pattern, cooperative learning, data analyze, K-means clustering algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8147145 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow
Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun
Abstract:
With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.
Keywords: Cloud storage security, sharing storage, attributes, Hash algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10377144 Multimethod Approach to Research in Interlanguage Pragmatics
Authors: Saad Al-Gahtani, Ghassan H Al Shatter
Abstract:
Argument over the use of particular method in interlanguage pragmatics has increased recently. Researchers argued the advantages and disadvantages of each method either natural or elicited. Findings of different studies indicated that the use of one method may not provide enough data to answer all its questions. The current study investigated the validity of using multimethod approach in interlanguage pragmatics to understand the development of requests in Arabic as a second language (Arabic L2). To this end, the study adopted two methods belong to two types of data sources: the institutional discourse (natural data), and the role play (elicited data). Participants were 117 learners of Arabic L2 at the university level, representing four levels (beginners, low-intermediate, highintermediate, and advanced). Results showed that using two or more methods in interlanguage pragmatics affect the size and nature of data.
Keywords: Arabic L2, Development of requests, Interlanguage Pragmatics, Multimethod approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18307143 Design of Integration Security System using XML Security
Authors: Juhan Kim, Soohyung Kim, Kiyoung Moon
Abstract:
In this paper, we design an integration security system that provides authentication service, authorization service, and management service of security data and a unified interface for the management service. The interface is originated from XKMS protocol and is used to manage security data such as XACML policies, SAML assertions and other authentication security data including public keys. The system includes security services such as authentication, authorization and delegation of authentication by employing SAML and XACML based on security data such as authentication data, attributes information, assertions and polices managed with the interface in the system. It also has SAML producer that issues assertions related on the result of the authentication and the authorization services.Keywords: XML, XML Security, XACML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14297142 An Evaluation Model for Semantic Enablement of Virtual Research Environments
Authors: Tristan O'Neill, Trina Myers, Jarrod Trevathan
Abstract:
The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for crossdomain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.
Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17847141 Dimension Reduction of Microarray Data Based on Local Principal Component
Authors: Ali Anaissi, Paul J. Kennedy, Madhu Goyal
Abstract:
Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.
Keywords: Linear Dimension Reduction, Non-Linear Dimension Reduction, Principal Component Analysis, Biologists.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15747140 Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model
Authors: Siyuan Jing, Kun She
Abstract:
Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.Keywords: attribute reduction, incomplete data, inconsistent data, tolerance neighborhood relation, rough sets
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15887139 A Mobile Agent-based Clustering Data Fusion Algorithm in WSN
Authors: Xiangbin Zhu, Wenjuan Zhang
Abstract:
In wireless sensor networks,the mobile agent technology is used in data fusion. According to the node residual energy and the results of partial integration,we design the node clustering algorithm. Optimization of mobile agent in the routing within the cluster strategy for wireless sensor networks to further reduce the amount of data transfer. Through the experiments, using mobile agents in the integration process within the cluster can be reduced the path loss in some extent.
Keywords: wireless sensor networks, data fusion, mobile agent
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15117138 Collision Detection Algorithm Based on Data Parallelism
Authors: Zhen Peng, Baifeng Wu
Abstract:
Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.
Keywords: Data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12357137 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: Building archetypes, data analysis, energy benchmarks, GHG emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10247136 Making Data Structures and Algorithms more Understandable by Programming Sudoku the Human Way
Authors: Roelien Goede
Abstract:
Data Structures and Algorithms is a module in most Computer Science or Information Technology curricula. It is one of the modules most students identify as being difficult. This paper demonstrates how programming a solution for Sudoku can make abstract concepts more concrete. The paper relates concepts of a typical Data Structures and Algorithms module to a step by step solution for Sudoku in a human type as opposed to a computer oriented solution.Keywords: Data Structures, Algorithms, Sudoku, ObjectOriented Programming, Programming Teaching, Education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30977135 Mining Educational Data to Analyze the Student Motivation Behavior
Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri
Abstract:
The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30937134 Construction Of Decentralized Lifetime Maximizing Tree for Data Aggregation in Wireless Sensor Networks
Authors: Deepali Virmani , Satbir Jain
Abstract:
To meet the demands of wireless sensor networks (WSNs) where data are usually aggregated at a single source prior to transmitting to any distant user, there is a need to establish a tree structure inside any given event region. In this paper , a novel technique to create one such tree is proposed .This tree preserves the energy and maximizes the lifetime of event sources while they are constantly transmitting for data aggregation. The term Decentralized Lifetime Maximizing Tree (DLMT) is used to denote this tree. DLMT features in nodes with higher energy tend to be chosen as data aggregating parents so that the time to detect the first broken tree link can be extended and less energy is involved in tree maintenance. By constructing the tree in such a way, the protocol is able to reduce the frequency of tree reconstruction, minimize the amount of data loss ,minimize the delay during data collection and preserves the energy.Keywords: branch energy, decentralized, energy level , lifetime, tree energy, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14887133 Effects of Data Correlation in a Sparse-View Compressive Sensing Based Image Reconstruction
Authors: Sajid Abbas, Joon Pyo Hong, Jung-Ryun Lee, Seungryong Cho
Abstract:
Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.
Keywords: Computed tomography, Computed laminography, Compressive sending, Low-dose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672