Search results for: stock selection
894 Partner Selection in International Strategic Alliances: The Case of the Information Industry
Authors: H. Nakamura
Abstract:
This study analyzes international strategic alliances in the information industry. The purpose of this study is to clarify the strategic intention of an international alliance. Secondly, it investigates the influence of differences in the target markets of partner companies on alliances. Using an international strategy theory approach to analyze the global strategies of global companies, the study compares a database business and an electronic publishing business. In particular, these cases emphasized factors attributable to "people" and "learning", reliability and communication between organizations and the evolution of the IT infrastructure. The theory evolved in this study validates the effectiveness of these strategies.Keywords: Database business, electronic library, international strategic alliances, partner selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157893 A Content Vector Model for Text Classification
Authors: Eric Jiang
Abstract:
As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications. In this paper, an LSI-based content vector model for text classification is presented, which constructs multiple augmented category LSI spaces and classifies text by their content. The model integrates the class discriminative information from the training data and is equipped with several pertinent feature selection and text classification algorithms. The proposed classifier has been applied to email classification and its experiments on a benchmark spam testing corpus (PU1) have shown that the approach represents a competitive alternative to other email classifiers based on the well-known SVM and naïve Bayes algorithms.Keywords: Feature Selection, Latent Semantic Indexing, Text Classification, Vector Space Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884892 Size-Reduction Strategies for Iris Codes
Authors: Jutta Hämmerle-Uhl, Georg Penn, Gerhard Pötzelsberger, Andreas Uhl
Abstract:
Iris codes contain bits with different entropy. This work investigates different strategies to reduce the size of iris code templates with the aim of reducing storage requirements and computational demand in the matching process. Besides simple subsampling schemes, also a binary multi-resolution representation as used in the JBIG hierarchical coding mode is assessed. We find that iris code template size can be reduced significantly while maintaining recognition accuracy. Besides, we propose a two-stage identification approach, using small-sized iris code templates in a pre-selection stage, and full resolution templates for final identification, which shows promising recognition behaviour.
Keywords: Iris recognition, compact iris code, fast matching, best bits, pre-selection identification, two-stage identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787891 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground
Authors: Bhim Kumar Dahal
Abstract:
Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies. Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication. And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.
Keywords: Embankment, ground improvement, modelling, model prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951890 Multiple Criteria Decision Making Analysis for Selecting and Evaluating Fighter Aircraft
Authors: C. Ardil, A. M. Pashaev, R.A. Sadiqov, P. Abdullayev
Abstract:
In this paper, multiple criteria decision making analysis technique, is presented for ranking and selection of a set of determined alternatives - fighter aircraft - which are associated with a set of decision factors. In fighter aircraft design, conflicting decision criteria, disciplines, and technologies are always involved in the design process. Multiple criteria decision making analysis techniques can be helpful to effectively deal with such situations and make wise design decisions. Multiple criteria decision making analysis theory is a systematic mathematical approach for dealing with problems which contain uncertainties in decision making. The feasibility and contributions of applying the multiple criteria decision making analysis technique in fighter aircraft selection analysis is explored. In this study, an integrated framework incorporating multiple criteria decision making analysis technique in fighter aircraft analysis is established using entropy objective weighting method. An improved integrated multiple criteria decision making analysis method is utilized to aggregate the multiple decision criteria into one composite figure of merit, which serves as an objective function in the decision process. Therefore, it is demonstrated that the suitable multiple criteria decision making analysis method with decision solution provides an effective objective function for the decision making analysis. Considering that the inherent uncertainties and the weighting factors have crucial decision impacts on the fighter aircraft evaluation, seven fighter aircraft models for the multiple design criteria in terms of the weighting factors are constructed. The proposed multiple criteria decision making analysis model is based on integrated entropy index procedure, and additive multiple criteria decision making analysis theory. Hence, the applicability of proposed technique for fighter aircraft selection problem is considered. The constructed multiple criteria decision making analysis model can provide efficient decision analysis approach for uncertainty assessment of the decision problem. Consequently, the fighter aircraft alternatives are ranked based their final evaluation scores, and sensitivity analysis is conducted.
Keywords: Fighter Aircraft, Fighter Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 625889 Optimum Turbomachine Selection for Power Regeneration in Vapor Compression Cool Production Plants
Authors: S. B. Alavi, G. Cerri, L. Chennaoui, A. Giovannelli, S. Mazzoni
Abstract:
Power Regeneration in Refrigeration Plant concept has been analyzed and has been shown to be capable of saving about 25% power in Cryogenic Plants with the Power Regeneration System (PRS) running under nominal conditions. The innovative component Compressor Expander Group (CEG) based on turbomachinery has been designed and built modifying CETT compressor and expander, both selected for optimum plant performance. Experiments have shown the good response of the turbomachines to run with R404a as working fluid. Power saving up to 12% under PRS derated conditions (50% loading) has been demonstrated. Such experiments allowed predicting a power saving up to 25% under CEG full load.
Keywords: Compressor, Expander, Power Saving, Refrigeration Plant, Turbine, Turbomachinery Selection, Vapor Pressure Booster.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322888 Value–based Group Decision on Support Bridge Selection
Authors: Christiono Utomo, Arazi Idrus
Abstract:
Value-based group decision is very complicated since many parties involved. There are different concern caused by differing preferences, experiences, and background. Therefore, a support system is required to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. The support system is based on combination between value-based analysis, multi criteria group decision making based on satisfying options, and negotiation process based on coalition formation. This paper presents the group decision and negotiation on the selection of suitable material for a support bridge structure involving three decision makers, who are an estate manager, a project manager, and an engineer. There are three alternative solutions for the material of the support bridge structure, which are (a1) steel structure, (a2) reinforced concrete structure and (a3) wooden structure.
Keywords: Value-based, group decision, negotiation support, construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666887 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis
Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen
Abstract:
Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.
Keywords: Hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647886 Allometric Models for Biomass Estimation in Savanna Woodland Area, Niger State, Nigeria
Authors: Abdullahi Jibrin, Aishetu Abdulkadir
Abstract:
The development of allometric models is crucial to accurate forest biomass/carbon stock assessment. The aim of this study was to develop a set of biomass prediction models that will enable the determination of total tree aboveground biomass for savannah woodland area in Niger State, Nigeria. Based on the data collected through biometric measurements of 1816 trees and destructive sampling of 36 trees, five species specific and one site specific models were developed. The sample size was distributed equally between the five most dominant species in the study site (Vitellaria paradoxa, Irvingia gabonensis, Parkia biglobosa, Anogeissus leiocarpus, Pterocarpus erinaceous). Firstly, the equations were developed for five individual species. Secondly these five species were mixed and were used to develop an allometric equation of mixed species. Overall, there was a strong positive relationship between total tree biomass and the stem diameter. The coefficient of determination (R2 values) ranging from 0.93 to 0.99 P < 0.001 were realised for the models; with considerable low standard error of the estimates (SEE) which confirms that the total tree above ground biomass has a significant relationship with the dbh. F-test values for the biomass prediction models were also significant at p < 0.001 which indicates that the biomass prediction models are valid. This study recommends that for improved biomass estimates in the study site, the site specific biomass models should preferably be used instead of using generic models.
Keywords: Allometriy, biomass, carbon stock, model, regression equation, woodland, inventory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2788885 A Decision Support Model for Bank Branch Location Selection
Authors: Nihan Cinar
Abstract:
Location selection is one of the most important decision making process which requires to consider several criteria based on the mission and the strategy. This study-s object is to provide a decision support model in order to help the bank selecting the most appropriate location for a bank-s branch considering a case study in Turkey. The object of the bank is to select the most appropriate city for opening a branch among six alternatives in the South-Eastern of Turkey. The model in this study was consisted of five main criteria which are Demographic, Socio-Economic, Sectoral Employment, Banking and Trade Potential and twenty one subcriteria which represent the bank-s mission and strategy. Because of the multi-criteria structure of the problem and the fuzziness in the comparisons of the criteria, fuzzy AHP is used and for the ranking of the alternatives, TOPSIS method is used.Keywords: MCDM, bank branch location, fuzzy AHP, TOPSIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4967884 Military Fighter Aircraft Selection Using Multiplicative Multiple Criteria Decision Making Analysis Method
Authors: C. Ardil
Abstract:
Multiplicative multiple criteria decision making analysis (MCDMA) method is a systematic decision support system to aid decision makers reach appropriate decisions. The application of multiplicative MCDMA in the military aircraft selection problem is significant for proper decision making process, which is the decisive factor in minimizing expenditures and increasing defense capability and capacity. Nine military fighter aircraft alternatives were evaluated by ten decision criteria to solve the decision making problem. In this study, multiplicative MCDMA model aims to evaluate and select an appropriate military fighter aircraft for the Air Force fleet planning. The ranking results of multiplicative MCDMA model were compared with the ranking results of additive MCDMA, logarithmic MCDMA, and regrettive MCDMA models under the L2 norm data normalization technique to substantiate the robustness of the proposed method. The final ranking results indicate the military fighter aircraft Su-57 as the best available solution.
Keywords: Aircraft Selection, Military Fighter Aircraft Selection, Air Force Fleet Planning, Multiplicative MCDMA, Additive MCDMA, Logarithmic MCDMA, Regrettive MCDMA, Mean Weight, Multiple Criteria Decision Making Analysis, Sensitivity Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771883 A Model for the Characterization and Selection of Beeswaxes for use as base Substitute Tissue in Photon Teletherapy
Authors: R.M.V. Silva, D.N. Souza
Abstract:
This paper presents a model for the characterization and selection of beeswaxes for use as base substitute tissue for the manufacture of objects suitable for external radiotherapy using megavoltage photon beams. The model of characterization was divided into three distinct stages: 1) verification of aspects related to the origin of the beeswax, the bee species, the flora in the vicinity of the beehives and procedures to detect adulterations; 2) evaluation of physical and chemical properties; and 3) evaluation of beam attenuation capacity. The chemical composition of the beeswax evaluated in this study was similar to other simulators commonly used in radiotherapy. The behavior of the mass attenuation coefficient in the radiotherapy energy range was comparable to other simulators. The proposed model is efficient and enables convenient assessment of the use of any particular beeswax as a base substitute tissue for radiotherapy.Keywords: Beeswaxes, characterization, model, radiotherapy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523882 PSO-based Possibilistic Portfolio Model with Transaction Costs
Authors: Wei Chen, Cui-you Yao, Yue Qiu
Abstract:
This paper deals with a portfolio selection problem based on the possibility theory under the assumption that the returns of assets are LR-type fuzzy numbers. A possibilistic portfolio model with transaction costs is proposed, in which the possibilistic mean value of the return is termed measure of investment return, and the possibilistic variance of the return is termed measure of investment risk. Due to considering transaction costs, the existing traditional optimization algorithms usually fail to find the optimal solution efficiently and heuristic algorithms can be the best method. Therefore, a particle swarm optimization is designed to solve the corresponding optimization problem. At last, a numerical example is given to illustrate our proposed effective means and approaches.Keywords: Possibility theory, portfolio selection, transaction costs, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533881 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671880 Microscopic Simulation of Toll Plaza Safety and Operations
Authors: Bekir O. Bartin, Kaan Ozbay, Sandeep Mudigonda, Hong Yang
Abstract:
The use of microscopic traffic simulation in evaluating the operational and safety conditions at toll plazas is demonstrated. Two toll plazas in New Jersey are selected as case studies and were developed and validated in Paramics traffic simulation software. In order to simulate drivers’ lane selection behavior in Paramics, a utility-based lane selection approach is implemented in Paramics Application Programming Interface (API). For each vehicle approaching the toll plaza, a utility value is assigned to each toll lane by taking into account the factors that are likely to impact drivers’ lane selection behavior, such as approach lane, exit lane and queue lengths. The results demonstrate that similar operational conditions, such as lane-by-lane toll plaza traffic volume can be attained using this approach. In addition, assessment of safety at toll plazas is conducted via a surrogate safety measure. In particular, the crash index (CI), an improved surrogate measure of time-to-collision (TTC), which reflects the severity of a crash is used in the simulation analyses. The results indicate that the spatial and temporal frequency of observed crashes can be simulated using the proposed methodology. Further analyses can be conducted to evaluate and compare various different operational decisions and safety measures using microscopic simulation models.
Keywords: Microscopic simulation, toll plaza, surrogate safety, application programming interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788879 Low Cost Chip Set Selection Algorithm for Multi-way Partitioning of Digital System
Authors: Jae Young Park, Soongyu Kwon, Kyu Han Kim, Hyeong Geon Lee, Jong Tae Kim
Abstract:
This paper considers the problem of finding low cost chip set for a minimum cost partitioning of a large logic circuits. Chip sets are selected from a given library. Each chip in the library has a different price, area, and I/O pin. We propose a low cost chip set selection algorithm. Inputs to the algorithm are a netlist and a chip information in the library. Output is a list of chip sets satisfied with area and maximum partitioning number and it is sorted by cost. The algorithm finds the sorted list of chip sets from minimum cost to maximum cost. We used MCNC benchmark circuits for experiments. The experimental results show that all of chip sets found satisfy the multiple partitioning constraints.Keywords: lowest cost chip set, MCNC benchmark, multi-way partitioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503878 Project Portfolio Management Phases: A Technique for Strategy Alignment
Authors: Amaral, António, Araújo, Madalena
Abstract:
This paper seeks to give a general idea of the universe of project portfolio management, from its multidisciplinary nature, to the many challenges it raises, passing through the different techniques, models and tools used to solve the multiple problems known. It is intended to contribute to the clarification, with great depth, of the impacts and relationships involved in managing the projects- portfolio. It aims at proposing a technique for the project alignment with the organisational strategy, in order to select projects that later on will be considered in the analysis and selection of the portfolio. We consider the development of a methodology for assessing the project alignment index very relevant in the global market scenario. It can help organisations to gain a greater awareness of market dynamics, speed up the decision process and increase its consistency, thus enabling the strategic alignment and the improvement of the organisational performance.
Keywords: Project Portfolio Management Cycle, Project Portfolio Selection, Resource Assignment, Strategy Alignment technique
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3455877 A Review of Genetic Algorithm Optimization: Operations and Applications to Water Pipeline Systems
Authors: I. Abuiziah, N. Shakarneh
Abstract:
Genetic Algorithm (GA) is a powerful technique for solving optimization problems. It follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained. GA uses the main three operations, the selection, crossover and mutation to produce new generations from the old ones. GA has been widely used to solve optimization problems in many applications such as traveling salesman problem, airport traffic control, information retrieval (IR), reactive power optimization, job shop scheduling, and hydraulics systems such as water pipeline systems. In water pipeline systems we need to achieve some goals optimally such as minimum cost of construction, minimum length of pipes and diameters, and the place of protection devices. GA shows high performance over the other optimization techniques, moreover, it is easy to implement and use. Also, it searches a limited number of solutions.
Keywords: Genetic Algorithm, optimization, pipeline systems, selection, cross over.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5100876 Feature Selection for Web Page Classification Using Swarm Optimization
Authors: B. Leela Devi, A. Sankar
Abstract:
The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.
Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3259875 Evaluating and Selecting Optimization Software Packages: A Framework for Business Applications
Authors: Waleed Abohamad, Amr Arisha
Abstract:
Owing the fact that optimization of business process is a crucial requirement to navigate, survive and even thrive in today-s volatile business environment, this paper presents a framework for selecting a best-fit optimization package for solving complex business problems. Complexity level of the problem and/or using incorrect optimization software can lead to biased solutions of the optimization problem. Accordingly, the proposed framework identifies a number of relevant factors (e.g. decision variables, objective functions, and modeling approach) to be considered during the evaluation and selection process. Application domain, problem specifications, and available accredited optimization approaches are also to be regarded. A recommendation of one or two optimization software is the output of the framework which is believed to provide the best results of the underlying problem. In addition to a set of guidelines and recommendations on how managers can conduct an effective optimization exercise is discussed.Keywords: Complex Business Problems, Optimization, Selection Criteria, Software Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909874 Strength Optimization of Induction Hardened Splined Shaft – Material and Geometric Aspects
Authors: I. Barsoum, F. Khan
Abstract:
the current study presents a modeling framework to determine the torsion strength of an induction hardened splined shaft by considering geometry and material aspects with the aim to optimize the static torsion strength by selection of spline geometry and hardness depth. Six different spline geometries and seven different hardness profiles including non-hardened and throughhardened shafts have been considered. The results reveal that the torque that causes initial yielding of the induction hardened splined shaft is strongly dependent on the hardness depth and the geometry of the spline teeth. Guidelines for selection of the appropriate hardness depth and spline geometry are given such that an optimum static torsion strength of the component can be achieved.
Keywords: Static strength, splined shaft, torsion, induction hardening, hardness profile, finite element, optimization, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4970873 Efficient Supplies to Assembly Areas from Storage Stages
Authors: Matthias Schmidt, Steffen C. Eickemeyer, Prof. Peter Nyhuis
Abstract:
Guaranteeing the availability of the required parts at the scheduled time represents a key logistical challenge. This is especially important when several parts are required together. This article describes a tool that supports the positioning in the area of conflict between low stock costs and a high service level for a consumer.Keywords: Systems Modeling, Manufacturing Systems, Simulation & Control, logistics and supply chain management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649872 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil
Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul
Abstract:
As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on abiotic depletion potential (ADP) and acidification potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on ecotaxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.
Keywords: Biodiesel, Ethanol, Life Cycle Assessment, Methanol, Soybean Oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3401871 Combine a Population-based Incremental Learning with Artificial Immune System for Intrusion Detection System
Authors: Jheng-Long Wu, Pei-Chann Chang, Hsuan-Ming Chen
Abstract:
This research focus on the intrusion detection system (IDS) development which using artificial immune system (AIS) with population based incremental learning (PBIL). AIS have powerful distinguished capability to extirpate antigen when the antigen intrude into human body. The PBIL is based on past learning experience to adjust new learning. Therefore we propose an intrusion detection system call PBIL-AIS which combine two approaches of PBIL and AIS to evolution computing. In AIS part we design three mechanisms such as clonal selection, negative selection and antibody level to intensify AIS performance. In experimental result, our PBIL-AIS IDS can capture high accuracy when an intrusion connection attacks.
Keywords: Artificial immune system, intrusion detection, population-based incremental learning, evolution computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929870 Information Filtering using Index Word Selection based on the Topics
Authors: Takeru YOKOI, Hidekazu YANAGIMOTO, Sigeru OMATU
Abstract:
We have proposed an information filtering system using index word selection from a document set based on the topics included in a set of documents. This method narrows down the particularly characteristic words in a document set and the topics are obtained by Sparse Non-negative Matrix Factorization. In information filtering, a document is often represented with the vector in which the elements correspond to the weight of the index words, and the dimension of the vector becomes larger as the number of documents is increased. Therefore, it is possible that useless words as index words for the information filtering are included. In order to address the problem, the dimension needs to be reduced. Our proposal reduces the dimension by selecting index words based on the topics included in a document set. We have applied the Sparse Non-negative Matrix Factorization to the document set to obtain these topics. The filtering is carried out based on a centroid of the learning document set. The centroid is regarded as the user-s interest. In addition, the centroid is represented with a document vector whose elements consist of the weight of the selected index words. Using the English test collection MEDLINE, thus, we confirm the effectiveness of our proposal. Hence, our proposed selection can confirm the improvement of the recommendation accuracy from the other previous methods when selecting the appropriate number of index words. In addition, we discussed the selected index words by our proposal and we found our proposal was able to select the index words covered some minor topics included in the document set.Keywords: Information Filtering, Sparse NMF, Index wordSelection, User Profile, Chi-squared Measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455869 An Automatic Bayesian Classification System for File Format Selection
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.Keywords: Data mining, digital libraries, digital preservation, file format.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659868 Target Concept Selection by Property Overlap in Ontology Population
Authors: Seong-Bae Park, Sang-Soo Kim, Sewook Oh, Zooyl Zeong, Hojin Lee, Seong Rae Park
Abstract:
An ontology is widely used in many kinds of applications as a knowledge representation tool for domain knowledge. However, even though an ontology schema is well prepared by domain experts, it is tedious and cost-intensive to add instances into the ontology. The most confident and trust-worthy way to add instances into the ontology is to gather instances from tables in the related Web pages. In automatic populating of instances, the primary task is to find the most proper concept among all possible concepts within the ontology for a given table. This paper proposes a novel method for this problem by defining the similarity between the table and the concept using the overlap of their properties. According to a series of experiments, the proposed method achieves 76.98% of accuracy. This implies that the proposed method is a plausible way for automatic ontology population from Web tables.
Keywords: Ontology population, domain knowledge consolidation, target concept selection, property overlap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719867 A Scenario Oriented Supplier Selection by Considering a Multi Tier Supplier Network
Authors: Mohammad Najafi Nobar, Bahareh Pourmehr, Mehdi Hajimirarab
Abstract:
One of the main processes of supply chain management is supplier selection process which its accurate implementation can dramatically increase company competitiveness. In presented article model developed based on the features of second tiers suppliers and four scenarios are predicted in order to help the decision maker (DM) in making up his/her mind. In addition two tiers of suppliers have been considered as a chain of suppliers. Then the proposed approach is solved by a method combined of concepts of fuzzy set theory (FST) and linear programming (LP) which has been nourished by real data extracted from an engineering design and supplying parts company. At the end results reveal the high importance of considering second tier suppliers features as criteria for selecting the best supplier.Keywords: Supply Chain Management (SCM), SupplierSelection, Second Tier Supplier, Scenario Planning, Green Factor, Linear Programming, Fuzzy Set Theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806866 Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines
Authors: Essam Al Daoud
Abstract:
Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-kernel support vector machines. Particle swarm optimisation is used for feature selection by applying a new formula to update the position and the velocity of a particle; the support vector machine is used as a classifier. The proposed model is tested and compared with the other methods using the KDD CUP 1999 dataset. The results indicate that this new method achieves better accuracy rates than previous methods.Keywords: Feature selection, Intrusion detection, Support vector machine, Particle swarm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990865 Detecting Financial Bubbles Using Gap between Common Stocks and Preferred Stocks
Authors: Changju Lee, Seungmo Ku, Sondo Kim, Woojin Chang
Abstract:
How to detecting financial bubble? Addressing this simple question has been the focus of a vast amount of empirical research spanning almost half a century. However, financial bubble is hard to observe and varying over the time; there needs to be more research on this area. In this paper, we used abnormal difference between common stocks price and those preferred stocks price to explain financial bubble. First, we proposed the ‘W-index’ which indicates spread between common stocks and those preferred stocks in stock market. Second, to prove that this ‘W-index’ is valid for measuring financial bubble, we showed that there is an inverse relationship between this ‘W-index’ and S&P500 rate of return. Specifically, our hypothesis is that when ‘W-index’ is comparably higher than other periods, financial bubbles are added up in stock market and vice versa; according to our hypothesis, if investors made long term investments when ‘W-index’ is high, they would have negative rate of return; however, if investors made long term investments when ‘W-index’ is low, they would have positive rate of return. By comparing correlation values and adjusted R-squared values of between W-index and S&P500 return, VIX index and S&P500 return, and TED index and S&P500 return, we showed only W-index has significant relationship between S&P500 rate of return. In addition, we figured out how long investors should hold their investment position regard the effect of financial bubble. Using this W-index, investors could measure financial bubble in the market and invest with low risk.
Keywords: Financial bubbles, detection, preferred stocks, pairs trading, future return, forecast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131