Search results for: microarray data analysis.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13551

Search results for: microarray data analysis.

9471 Students- uses of Wiki in Teacher Education: A Statistical Analysis

Authors: Said Hadjerrouit

Abstract:

Wikis are considered to be part of Web 2.0 technologies that potentially support collaborative learning and writing. Wikis provide opportunities for multiple users to work on the same document simultaneously. Most wikis have also a page for written group discussion. Nevertheless, wikis may be used in different ways depending on the pedagogy being used, and the constraints imposed by the course design. This work explores students- uses of wiki in teacher education. The analysis is based on a taxonomy for classifying students- activities and actions carried out on the wiki. The article also discusses the implications for using wikis as collaborative writing tools in teacher education.

Keywords: Behaviorism, collaborative writing, socioconstructivism, taxonomy, web 2.0 technology, wiki

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
9470 Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant

Authors: Sui Yan Wong, Keat Ping Yeoh, Chi Wai Hui

Abstract:

In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation.

Keywords: Exergy, pinch, combined cycle power plant, CCPP, supercritical steam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
9469 Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications

Authors: B. G. Sheeparamatti, J. S. Kadadevarmath

Abstract:

Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics etc. This paper indicates the need of developing electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of microcantilever, equivalent electrical circuit is drawn and using force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to powerful set of intellectual tools that have been developed for understanding electrical circuits Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantlevers are in agreement with each other.

Keywords: Electrical equivalent circuit analogy, FEM analysis, micro cantilevers, micro sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
9468 Physicochemical Profile of Essential Oil of Daucus carota

Authors: N. Behidj-Benyounes, K. Benyounes, T. Dahmene, N. Chebouti, S. Gana

Abstract:

Essential oils have a significant antimicrobial activity. These oils can successfully replace the antibiotics. So, the microorganisms show their inefficiencies resistant for the antibiotics. For this reason, we study the physicochemical analysis and antimicrobial activity of the essential oil of Daucus carota. The extraction is done by steam distillation of water which brought us a very significant return of 4.65%. The analysis of the essential oil is performed by GC / MS and has allowed us to identify 32 compounds in the oil of D. carota flowering tops of Bouira. Three of which are in the majority are the α-Pinene (22.3%), the carotol (21.7%) and the limonene (15.8%).

Keywords: α-Pinene, carotol, Daucus carota, limonene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
9467 Three Phase Fault Analysis of DC-Link Rectifier using new Power Differential Protection Concept

Authors: A. Gamil, G. Herold

Abstract:

The concept of differential protection based on current quantities has been discussed in many paper and researches. For certificating and inverting of currents and voltages through converter systems, there is no conventional current differential relay, which can compare current quantities, because they are different in form and frequencies. An overview over a new concept of differential protection for converters based on instantaneous power quantities will be discussed in this paper. To drive the power quantities a mathematical background of the space vectors will be introduced. A simple DCLink is preceded in this paper and a power analysis description and simulation is derived using Matlab®/ SimulinkTM concerning a certain construction scheme of Power Differential Relay System. Finally a complete analysis of three phase fault in DC-Link Rectifier is discussed to ensure the ability of Power Differential Protection System to detect the fault in main and selectivity protection sections.

Keywords: Space Vectors, Power Differential Relay (PDR), Short Circuit Power, Diode Recovery Energy, Detected Power Differential Signal (DPDS), Power Space Vector (PSV), Power Space Vector Protection Area (PSVPA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3400
9466 Mental Health Surveys on Community and Organizational Levels: Challenges, Issues, Conclusions and Possibilities

Authors: László L. Lippai

Abstract:

In addition to the fact that mental health bears great significance to a particular individual, it can also be regarded as an organizational, community and societal resource. Within the Szeged Health Promotion Research Group, we conducted mental health surveys on two levels: The inhabitants of a medium-sized Hungarian town and students of a Hungarian university with a relatively big headcount were requested to participate in surveys whose goals were to define local government priorities and organization-level health promotion programmes, respectively. To facilitate professional decision-making, we defined three, pragmatically relevant, groups of the target population: the mentally healthy, the vulnerable and the endangered. In order to determine which group a person actually belongs to, we designed a simple and quick measurement tool, which could even be utilised as a smoothing method, the Mental State Questionnaire validity of the above three categories was verified by analysis of variance against psychological quality of life variables. We demonstrate the pragmatic significance of our method via the analyses of the scores of our two mental health surveys. On town level, during our representative survey in Hódmezővásárhely (N=1839), we found that 38.7% of the participants was mentally healthy, 35.3% was vulnerable, while 16.3% was considered as endangered. We were able to identify groups that were in a dramatic state in terms of mental health. For example, such a group consisted of men aged 45 to 64 with only primary education qualification and the ratios of the mentally healthy, vulnerable and endangered were 4.5, 45.5 and 50%, respectively. It was also astonishing to see to what a little extent qualification prevailed as a protective factor in the case of women. Based on our data, the female group aged 18 to 44 with primary education—of whom 20.3% was mentally healthy, 42.4% vulnerable and 37.3% was endangered—as well as the female group aged 45 to 64 with university or college degree—of whom 25% was mentally healthy, 51.3 vulnerable and 23.8% endangered—are to be handled as priority intervention target groups in a similarly difficult position. On organizational level, our survey involving the students of the University of Szeged, N=1565, provided data to prepare a strategy of mental health promotion for a university with a headcount exceeding 20,000. When developing an organizational strategy, it was important to gather information to estimate the proportions of target groups in which mental health promotion methods; for example, life management skills development, detection, psychological consultancy, psychotherapy, would be applied. Our scores show that 46.8% of the student participants were mentally healthy, 42.1% were vulnerable and 11.1% were endangered. These data convey relevant information as to the allocation of organizational resources within a university with a considerable headcount. In conclusion, The Mental State Questionnaire, as a valid smoothing method, is adequate to describe a community in a plain and informative way in the terms of mental health. The application of the method can promote the preparation, design and implementation of mental health promotion interventions. 

Keywords: Health promotion, mental health promotion, mental state questionnaire, psychological well-being.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
9465 Vehicle Position Estimation for Driver Assistance System

Authors: Hyun-Koo Kim, Sangmoon Lee, Ho-Youl Jung, Ju H. Park

Abstract:

We present a system that finds road boundaries and constructs the virtual lane based on fusion data from a laser and a monocular sensor, and detects forward vehicle position even in no lane markers or bad environmental conditions. When the road environment is dark or a lot of vehicles are parked on the both sides of the road, it is difficult to detect lane and road boundary. For this reason we use fusion of laser and vision sensor to extract road boundary to acquire three dimensional data. We use parabolic road model to calculate road boundaries which is based on vehicle and sensors state parameters and construct virtual lane. And then we distinguish vehicle position in each lane.

Keywords: Vehicle Detection, Adaboost, Haar-like Feature, Road Boundary Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
9464 Where has All the Physical Education Gone? Results of a Generalist Primary Schools Teachers- Survey on Teaching Physical Education

Authors: Vicki Cowley, Michael J. Hamlin, Michael Grimley

Abstract:

Concerns about low levels of children-s physical activity and motor skill development, prompted the Ministry of Education to trial a physical activity pilot project (PAPP) in 16 New Zealand primary schools. The project comprised professional development and training in physical education for lead teachers and introduced four physical activity coordinators to liaise with and increase physical activity opportunities in the pilot schools. A survey of generalist teachers (128 baseline, 155 post-intervention) from these schools looked at timetabled physical activity sessions and issues related to teaching physical education. The authors calculated means and standard deviations of data relating to timetabled PE sessions and used a one-way analysis of variance to determine significant differences. Results indicated time devoted to physical activity related subjects significantly increased over the course of the intervention. Teacher-s reported improved confidence and competence, which resulted in an improvement in quality physical education delivered more often.

Keywords: children, physical education, primary school, teaching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
9463 A Comparative Understanding of Critical Problems Faced by Pakistani and Indian Transportation Industry

Authors: Saleh Abduallah Saleh, Mohammad Basir Bin Saud, Mohd Azwardi Md Isa

Abstract:

It is very important for a developing nation to developing their infrastructure on the prime priority because their infrastructure particularly their roads and transportation functions as a blood in the system. Almost 1.1 billion populations share the travel and transportation industry in India. On the other hand, the Pakistan transportation industry is also extensive and elevating about 170 million users of transportation. Indian and Pakistani specifically within bus industry are well connected within and between the urban and rural areas. The transportation industry is radically helping the economic alleviation of both countries. Due to high economic instability, unemployment and poverty rate both countries governments are very serious and committed to help for boosting their economy. They believe that any form of transportation development would play a vital role in the development of land, infrastructure which could indirectly support many other industries’ developments, such as tourism, freighting and shipping businesses, just to mention a few. However, it seems that their previous transportation planning in the due course has failed to meet the fast growing demand. As with the span of time, both the countries are looking forward to a long-term, and economical solutions, because the demand is from time to time keep appreciating and reacting according to other key economic drivers. Content analysis method and case study approach is used in this paper and secondary data from the bureau of statistic is used for case analysis. The paper focused on the mobility concerns of the lower and middle-income people in India and Pakistan. The paper is aimed to highlight the weaknesses, opportunities and limitations resulting from low priority industry for a government, which is making the either country's public suffer. The paper has concluded that the main issue is identified as the slow, inappropriate, and unfavorable decisions which are not in favor of long-term country’s economic development and public interest. The paper also recommends to future research avenues for public and private transportation, which is continuously failing to meet the public expectations.

Keywords: Bus transportation industries, transportation demand, government parallel initiatives, road and traffic congestions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
9462 Effects of a Recreational Workout Program on Task-Analyzed Exercise Performance of Adults with Severe Cognitive Impairments

Authors: Jiabei Zhang, Amanda Rapelje, Christopher Farr, Kristin Colwell, Zezhao Chen

Abstract:

The purpose of this study was to investigate the effectiveness of a recreational workout program for adults with disabilities over two semesters. This investigation was an action study conducted in a naturalistic setting. Participants included equal numbers of adults with severe cognitive impairments (n = 35) and adults without disabilities (n = 35). Adults with disabilities severe cognitive impairments were trained 6 self-initiated workout activities over two semesters by adults without disabilities. The numbers of task-analyzed steps of each activity performed correctly by each participant at the first and last weeks of each semester were used for data analysis. Results of the paired t-tests indicate that across two semesters, significant differences between the first and last weeks were found on 4 out of the 6 task-analyzed workout activities at a statistical level of significance p < .05. The recreational workout program developed in this study was effective.

Keywords: Workout program, exercise performance, adults, sever cognitive impairment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
9461 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems

Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati

Abstract:

Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.

Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
9460 Mechanisms of Organic Contaminants Uptake and Degradation in Plants

Authors: E.Kvesitadze, T.Sadunishvili, G.Kvesitadze

Abstract:

As a result of urbanization, the unpredictable growth of industry and transport, production of chemicals, military activities, etc. the concentration of anthropogenic toxicants spread in nature exceeds all the permissible standards. Most dangerous among these contaminants are organic compounds having great persistence, bioaccumulation, and toxicity along with our awareness of their prominent occurrence in the environment and food chain. Among natural ecological tools, plants still occupying above 40% of the world land, until recently, were considered as organisms having only a limited ecological potential, accumulating in plant biomass and partially volatilizing contaminants of different structure. However, analysis of experimental data of the last two decades revealed the essential role of plants in environment remediation due to ability to carry out intracellular degradation processes leading to partial or complete decomposition of carbon skeleton of different structure contaminants. Though, phytoremediation technologies still are in research and development, their various applications have been successfully used. The paper aims to analyze mechanisms of organic contaminants uptake and detoxification in plants, being the less studied issue in evaluation and exploration of plants potential for environment remediation.

Keywords: organic contaminants, Detoxification, metalloenzymes, plant ultrastructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3092
9459 Separating Permanent and Induced Magnetic Signature: A Simple Approach

Authors: O. J. G. Somsen, G. P. M. Wagemakers

Abstract:

Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.

Keywords: Magnetic signature, data analysis, magnetization, deperming techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
9458 Modeling Uncertainty in Multiple Criteria Decision Making Using the Technique for Order Preference by Similarity to Ideal Solution for the Selection of Stealth Combat Aircraft

Authors: C. Ardil

Abstract:

Uncertainty set theory is a generalization of fuzzy set theory and intuitionistic fuzzy set theory. It serves as an effective tool for dealing with inconsistent, imprecise, and vague information. The technique for order preference by similarity to ideal solution (TOPSIS) method is a multiple-attribute method used to identify solutions from a finite set of alternatives. It simultaneously minimizes the distance from an ideal point and maximizes the distance from a nadir point. In this paper, an extension of the TOPSIS method for multiple attribute group decision-making (MAGDM) based on uncertainty sets is presented. In uncertainty decision analysis, decision-makers express information about attribute values and weights using uncertainty numbers to select the best stealth combat aircraft.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164
9457 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities

Authors: Khaled M. Alhawiti

Abstract:

This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research.

Keywords: Data Retrieval, Information retrieval, Natural Language Processing, Text Structuring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2840
9456 Agent-Based Simulation and Analysis of Network-Centric Air Defense Missile Systems

Authors: Su-Yan Tang, Wei Zhang, Shan Mei, Yi-Fan Zhu

Abstract:

Network-Centric Air Defense Missile Systems (NCADMS) represents the superior development of the air defense missile systems and has been regarded as one of the major research issues in military domain at present. Due to lack of knowledge and experience on NCADMS, modeling and simulation becomes an effective approach to perform operational analysis, compared with those equation based ones. However, the complex dynamic interactions among entities and flexible architectures of NCADMS put forward new requirements and challenges to the simulation framework and models. ABS (Agent-Based Simulations) explicitly addresses modeling behaviors of heterogeneous individuals. Agents have capability to sense and understand things, make decisions, and act on the environment. They can also cooperate with others dynamically to perform the tasks assigned to them. ABS proves an effective approach to explore the new operational characteristics emerging in NCADMS. In this paper, based on the analysis of network-centric architecture and new cooperative engagement strategies for NCADMS, an agent-based simulation framework by expanding the simulation framework in the so-called System Effectiveness Analysis Simulation (SEAS) was designed. The simulation framework specifies components, relationships and interactions between them, the structure and behavior rules of an agent in NCADMS. Based on scenario simulations, information and decision superiority and operational advantages in NCADMS were analyzed; meanwhile some suggestions were provided for its future development.

Keywords: air defense missile systems, network-centric, agent-based simulation, simulation framework, information superiority, decision superiority, operational advantages

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
9455 Comparison of Composite Programming and Compromise Programming for Aircraft Selection Problem Using Multiple Criteria Decision Making Analysis Method

Authors: C. Ardil

Abstract:

In this paper, the comparison of composite programming and compromise programming for the aircraft selection problem is discussed using the multiple criteria decision analysis method. The decision making process requires the prior definition and fulfillment of certain factors, especially when it comes to complex areas such as aircraft selection problems. The proposed technique gives more efficient results by extending the composite programming and compromise programming, which are widely used in modeling multiple criteria decisions. The proposed model is applied to a practical decision problem for evaluating and selecting aircraft problems.A selection of aircraft was made based on the proposed approach developed in the field of multiple criteria decision making. The model presented is solved by using the following methods: composite programming, and compromise programming. The importance values of the weight coefficients of the criteria are calculated using the mean weight method. The evaluation and ranking of aircraft are carried out using the composite programming and compromise programming methods. In order to determine the stability of the model and the ability to apply the developed composite programming and compromise programming approach, the paper analyzes its sensitivity, which involves changing the value of the coefficient λ and q in the first part. The second part of the sensitivity analysis relates to the application of different multiple criteria decision making methods, composite programming and compromise programming. In addition, in the third part of the sensitivity analysis, the Spearman correlation coefficient of the ranks obtained was calculated which confirms the applicability of all the proposed approaches.

Keywords: composite programming, compromise programming, additive weighted model, multiplicative weighted model, multiple criteria decision making analysis, MCDMA, aircraft selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
9454 An Enhanced Support Vector Machine-Based Approach for Sentiment Classification of Arabic Tweets of Different Dialects

Authors: Gehad S. Kaseb, Mona F. Ahmed

Abstract:

Arabic Sentiment Analysis (SA) is one of the most common research fields with many open areas. This paper proposes different pre-processing steps and a modified methodology to improve the accuracy using normal Support Vector Machine (SVM) classification. The paper works on two datasets, Arabic Sentiment Tweets Dataset (ASTD) and Extended Arabic Tweets Sentiment Dataset (Extended-ATSD), which are publicly available for academic use. The results show that the classification accuracy approaches 86%.

Keywords: Arabic, hybrid classification, sentiment analysis, tweets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 490
9453 Swarmed Discriminant Analysis for Multifunction Prosthesis Control

Authors: Rami N. Khushaba, Ahmed Al-Ani, Adel Al-Jumaily

Abstract:

One of the approaches enabling people with amputated limbs to establish some sort of interface with the real world includes the utilization of the myoelectric signal (MES) from the remaining muscles of those limbs. The MES can be used as a control input to a multifunction prosthetic device. In this control scheme, known as the myoelectric control, a pattern recognition approach is usually utilized to discriminate between the MES signals that belong to different classes of the forearm movements. Since the MES is recorded using multiple channels, the feature vector size can become very large. In order to reduce the computational cost and enhance the generalization capability of the classifier, a dimensionality reduction method is needed to identify an informative yet moderate size feature set. This paper proposes a new fuzzy version of the well known Fisher-s Linear Discriminant Analysis (LDA) feature projection technique. Furthermore, based on the fact that certain muscles might contribute more to the discrimination process, a novel feature weighting scheme is also presented by employing Particle Swarm Optimization (PSO) for estimating the weight of each feature. The new method, called PSOFLDA, is tested on real MES datasets and compared with other techniques to prove its superiority.

Keywords: Discriminant Analysis, Pattern Recognition, SignalProcessing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
9452 Geographic Information Systems as a Tool to Support the Sustainable Development Goals

Authors: Gulnara N. Nabiyeva, Stephen M. Wheeler

Abstract:

Geographic Information Systems (GIS) is a multipurpose computer-based tool that provides a sophisticated ability to map and analyze data on different spatial layers. However, GIS is far more easily applied in some policy areas than others. This paper seeks to determine the areas of sustainable development, including environmental, economic, and social dimensions, where GIS has been used to date to support efforts to implement the United Nations Sustainable Development Goals (SDGs), and to discuss potential areas where it might be used more. Based on an extensive analysis of published literature, we ranked the SDGs according to how frequently GIS has been used to study related policy. We found that SDG#15 “Life on Land” is most often addressed with GIS, following by SDG#11 “Sustainable Cities and Communities”, and SDG#13 “Climate Action”. On the other hand, we determined that SDG#2 “Zero Hunger”, SDG#8 “Decent Work and Economic Growth”, and SDG#16 “Peace, Justice, and Strong Institutions” are least addressed with GIS. The paper outlines some specific ways that GIS might be applied to the SDGs least linked to this tool currently.

Keywords: GIS, GIS application, sustainable community development, sustainable development goals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
9451 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: Artificial neural network, low series manufacturing, polymer cutting, setup period estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
9450 Smart Agriculture in Iran: Background, Necessities, Challenges and Solutions for Establishment

Authors: Hassan Masoumi

Abstract:

Smart agriculture refers to use of new technologies in agriculture and helps farmers and experts to better manage their production unit and have higher yield and productivity. Technology is the main tool in smart agriculture. In this article, which has been prepared in a documentary and analytical method, while briefly reviewing the definitions of smart agriculture and its benefits, the challenges of its entry and development in Iran's agricultural sector have been discussed in detail, and solutions to solve these challenges have been suggested as well. Agriculture is an important part of Iran's economy and plays a role in employment and gross national product. Although the use of digital technologies is being used sporadically in some agricultural fields throughout the country, due to the insufficient development of related infrastructure, the low share of the budget of this sector in financial planning and the small scale of operation, smart agriculture in Iran is in its pre-maturity stages. The introduction of artificial intelligence into Iran's agricultural sector seems necessary in the four areas of designing a model of intelligent cultivation, improving productivity through activity intelligence, improving communication between the links of the value chain, and developing data-based agriculture. Due to the fact that the third and fourth areas have received less attention in Iran, therefore, in this article, the role of smart agriculture in improving the relationship between the circles of the agricultural value chain has been analyzed in the form of data-driven agricultural development.

Keywords: Artificial Intelligence, data-driven agriculture, new technologies, value chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39
9449 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI

Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi

Abstract:

This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.

Keywords: Ungauged Basin, Catchment Characteristics Model, Synthetic data, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
9448 Structural Reliability of Existing Structures: A Case Study

Authors: Z. Sakka, I. Assakkaf, T. Al-Yaqoub, J. Parol

Abstract:

reliability-based methodology for the assessment and evaluation of reinforced concrete (R/C) structural elements of concrete structures is presented herein. The results of the reliability analysis and assessment for R/C structural elements were verified by the results obtained through deterministic methods. The outcomes of the reliability-based analysis were compared against currently adopted safety limits that are incorporated in the reliability indices β’s, according to international standards and codes. The methodology is based on probabilistic analysis using reliability concepts and statistics of the main random variables that are relevant to the subject matter, and for which they are to be used in the performance-function equation(s) associated with the structural elements under study. These methodology techniques can result in reliability index β, which is commonly known as the reliability index or reliability measure value that can be utilized to assess and evaluate the safety, human risk, and functionality of the structural component. Also, these methods can result in revised partial safety factor values for certain target reliability indices that can be used for the purpose of redesigning the R/C elements of the building and in which they could assist in considering some other remedial actions to improve the safety and functionality of the member.

Keywords: Concrete Structures, FORM, Monte Carlo Simulation, Structural Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101
9447 Clamped-clamped Boundary Conditions for Analysis Free Vibration of Functionally Graded Cylindrical Shell with a Ring based on Third Order Shear Deformation Theory

Authors: M.Pourmahmoud, M.Salmanzadeh, M.Mehrani, M.R.Isvandzibaei

Abstract:

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
9446 Improving RBF Networks Classification Performance by using K-Harmonic Means

Authors: Z. Zainuddin, W. K. Lye

Abstract:

In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.

Keywords: Neural networks, Radial basis functions, Clusteringmethod, K-harmonic means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
9445 Finite Element Analysis of Cooling Time and Residual Strains in Cold Spray Deposited Titanium Particles

Authors: Thanh-Duoc Phan, Saden H. Zahiri, S. H. Masood, Mahnaz Jahedi

Abstract:

In this article, using finite element analysis (FEA) and an X-ray diffractometer (XRD), cold-sprayed titanium particles on a steel substrate is investigated in term of cooling time and the development of residual strains. Three cooling-down models of sprayed particles after deposition stage are simulated and discussed: the first model (m1) considers conduction effect to the substrate only, the second model (m2) considers both conduction as well as convection effect to the environment, and the third model (m3) which is the same as the second model but with the substrate heated to a near particle temperature before spraying. Thereafter, residual strains developed in the third model is compared with the experimental measurement of residual strains, which involved a Bruker D8 Advance Diffractometer using CuKa radiation (40kV, 40mA) monochromatised with a graphite sample monochromator. For deposition conditions of this study, a good correlation was found to exist between the FEA results and XRD measurements of residual strains.

Keywords: cold gas dynamic spray, X-ray diffraction, explicit finite element analysis, residual strain, titanium, particle impact, deformation behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
9444 Nigerian Bread Contribute One Half of Recommended Vitamin a Intake in Poor-Urban Lagosian Preschoolers

Authors: Florence Uchendu, Tola Atinmo

Abstract:

Nigerian bread is baked with vitamin A fortified wheat flour. Study aimed at determining its contribution to preschoolers- vitamin A nutriture. A cross-sectional/experimental study was carried out in four poor-urban Local Government Areas (LGAs) of Metropolitan Lagos, Nigeria. A pretested food frequency questionnaire was administered to randomly selected mothers of 1600 preschoolers (24-59 months). Retinyl Palmitate content of fourteen bread samples randomly collected from bakeries in all LGAs was analyzed at 0 and 5 days at 25oC using High Performance Liquid Chromatography. Data analysis was done at p<.05. Mean total intake of vitamin A from bread was 220.40μgRAE (733.94±775.68i.u). Bread contributed 6.5–178.4% of preschoolers RDA (1333i.u/400μgRAE). Mean contribution to vitamin A intake was 55.06±58.18%. Strong statistical significant relationship existed between total vitamin A intake and % RDA which was directly proportional (p<.01). Result indicates that bread made an important contribution towards vitamin A intake in poor-urban Lagosian preschoolers.

Keywords: Bread, dietary intake, Lagos metropolis, preschoolers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
9443 Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis

Authors: S. Dorbani, M. Badaoui, D. Benouar

Abstract:

The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence.

Keywords: Base shear force, fundamental period, epicentral distance, uncertainty, lognormal variable, statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
9442 A Serial Hierarchical Support Vector Machine and 2D Feature Sets Act for Brain DTI Segmentation

Authors: Mohammad Javadi

Abstract:

Serial hierarchical support vector machine (SHSVM) is proposed to discriminate three brain tissues which are white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). SHSVM has novel classification approach by repeating the hierarchical classification on data set iteratively. It used Radial Basis Function (rbf) Kernel with different tuning to obtain accurate results. Also as the second approach, segmentation performed with DAGSVM method. In this article eight univariate features from the raw DTI data are extracted and all the possible 2D feature sets are examined within the segmentation process. SHSVM succeed to obtain DSI values higher than 0.95 accuracy for all the three tissues, which are higher than DAGSVM results.

Keywords: Brain segmentation, DTI, hierarchical, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863