Search results for: learning efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4426

Search results for: learning efficiency

376 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 677
375 Residential and Care Model for Elderly People Based on “Internet Plus”

Authors: Haoyi Sheng

Abstract:

China's aging tendency is becoming increasingly severe, which leads to the embarrassing situation of "getting old before getting wealthy". The traditional pension model does not comply with the need of today. Relying on "Internet Plus", it can efficiently integrate information and resources and meet the personalized needs of elderly care. It can reduce the operating cost of community elderly care facilities and lay a technical foundation for providing better services for the elderly. The key for providing help for the elderly in the future is to effectively integrate technology, make good use of technology, and improve the efficiency of elderly care services. The effective integration of traditional home care, community care, intelligent elderly care equipment and medical resources to create the "Internet Plus" community intelligent pension service mode has become the future development trend of aging care. The research method of this paper is to collect literature and conduct theoretical research on community pension firstly. Secondly, the combination of suitable aging design and "Internet Plus" is elaborated through research. Finally, this paper states the current level of intelligent technology in old-age care and looks into the future by understanding multiple levels of "Internet Plus". The development of community intelligent pension mode and content under "Internet Plus" has enormous development potential. In addition to the characteristics and functions of ordinary houses, residential design of endowment housing has higher requirements for comfort and personalization, and the people-oriented is the principle of design.

Keywords: Ageing tendency, "Internet plus", community intelligent elderly care, elderly care service model, technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745
374 Biomethanation of Palm Oil Mill Effluent (POME) by Membrane Anaerobic System (MAS) using POME as a Substrate

Authors: N.H. Abdurahman, Y. M. Rosli, N. H. Azhari, S. F. Tam

Abstract:

The direct discharge of palm oil mill effluent (POME) wastewater causes serious environmental pollution due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Traditional ways for POME treatment have both economical and environmental disadvantages. In this study, a membrane anaerobic system (MAS) was used as an alternative, cost effective method for treating POME. Six steady states were attained as a part of a kinetic study that considered concentration ranges of 8,220 to 15,400 mg/l for mixed liquor suspended solids (MLSS) and 6,329 to 13,244 mg/l for mixed liquor volatile suspended solids (MLVSS). Kinetic equations from Monod, Contois and Chen & Hashimoto were employed to describe the kinetics of POME treatment at organic loading rates ranging from 2 to 13 kg COD/m3/d. throughout the experiment, the removal efficiency of COD was from 94.8 to 96.5% with hydraulic retention time, HRT from 400.6 to 5.7 days. The growth yield coefficient, Y was found to be 0.62gVSS/g COD the specific microorganism decay rate was 0.21 d-1 and the methane gas yield production rate was between 0.25 l/g COD/d and 0.58 l/g COD/d. Steady state influent COD concentrations increased from 18,302 mg/l in the first steady state to 43,500 mg/l in the sixth steady state. The minimum solids retention time, which was obtained from the three kinetic models ranged from 5 to 12.3 days. The k values were in the range of 0.35 – 0.519 g COD/ g VSS • d and values were between 0.26 and 0.379 d-1. The solids retention time (SRT) decreased from 800 days to 11.6 days. The complete treatment reduced the COD content to 2279 mg/l equivalent to a reduction of 94.8% reduction from the original.

Keywords: COD reduction, POME, kinetics, membrane, anaerobic, monod, contois equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567
373 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets

Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar

Abstract:

Numerical studies have been carried out using a validated two-dimensional standard k-omega turbulence model for the design optimization of a thrust vector control system using shock induced self-impinging supersonic secondary double jet. Parametric analytical studies have been carried out at different secondary injection locations to identifying the highest unsymmetrical distribution of the main gas flow due to shock waves, which produces a desirable side force more lucratively for vectoring. The results from the parametric studies of the case on hand reveal that the shock induced self-impinging supersonic secondary double jet is more efficient in certain locations at the divergent region of a CD nozzle than a case with supersonic single jet with same mass flow rate. We observed that the best axial location of the self-impinging supersonic secondary double jet nozzle with a given jet interaction angle, built-in to a CD nozzle having area ratio 1.797, is 0.991 times the primary nozzle throat diameter from the throat location. We also observed that the flexible steering is possible after invoking ON/OFF facility to the secondary nozzles for meeting the onboard mission requirements. Through our case studies we concluded that the supersonic self-impinging secondary double jet at predesigned jet interaction angle and location can provide more flexible steering options facilitating with 8.81% higher thrust vectoring efficiency than the conventional supersonic single secondary jet without compromising the payload capability of any supersonic aerospace vehicle.

Keywords: Fluidic thrust vectoring, rocket steering, self-impinging secondary supersonic jet, TVC in aerospace vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681
372 Evaluation of Efficient CSI Based Channel Feedback Techniques for Adaptive MIMO-OFDM Systems

Authors: Muhammad Rehan Khalid, Muhammad Haroon Siddiqui, Danish Ilyas

Abstract:

This paper explores the implementation of adaptive coding and modulation schemes for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) feedback systems. Adaptive coding and modulation enables robust and spectrally-efficient transmission over time-varying channels. The basic premise is to estimate the channel at the receiver and feed this estimate back to the transmitter, so that the transmission scheme can be adapted relative to the channel characteristics. Two types of codebook based channel feedback techniques are used in this work. The longterm and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The coded modulation increases the effective transmit power relative to uncoded variablerate variable-power MQAM performance for MIMO-OFDM feedback system. Hence proposed arrangement becomes an attractive approach to achieve enhanced spectral efficiency and improved error rate performance for next generation high speed wireless communication systems.

Keywords: Adaptive Coded Modulation, MQAM, MIMO, OFDM, Codebooks, Feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
371 A Methodology for Automatic Diversification of Document Categories

Authors: Dasom Kim, Chen Liu, Myungsu Lim, Soo-Hyeon Jeon, Byeoung Kug Jeon, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, numerous documents including large volumes of unstructured data and text have been created because of the rapid increase in the use of social media and the Internet. Usually, these documents are categorized for the convenience of users. Because the accuracy of manual categorization is not guaranteed, and such categorization requires a large amount of time and incurs huge costs. Many studies on automatic categorization have been conducted to help mitigate the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorize complex documents with multiple topics because they work on the assumption that individual documents can be categorized into single categories only. Therefore, to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, the learning process employed in these studies involves training using a multi-categorized document set. These methods therefore cannot be applied to the multi-categorization of most documents unless multi-categorized training sets using traditional multi-categorization algorithms are provided. To overcome this limitation, in this study, we review our novel methodology for extending the category of a single-categorized document to multiple categorizes, and then introduce a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.

Keywords: Big Data Analysis, Document Classification, Text Mining, Topic Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
370 Development of Web-based Teams Management System in Construction

Authors: Yu-Cheng Lin

Abstract:

Construction project control attempts to obtain real-time information and effectively enhance dynamic control and management via information sharing and analysis among project participants to eliminate construction conflicts and project delays. However, survey results for Taiwan indicate that construction commercial project management software is not widely accepted for subcontractors and suppliers. To solve the project communications problems among participants, this study presents a novel system called the Construction Dynamic Teams Communication Management (Con-DTCM) system for small-to-medium sized subcontractors and suppliers in Taiwanese Construction industry, and demonstrates that the Con-DTCM system responds to the most recent project information efficiently and enhances management of project teams (general contractor, suppliers and subcontractors) through web-based environment. Web-based technology effectively enhances information sharing during construction project management, and generates cost savings via the Internet. The main unique characteristic of the proposed Con-DTCM system is extremely user friendly and easily design compared with current commercial project management applications. The Con-DTCM system is applied to a case study of construction of a building project in Taiwan to confirm the proposed methodology and demonstrate the effectiveness of information sharing during the construction phase. The advantages of the Con-DTCM system are in improving project control and management efficiency for general contractors, and in providing dynamic project tracking and management, which enables subcontractors and suppliers to acquire the most recent project-related information. Furthermore, this study presents and implements a generic system architecture.

Keywords: Construction project management, Information System, Portal, Web, Small-to-medium enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
369 A Weighted-Profiling Using an Ontology Basefor Semantic-Based Search

Authors: Hikmat A. M. Abd-El-Jaber, Tengku M. T. Sembok

Abstract:

The information on the Web increases tremendously. A number of search engines have been developed for searching Web information and retrieving relevant documents that satisfy the inquirers needs. Search engines provide inquirers irrelevant documents among search results, since the search is text-based rather than semantic-based. Information retrieval research area has presented a number of approaches and methodologies such as profiling, feedback, query modification, human-computer interaction, etc for improving search results. Moreover, information retrieval has employed artificial intelligence techniques and strategies such as machine learning heuristics, tuning mechanisms, user and system vocabularies, logical theory, etc for capturing user's preferences and using them for guiding the search based on the semantic analysis rather than syntactic analysis. Although a valuable improvement has been recorded on search results, the survey has shown that still search engines users are not really satisfied with their search results. Using ontologies for semantic-based searching is likely the key solution. Adopting profiling approach and using ontology base characteristics, this work proposes a strategy for finding the exact meaning of the query terms in order to retrieve relevant information according to user needs. The evaluation of conducted experiments has shown the effectiveness of the suggested methodology and conclusion is presented.

Keywords: information retrieval, user profiles, semantic Web, ontology, search engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
368 Synchronous Courses Attendance in Distance Higher Education: Case Study of a Computer Science Department

Authors: Thierry Eude

Abstract:

The use of videoconferencing platforms adapted to teaching offers students the opportunity to take distance education courses in much the same way as traditional in-class training. The sessions can be recorded and they allow students the option of following the courses synchronously or asynchronously. Three typical profiles can then be distinguished: students who choose to follow the courses synchronously, students who could attend the course in synchronous mode but choose to follow the session off-line, and students who follow the course asynchronously as they cannot attend the course when it is offered because of professional or personal constraints. Our study consists of observing attendance at all distance education courses offered in the synchronous mode by the Computer Science and Software Engineering Department at Laval University during 10 consecutive semesters. The aim is to identify factors that influence students in their choice of attending the distance courses in synchronous mode. It was found that participation tends to be relatively stable over the years for any one semester (fall, winter summer) and is similar from one course to another, although students may be increasingly familiar with the synchronous distance education courses. Average participation is around 28%. There may be deviations, but they concern only a few courses during certain semesters, suggesting that these deviations would only have occurred because of the composition of particular promotions during specific semesters. Furthermore, course schedules have a great influence on the attendance rate. The highest rates are all for courses which are scheduled outside office hours.

Keywords: Attendance, distance undergraduate education in computer science, student behavior, synchronous e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
367 Performance Optimization of Data Mining Application Using Radial Basis Function Classifier

Authors: M. Govindarajan, R. M.Chandrasekaran

Abstract:

Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.

Keywords: Text Data Mining, Comparative Cross-validation, Radial Basis Function, runtime, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
366 Multi-Agent Systems Applied in the Modeling and Simulation of Biological Problems: A Case Study in Protein Folding

Authors: Pedro Pablo González Pérez, Hiram I. Beltrán, Arturo Rojo-Domínguez, Máximo EduardoSánchez Gutiérrez

Abstract:

Multi-agent system approach has proven to be an effective and appropriate abstraction level to construct whole models of a diversity of biological problems, integrating aspects which can be found both in "micro" and "macro" approaches when modeling this type of phenomena. Taking into account these considerations, this paper presents the important computational characteristics to be gathered into a novel bioinformatics framework built upon a multiagent architecture. The version of the tool presented herein allows studying and exploring complex problems belonging principally to structural biology, such as protein folding. The bioinformatics framework is used as a virtual laboratory to explore a minimalist model of protein folding as a test case. In order to show the laboratory concept of the platform as well as its flexibility and adaptability, we studied the folding of two particular sequences, one of 45-mer and another of 64-mer, both described by an HP model (only hydrophobic and polar residues) and coarse grained 2D-square lattice. According to the discussion section of this piece of work, these two sequences were chosen as breaking points towards the platform, in order to determine the tools to be created or improved in such a way to overcome the needs of a particular computation and analysis of a given tough sequence. The backwards philosophy herein is that the continuous studying of sequences provides itself important points to be added into the platform, to any time improve its efficiency, as is demonstrated herein.

Keywords: multi-agent systems, blackboard-based agent architecture, bioinformatics framework, virtual laboratory, protein folding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
365 Software Product Quality Evaluation Model with Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper presents a software product quality evaluation model based on the ISO/IEC 25010 quality model. The evaluation characteristics and sub characteristics were identified from the ISO/IEC 25010 quality model. The multidimensional structure of the quality model is based on characteristics such as functional suitability, performance efficiency, compatibility, usability, reliability, security, maintainability, and portability, and associated sub characteristics. Random numbers are generated to establish the decision maker’s importance weights for each sub characteristics. Also, random numbers are generated to establish the decision matrix of the decision maker’s final scores for each software product against each sub characteristics. Thus, objective criteria importance weights and index scores for datasets were obtained from the random numbers. In the proposed model, five different software product quality evaluation datasets under three different weight vectors were applied to multiple criteria decision analysis method, preference analysis for reference ideal solution (PARIS) for comparison, and sensitivity analysis procedure. This study contributes to provide a better understanding of the application of MCDMA methods and ISO/IEC 25010 quality model guidelines in software product quality evaluation process.

Keywords: ISO/IEC 25010 quality model, multiple criteria decisions making, multiple criteria decision making analysis, MCDMA, PARIS, Software Product Quality Evaluation Model, Software Product Quality Evaluation, Software Evaluation, Software Selection, Software

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448
364 A Simulated Environment Approach to Investigate the Effect of Adversarial Perturbations on Traffic Sign for Automotive Software-in-Loop Testing

Authors: Sunil Patel, Pallab Maji

Abstract:

To study the effect of adversarial attack environment must be controlled. Autonomous driving includes mainly 5 phases sense, perceive, map, plan, and drive. Autonomous vehicles sense their surrounding with the help of different sensors like cameras, radars, and lidars. Deep learning techniques are considered Blackbox and found to be vulnerable to adversarial attacks. In this research, we study the effect of the various known adversarial attacks with the help of the Unreal Engine-based, high-fidelity, real-time raytraced simulated environment. The goal of this experiment is to find out if adversarial attacks work in moving vehicles and if an unknown network may be targeted. We discovered that the existing Blackbox and Whitebox attacks have varying effects on different traffic signs. We observed that attacks that impair detection in static scenarios do not have the same effect on moving vehicles. It was found that some adversarial attacks with hardly noticeable perturbations entirely blocked the recognition of certain traffic signs. We observed that the daylight condition has a substantial impact on the model's performance by simulating the interplay of light on traffic signs. Our findings have been found to closely resemble outcomes encountered in the real world.

Keywords: Adversarial attack simulation, computer simulation, ray-traced environment, realistic simulation, unreal engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 433
363 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, Immersed microelectronics, turbulent natural convection in enclosures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
362 Surfactant Stabilized Nanoemulsion: Characterization and Application in Enhanced Oil Recovery

Authors: Ajay Mandal, Achinta Bera

Abstract:

Nanoemulsions are a class of emulsions with a droplet size in the range of 50–500 nm and have attracted a great deal of attention in recent years because it is unique characteristics. The physicochemical properties of nanoemulsion suggests that it can be successfully used to recover the residual oil which is trapped in the fine pore of reservoir rock by capillary forces after primary and secondary recovery. Oil-in-water nanoemulsion which can be formed by high-energy emulsification techniques using specific surfactants can reduce oil-water interfacial tension (IFT) by 3-4 orders of magnitude. The present work is aimed on characterization of oil-inwater nanoemulsion in terms of its phase behavior, morphological studies; interfacial energy; ability to reduce the interfacial tension and understanding the mechanisms of mobilization and displacement of entrapped oil blobs by lowering interfacial tension both at the macroscopic and microscopic level. In order to investigate the efficiency of oil-water nanoemulsion in enhanced oil recovery (EOR), experiments were performed to characterize the emulsion in terms of their physicochemical properties and size distribution of the dispersed oil droplet in water phase. Synthetic mineral oil and a series of surfactants were used to prepare oil-in-water emulsions. Characterization of emulsion shows that it follows pseudo-plastic behaviour and drop size of dispersed oil phase follows lognormal distribution. Flooding experiments were also carried out in a sandpack system to evaluate the effectiveness of the nanoemulsion as displacing fluid for enhanced oil recovery. Substantial additional recoveries (more than 25% of original oil in place) over conventional water flooding were obtained in the present investigation.

Keywords: Nanoemulsion, Characterization, Enhanced Oil Recovery, Particle Size Distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5029
361 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
360 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition

Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu

Abstract:

In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.

Keywords: Biometry, image processing, pattern recognition, speech analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
359 Analyzing the Shearing-Layer Concept Applied to Urban Green System

Authors: S. Pushkar, O. Verbitsky

Abstract:

Currently, green rating systems are mainly utilized for correctly sizing mechanical and electrical systems, which have short lifetime expectancies. In these systems, passive solar and bio-climatic architecture, which have long lifetime expectancies, are neglected. Urban rating systems consider buildings and services in addition to neighborhoods and public transportation as integral parts of the built environment. The main goal of this study was to develop a more consistent point allocation system for urban building standards by using six different lifetime shearing layers: Site, Structure, Skin, Services, Space, and Stuff, each reflecting distinct environmental damages. This shearing-layer concept was applied to internationally well-known rating systems: Leadership in Energy and Environmental Design (LEED) for Neighborhood Development, BRE Environmental Assessment Method (BREEAM) for Communities and Comprehensive Assessment System for Building Environmental Efficiency (CASBEE) for Urban Development. The results showed that LEED for Neighborhood Development and BREEAM for Communities focused on long-lifetime-expectancy building designs, whereas CASBEE for Urban Development gave equal importance to the Building and Service Layers. Moreover, although this rating system was applied using a building-scale assessment, “Urban Area + Buildings” focuses on a short-lifetime-expectancy system design, neglecting to improve the architectural design by considering bioclimatic and passive solar aspects.

Keywords: Green rating system, passive solar architecture, shearing-layer concept, urban community.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
358 Nonlinear and Chaotic Motions for a Shock Absorbing Structure Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, Y. Kurosawa, S. Maruyama, K. Tobita, Y. Hirano, K. Yokouchi, K. Kihara, T. Sunaga

Abstract:

This paper describes dynamic analysis using proposed fast finite element method for a shock absorbing structure including a sponge. The structure is supported by nonlinear concentrated springs. The restoring force of the spring has cubic nonlinearity and linear hysteresis damping. To calculate damping properties for the structures including elastic body and porous body, displacement vectors as common unknown variable are solved under coupled condition. Under small amplitude, we apply asymptotic method to complex eigenvalue problem of this system to obtain modal parameters. And then expressions of modal loss factor are derived approximately. This approach was proposed by one of the authors previously. We call this method as Modal Strain and Kinetic Energy Method (MSKE method). Further, using the modal loss factors, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled equations using normal coordinate corresponding to linear natural modes. This transformation yields computation efficiency. As a numerical example of a shock absorbing structures, we adopt double skins with a sponge. The double skins are supported by nonlinear concentrated springs. We clarify influences of amplitude of the input force on nonlinear and chaotic responses.

Keywords: Dynamic response, Nonlinear and chaotic motions, Finite Element analysis, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
357 Bio-Surfactant Production and Its Application in Microbial EOR

Authors: A. Rajesh Kanna, G. Suresh Kumar, Sathyanaryana N. Gummadi

Abstract:

There are various sources of energies available worldwide and among them, crude oil plays a vital role. Oil recovery is achieved using conventional primary and secondary recovery methods. In-order to recover the remaining residual oil, technologies like Enhanced Oil Recovery (EOR) are utilized which is also known as tertiary recovery. Among EOR, Microbial enhanced oil recovery (MEOR) is a technique which enables the improvement of oil recovery by injection of bio-surfactant produced by microorganisms. Bio-surfactant can retrieve unrecoverable oil from the cap rock which is held by high capillary force. Bio-surfactant is a surface active agent which can reduce the interfacial tension and reduce viscosity of oil and thereby oil can be recovered to the surface as the mobility of the oil is increased. Research in this area has shown promising results besides the method is echo-friendly and cost effective compared with other EOR techniques. In our research, on laboratory scale we produced bio-surfactant using the strain Pseudomonas putida (MTCC 2467) and injected into designed simple sand packed column which resembles actual petroleum reservoir. The experiment was conducted in order to determine the efficiency of produced bio-surfactant in oil recovery. The column was made of plastic material with 10 cm in length. The diameter was 2.5 cm. The column was packed with fine sand material. Sand was saturated with brine initially followed by oil saturation. Water flooding followed by bio-surfactant injection was done to determine the amount of oil recovered. Further, the injection of bio-surfactant volume was varied and checked how effectively oil recovery can be achieved. A comparative study was also done by injecting Triton X 100 which is one of the chemical surfactant. Since, bio-surfactant reduced surface and interfacial tension oil can be easily recovered from the porous sand packed column.

Keywords: Bio-surfactant, Bacteria, Interfacial tension, Sand column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2777
356 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
355 Using Satellite Images Datasets for Road Intersection Detection in Route Planning

Authors: Fatma El-zahraa El-taher, Ayman Taha, Jane Courtney, Susan Mckeever

Abstract:

Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions is critical to decisions such as crossing roads or selecting safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition  problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset are examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of detection of intersections in satellite images is evaluated.

Keywords: Satellite images, remote sensing images, data acquisition, autonomous vehicles, robot navigation, route planning, road intersections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
354 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, Fuzzy c means, Liver segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
353 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval

Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema

Abstract:

The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.

Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
352 Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant

Authors: Oliver Marunțălu, Elena Elisabeta Manea, Lăcrămioara Diana Robescu, Mihai Necșoiu, Gheorghe Lăzăroiu, Dana Andreya Bondrea

Abstract:

In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased.

Keywords: Flow, aeration, bioreactor, oxygen concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
351 Sweetpotato Organic Cultivation with Wood Vinegar, Entomopathogenic Nematode and Fermented Organic Substance from Plants

Authors: U. Pangnakorn, P. Tayamanont, R. Kurubunjerdjit

Abstract:

The effect of wood vinegar, entomopathogenic nematodes ((Steinernema thailandensis n. sp.) and fermented organic substances from four plants such as: Derris elliptica Roxb, Stemona tuberosa Lour, Tinospora crispa Mier and Azadirachta indica J. were tested on the five varieties of sweetpotato with potential for bioethanol production ie. Taiwan, China, PROC No.65-16, Phichit 166-5, and Phichit 129-6. The experimental plots were located at Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand. The aim of this study was to compare the efficiency of the five treatments for growth, yield and insect infestation on the five varieties of sweetpotato. Treatment with entomopathogenic nematodes gave the highest average weight of sweetpotato tubers (1.3 kg/tuber), followed by wood vinegar, fermented organic substances and mixed treatment with yields of 0.88, 0.46 and 0.43 kg/tuber, respectively. Also the entomopathogenic nematode treatment gave significantly higher average width and length of sweet potato (9.82 cm and 9.45 cm, respectively). Additionally, the entomopathogenic nematode provided the best control of insect infestation on sweetpotato leaves and tubers. Comparison among the varieties of sweetpotato, PROC NO.65-16 showed the highest weight and length. However, Phichit 129-6 gave significantly higher weight of 0.94 kg/tuber. Lastly, the lowest sweet potato weevil infestation on leaves and tubers occurred on Taiwan and Phichit 129-6.

Keywords: Sweetpotato (Ipomoea batatas), sweetpotato weevil (Cylas formicarius Fabr), wood vinegar, Entomopathogenic nematode (Steinernema thailandensis n. sp.), fermented organic substances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3245
350 In Search of a Suitable Neural Network Capable of Fast Monitoring of Congestion Level in Electric Power Systems

Authors: Pradyumna Kumar Sahoo, Prasanta Kumar Satpathy

Abstract:

This paper aims at finding a suitable neural network for monitoring congestion level in electrical power systems. In this paper, the input data has been framed properly to meet the target objective through supervised learning mechanism by defining normal and abnormal operating conditions for the system under study. The congestion level, expressed as line congestion index (LCI), is evaluated for each operating condition and is presented to the NN along with the bus voltages to represent the input and target data. Once, the training goes successful, the NN learns how to deal with a set of newly presented data through validation and testing mechanism. The crux of the results presented in this paper rests on performance comparison of a multi-layered feed forward neural network with eleven types of back propagation techniques so as to evolve the best training criteria. The proposed methodology has been tested on the standard IEEE-14 bus test system with the support of MATLAB based NN toolbox. The results presented in this paper signify that the Levenberg-Marquardt backpropagation algorithm gives best training performance of all the eleven cases considered in this paper, thus validating the proposed methodology.

Keywords: Line congestion index, critical bus, contingency, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
349 Design and Analysis of a Piezoelectric Linear Motor Based on Rigid Clamping

Authors: Chao Yi, Cunyue Lu, Lingwei Quan

Abstract:

Piezoelectric linear motors have the characteristics of great electromagnetic compatibility, high positioning accuracy, compact structure and no deceleration mechanism, which make it promising to applicate in micro-miniature precision drive systems. However, most piezoelectric motors are employed by flexible clamping, which has insufficient rigidity and is difficult to use in rapid positioning. Another problem is that this clamping method seriously affects the vibration efficiency of the vibrating unit. In order to solve these problems, this paper proposes a piezoelectric stack linear motor based on double-end rigid clamping. First, a piezoelectric linear motor with a length of only 35.5 mm is designed. This motor is mainly composed of a motor stator, a driving foot, a ceramic friction strip, a linear guide, a pre-tightening mechanism and a base. This structure is much simpler and smaller than most similar motors, and it is easy to assemble as well as to realize precise control. In addition, the properties of piezoelectric stack are reviewed and in order to obtain the elliptic motion trajectory of the driving head, a driving scheme of the longitudinal-shear composite stack is innovatively proposed. Finally, impedance analysis and speed performance testing were performed on the piezoelectric linear motor prototype. The motor can measure speed up to 25.5 mm/s under the excitation of signal voltage of 120 V and frequency of 390 Hz. The result shows that the proposed piezoelectric stacked linear motor obtains great performance. It can run smoothly in a large speed range, which is suitable for various precision control in medical images, aerospace, precision machinery and many other fields.

Keywords: Elliptical trajectory, linear motor, piezoelectric stack, rigid clamping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
348 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems

Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.

Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
347 Methodology of the Turkey’s National Geographic Information System Integration Project

Authors: Buse A. Ataç, Doğan K. Cenan, Arda Çetinkaya, Naz D. Şahin, Köksal Sanlı, Zeynep Koç, Akın Kısa

Abstract:

With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.

Keywords: Data specification, geoportal, GIS, INSPIRE, TUCBS, Turkey’s National Geographic Information System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693