A Model for the Characterization and Selection of Beeswaxes for use as base Substitute Tissue in Photon Teletherapy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
A Model for the Characterization and Selection of Beeswaxes for use as base Substitute Tissue in Photon Teletherapy

Authors: R.M.V. Silva, D.N. Souza

Abstract:

This paper presents a model for the characterization and selection of beeswaxes for use as base substitute tissue for the manufacture of objects suitable for external radiotherapy using megavoltage photon beams. The model of characterization was divided into three distinct stages: 1) verification of aspects related to the origin of the beeswax, the bee species, the flora in the vicinity of the beehives and procedures to detect adulterations; 2) evaluation of physical and chemical properties; and 3) evaluation of beam attenuation capacity. The chemical composition of the beeswax evaluated in this study was similar to other simulators commonly used in radiotherapy. The behavior of the mass attenuation coefficient in the radiotherapy energy range was comparable to other simulators. The proposed model is efficient and enables convenient assessment of the use of any particular beeswax as a base substitute tissue for radiotherapy.

Keywords: Beeswaxes, characterization, model, radiotherapy

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1072341

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475

References:


[1] E.B. Podgorsak, Radiation Oncology Physics: A Handbook for Teachers and Students, IAEA,1957.
[2] Brazilian Radiotherapy Society.
[on line] http://www.sbradioterapia.com.br.
[3] D.R. White, Tissue substitutes in experimental radiation physics. Medical Physics, pp. 467-479, 1978.
[4] D.R. White, The formulation of tissue substitute materials using basic interaction data. Physics in medicine and biology, pp. 22-25, 1975.
[5] D.R. White, C. Constatinou, C: Anthropomorphic phantom materials. The Progress in Medical Radiation Physics. Medical Radiation Physics, pp. 133-193, 1982.
[6] International Commission On Radiation Units And Measurements, Tissue Substitutes in Radiation Dosimetry and Measurement. Report.44, 1989.
[7] R. Zovaro, Ceras de abelhas: Produção e beneficiamento. Vol.1, AEP, 2007.
[8] D. Scheidegger, B├│lus e filtros em cunha feitos com cera de abelha para utiliza├º├úo em radioterapia com 60Co. Publica├º├Áes, CEFET, 2003.
[9] M. Tobler, Design and production of wax compensators for electron treatments of the chest wall. Medical dosimetry. pp. 199-206, 2006.
[10] Embrapa Meio-Norte.
[on line] http://www.embrapa.mn.gov.br.
[11] J.L. Bernal, Physico-chemical parameters for the characterization of pure beeswax and detection of adulterations. European Journal of lipid science and technology, pp. 158-166, 2005.
[12] A.R. Silva, Characterization of the honey bee flora in the semi-arid of Brazilian state of Paraiba. Arquivos de Zootecnia, pp. 2-4, 2000.
[13] Ministério da Agricultura, Pecu├íria e Abastecimento. Regulamentos técnicos de identidade e qualidade de produtos ap├¡colas. Instru├º├úo normativa no3, Sistema de consulta a legisla├º├úo - SISLEG, 2001.
[14] United States Pharmacopoeial Convention, National Publishing, 2000.
[15] British Prarmacopoeia Commission Secretariat, HMSO, 1993.
[16] Real Farmacopea Espa├▒ola, Ministerio de Sanidad y Consumo, 1997.
[17] R.N. Rangel, Práticas de físico-química. Blucher, 2006.
[18] L. Casares, Tratado de Analisis Químico. Toledo, 1997.
[19] E. Moretto. Óleos e gorduras vegetais: Processamento e análises. Ed.UFSC, 1989.
[20] Farmacopeia Brasileira, Ministério da Sa├║de, Atheneu, 1988.
[21] J. Serra, Características físico-químicas de la cera de abejas producida en España. Alimentación, equipos y tecnologia, pp. 213-216, 1989.
[22] D.M. Robinson, J.W. Scrimger, Monoenergetic approximation of a polyenergetic beam: a theorical approach. The British Journal of Radiology, pp. 452-454, 1990.
[23] J.H. Hubbel, S.M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional Substances of Dosimetric Interest. NISTIR 5632, 1995.
[24] M. J. Berger, J.H. Hubbell, S. M. Seltzer, J. S. Coursey, and D. S. Zucker, XCOM: Photon Cross Section Database (Version 1.2). Gaithersburg, MD: National Institute of Standards and Technology, 1999.
[25] IAEA - TECDOC 1151 - Aspectos Físicos de La Garantía de Calidad en Radioterapia: Protocolo de Control de Calidad. IAEA, 2000.
[26] E.J. Turner, Atoms, radiation, and radiation protection. Willey, 2007.
[27] F. Khan. The physics of radiation therapy. Williams and Wilkins, 1994.
[28] AIEA, Absorbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards of absorbed dose to water. Technical Report Series - 398, 2000.