Search results for: air quality classification
3638 Applying Fuzzy Analytic Hierarchy Process for Evaluating Service Quality of Online Auction
Authors: Chien-Hua Wang, Meng-Ying Chou, Chin-Tzong Pang
Abstract:
This paper applies fuzzy AHP to evaluate the service quality of online auction. Service quality is a composition of various criteria. Among them many intangible attributes are difficult to measure. This characteristic introduces the obstacles for respondents on reply in the survey. So as to overcome this problem, we invite fuzzy set theory into the measurement of performance and use AHP in obtaining criteria. We found the most concerned dimension of service quality is Transaction Safety Mechanism and the least is Charge Item. Other criteria such as information security, accuracy and information are too vital.Keywords: Fuzzy set theory, AHP, Online auction, Service quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21783637 SEM Image Classification Using CNN Architectures
Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.
Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983636 Seasonal Variations in Surface Water Quality, Samut Songkram Province, Thailand
Authors: Sivapan Choo-In, Chaisri Tharasawatpipat, Srisuwan Kaseamsawat, Tatsanawalai Utarasakul
Abstract:
The research aims to study the quality of surface water for consumer in Samut Songkram province. Water sample were collected from 217 sampling sites conclude 72 sampling sites in Amphawa, 67 sampling sites in Bangkhonthee and 65 sampling sites in Muang. Water sample were collected in December 2011 for winter, March 2012 for summer and August 2012 for rainy season. From the investigation of surface water quality in Mae Klong River, main and tributaries canals in Samut Songkram province, we found that water quality meet the type III of surface water quality standard issued by the National Environmental Quality Act B.E. 1992. Seasonal variations of pH, Temperature, nitrate, lead and cadmium have statistical differences between 3 seasons.
Keywords: Samut Songkram Province, Surface water quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21203635 Prioritizing Service Quality Dimensions: A Neural Network Approach
Authors: A. Golmohammadi, B. Jahandideh
Abstract:
One of the determinants of a firm-s prosperity is the customers- perceived service quality and satisfaction. While service quality is wide in scope, and consists of various dimensions, there may be differences in the relative importance of these dimensions in affecting customers- overall satisfaction of service quality. Identifying the relative rank of different dimensions of service quality is very important in that it can help managers to find out which service dimensions have a greater effect on customers- overall satisfaction. Such an insight will consequently lead to more effective resource allocation which will finally end in higher levels of customer satisfaction. This issue – despite its criticality- has not received enough attention so far. Therefore, using a sample of 240 bank customers in Iran, an artificial neural network is developed to address this gap in the literature. As customers- evaluation of service quality is a subjective process, artificial neural networks –as a brain metaphor- may appear to have a potentiality to model such a complicated process. Proposing a neural network which is able to predict the customers- overall satisfaction of service quality with a promising level of accuracy is the first contribution of this study. In addition, prioritizing the service quality dimensions in affecting customers- overall satisfaction –by using sensitivity analysis of neural network- is the second important finding of this paper.Keywords: service quality, customer satisfaction, relative importance, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16433634 The Comparisons of Average Outgoing Quality Limit between the MCSP-2-C and MCSP-C
Authors: P. Guayjarernpanishkand, T. Mayureesawan
Abstract:
This paper presents a comparison of average outgoing quality limit of the MCSP-2-C plan with MCSP-C when MCSP-2-C has been developed from MCSP-C. The parameters used in MCSP-2- C are: i (the clearance number), c (the acceptance number), m (the number of conforming units to be found before allowing c nonconforming units in the sampling inspection), f1 and f2 (the sampling frequency at level 1 and 2, respectively). The average outgoing quality limit (AOQL) values from two plans were compared and we found that for all sets of i, r, and c values, MCSP-2-C gives higher values than MCSP-C. For all sets of i, r, and c values, the average outgoing quality values of MCSP-C and MCSP-2-C are similar when p is low or high but is difference when p is moderate.Keywords: average outgoing quality, average outgoing quality limit, continuous sampling plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15063633 A Review on Image Segmentation Techniques and Performance Measures
Authors: David Libouga Li Gwet, Marius Otesteanu, Ideal Oscar Libouga, Laurent Bitjoka, Gheorghe D. Popa
Abstract:
Image segmentation is a method to extract regions of interest from an image. It remains a fundamental problem in computer vision. The increasing diversity and the complexity of segmentation algorithms have led us firstly, to make a review and classify segmentation techniques, secondly to identify the most used measures of segmentation performance and thirdly, discuss deeply on segmentation philosophy in order to help the choice of adequate segmentation techniques for some applications. To justify the relevance of our analysis, recent algorithms of segmentation are presented through the proposed classification.Keywords: Classification, image segmentation, measures of performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20513632 Framework for Spare Inventory Management
Authors: Eman M. Wahba, Noha M. Galal, Khaled S. El-Kilany
Abstract:
Spare parts inventory management is one of the major areas of inventory research. Analysis of recent literature showed that an approach integrating spare parts classification, demand forecasting, and stock control policies is essential; however, adapting this integrated approach is limited. This work presents an integrated framework for spare part inventory management and an Excel based application developed for the implementation of the proposed framework. A multi-criteria analysis has been used for spare classification. Forecasting of spare parts- intermittent demand has been incorporated into the application using three different forecasting models; namely, normal distribution, exponential smoothing, and Croston method. The application is also capable of running with different inventory control policies. To illustrate the performance of the proposed framework and the developed application; the framework is applied to different items at a service organization. The results achieved are presented and possible areas for future work are highlighted.Keywords: Demand forecasting, intermittent demand, inventory management, integrated approach, spare parts, spare part classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65733631 A Supervised Text-Independent Speaker Recognition Approach
Authors: Tudor Barbu
Abstract:
We provide a supervised speech-independent voice recognition technique in this paper. In the feature extraction stage we propose a mel-cepstral based approach. Our feature vector classification method uses a special nonlinear metric, derived from the Hausdorff distance for sets, and a minimum mean distance classifier.
Keywords: Text-independent speaker recognition, mel cepstral analysis, speech feature vector, Hausdorff-based metric, supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18293630 Wireless Sensor Networks for Water Quality Monitoring: Prototype Design
Authors: Cesar Eduardo Hernández Curiel, Victor Hugo Benítez Baltazar, Jesús Horacio Pacheco Ramírez
Abstract:
This paper is devoted to present the advances in the design of a prototype that is able to supervise the complex behavior of water quality parameters such as pH and temperature, via a real-time monitoring system. The current water quality tests that are performed in government water quality institutions in Mexico are carried out in problematic locations and they require taking manual samples. The water samples are then taken to the institution laboratory for examination. In order to automate this process, a water quality monitoring system based on wireless sensor networks is proposed. The system consists of a sensor node which contains one pH sensor, one temperature sensor, a microcontroller, and a ZigBee radio, and a base station composed by a ZigBee radio and a PC. The progress in this investigation shows the development of a water quality monitoring system. Due to recent events that affected water quality in Mexico, the main motivation of this study is to address water quality monitoring systems, so in the near future, a more robust, affordable, and reliable system can be deployed.Keywords: pH measurement, water quality monitoring, wireless sensor networks, ZigBee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38703629 A Study of Agile-Based Approaches to Improve Software Quality
Authors: Gurmeet Kaur, Jyoti Pruthi
Abstract:
Agile Software development approaches and techniques are being considered as efficient, effective, and popular methods to the development of software. Agile software developments are useful for developing high-quality software that completes client requirements with zero defects, and in short delivery period. In agile software development methodology, quality is related to coding, which means quality, is managed through the use of approaches like refactoring, pair programming, test-driven development, behavior-driven development, acceptance test-driven development, and demand-driven development. The quality of software is measured using metrics like the number of defects during the development and improvement of the software. Usage of the above-mentioned methods or approaches reduces the possibilities of defects in developed software, and hence improves quality. This paper focuses on the study of agile-based quality methods or approaches for software development that ensures improved quality of software as well as reduced cost, and customer satisfaction.
Keywords: Agile software development, ASD, Acceptance test-driven development, ATDD, Behavior-driven development, BDD, Demand-driven development. DDD, Test-driven development, TDD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6913628 Long-Term Simulation of Digestive Sound Signals by CEPSTRAL Technique
Authors: Einalou Z., Najafi Z., Maghooli K. Zandi Y, Sheibeigi A
Abstract:
In this study, an investigation over digestive diseases has been done in which the sound acts as a detector medium. Pursue to the preprocessing the extracted signal in cepstrum domain is registered. After classification of digestive diseases, the system selects random samples based on their features and generates the interest nonstationary, long-term signals via inverse transform in cepstral domain which is presented in digital and sonic form as the output. This structure is updatable or on the other word, by receiving a new signal the corresponding disease classification is updated in the feature domain.
Keywords: Cepstrum, databank, digestive disease, acousticsignal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15563627 The Impact of Governance on Happiness: Evidence from Quantile Regressions
Authors: Chiung-Ju Huang
Abstract:
This study utilizes the quantile regression analysis to examine the impact of governance (including democratic quality and technical quality) on happiness in 101 countries worldwide, classified as “developed countries” and “developing countries”. The empirical results show that the impact of democratic quality and technical quality on happiness is significantly positive for “developed countries”, while is insignificant for “developing countries”. The results suggest that the authorities in developed countries can enhance the level of individual happiness by means of improving the democracy quality and technical quality. However, for developing countries, promoting the quality of governance in order to enhance the level of happiness may not be effective. Policy makers in developed countries may pay more attention on increasing real GDP per capita instead of promoting the quality of governance to enhance individual happiness.
Keywords: Governance, happiness, multiple regression, quantile regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17023626 Mining Educational Data to Analyze the Student Motivation Behavior
Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri
Abstract:
The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30933625 A Semantic Recommendation Procedure for Electronic Product Catalog
Authors: Hadi Khosravi Farsani, Mohammadali Nematbakhsh
Abstract:
To overcome the product overload of Internet shoppers, we introduce a semantic recommendation procedure which is more efficient when applied to Internet shopping malls. The suggested procedure recommends the semantic products to the customers and is originally based on Web usage mining, product classification, association rule mining, and frequently purchasing. We applied the procedure to the data set of MovieLens Company for performance evaluation, and some experimental results are provided. The experimental results have shown superior performance in terms of coverage and precision.Keywords: Personalization, Recommendation, OWL Ontology, Electronic Catalogs, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19223624 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data
Authors: Sašo Pečnik, Borut Žalik
Abstract:
This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR datasets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.
Keywords: Filtering, graphics, level-of-details, LiDAR, realtime visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25453623 Feature-Driven Classification of Musical Styles
Authors: A. Buzzanca, G. Castellano, A.M. Fanelli
Abstract:
In this paper we address the problem of musical style classification, which has a number of applications like indexing in musical databases or automatic composition systems. Starting from MIDI files of real-world improvisations, we extract the melody track and cut it into overlapping segments of equal length. From these fragments, some numerical features are extracted as descriptors of style samples. We show that a standard Bayesian classifier can be conveniently employed to build an effective musical style classifier, once this set of features has been extracted from musical data. Preliminary experimental results show the effectiveness of the developed classifier that represents the first component of a musical audio retrieval systemKeywords: Musical style, Bayesian classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12973622 Quantity and Quality Aware Artificial Bee Colony Algorithm for Clustering
Authors: U. Idachaba, F. Z. Wang, A. Qi, N. Helian
Abstract:
Artificial Bee Colony (ABC) algorithm is a relatively new swarm intelligence technique for clustering. It produces higher quality clusters compared to other population-based algorithms but with poor energy efficiency, cluster quality consistency and typically slower in convergence speed. Inspired by energy saving foraging behavior of natural honey bees this paper presents a Quality and Quantity Aware Artificial Bee Colony (Q2ABC) algorithm to improve quality of cluster identification, energy efficiency and convergence speed of the original ABC. To evaluate the performance of Q2ABC algorithm, experiments were conducted on a suite of ten benchmark UCI datasets. The results demonstrate Q2ABC outperformed ABC and K-means algorithm in the quality of clusters delivered.
Keywords: Artificial bee colony algorithm, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21203621 A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring
Authors: Haoyu Ma, Bin Hu, Mike Jackson, Jingzhi Yan, Wen Zhao
Abstract:
In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.
Keywords: Sleep, Sleep stage, Automatic sleep scoring, Electroencephalography, Decision tree, Artificial neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20713620 A Study of Visitors, on Service Quality, Satisfaction and Loyal in Ya Tam San Bikeway
Authors: Ching-hui Lin, Yen-Chieh Wen
Abstract:
The main purpose of this study is to analyze the feelings of tourists for the service quality of the bikeway. In addition, this study also analyzed the causal relationship between service quality and satisfaction to visitor-s lane loyalty. In this study, the Ya Tam San bikeway visitor-s subjects, using the designated convenience sampling carried out the survey, a total of 651 questionnaires were validly. Valid questionnaires after statistical analysis, the following findings: 1. Visitor-s lane highest quality of service project: the routes through the region weather pleasant. Lane "with health and sports," the highest satisfaction various factors of service quality and satisfaction, loyal between correlations exist. 4. Guided tours of bikeways, the quality of the environment, and modeling imagery can effectively predict visitor satisfaction. 5. Quality of bikeway, public facilities, guided tours, and modeling imagery can effectively predict visitor loyalty. According to the above results, the study not only makes recommendations to the government units and the bicycle industry, also asked the research direction for future researchers.Keywords: Service quality, satisfaction, loyal, bikeway.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13703619 Taxonomy of Structured P2P Overlay Networks Security Attacks
Authors: Zied Trifa, Maher Khemakhem
Abstract:
The survey and classification of the different security attacks in structured peer-to-peer (P2P) overlay networks can be useful to computer system designers, programmers, administrators, and users. In this paper, we attempt to provide a taxonomy of structured P2P overlay networks security attacks. We have specially focused on the way these attacks can arise at each level of the network. Moreover, we observed that most of the existing systems such as Content Addressable Network (CAN), Chord, Pastry, Tapestry, Kademlia, and Viceroy suffer from threats and vulnerability which lead to disrupt and corrupt their functioning. We hope that our survey constitutes a good help for who-s working on this area of research.Keywords: P2P, Structured P2P Overlay Networks, DHT, Security, classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17633618 Application of Artificial Neural Network for Predicting Maintainability Using Object-Oriented Metrics
Authors: K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra
Abstract:
Importance of software quality is increasing leading to development of new sophisticated techniques, which can be used in constructing models for predicting quality attributes. One such technique is Artificial Neural Network (ANN). This paper examined the application of ANN for software quality prediction using Object- Oriented (OO) metrics. Quality estimation includes estimating maintainability of software. The dependent variable in our study was maintenance effort. The independent variables were principal components of eight OO metrics. The results showed that the Mean Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we found that ANN method was useful in constructing software quality model.
Keywords: Software quality, Measurement, Metrics, Artificial neural network, Coupling, Cohesion, Inheritance, Principal component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25733617 Detection of Power Quality Disturbances using Wavelet Transform
Authors: Sudipta Nath, Arindam Dey, Abhijit Chakrabarti
Abstract:
This paper presents features that characterize power quality disturbances from recorded voltage waveforms using wavelet transform. The discrete wavelet transform has been used to detect and analyze power quality disturbances. The disturbances of interest include sag, swell, outage and transient. A power system network has been simulated by Electromagnetic Transients Program. Voltage waveforms at strategic points have been obtained for analysis, which includes different power quality disturbances. Then wavelet has been chosen to perform feature extraction. The outputs of the feature extraction are the wavelet coefficients representing the power quality disturbance signal. Wavelet coefficients at different levels reveal the time localizing information about the variation of the signal.Keywords: Power quality, detection of disturbance, wavelet transform, multiresolution signal decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34243616 A Tool for Audio Quality Evaluation Under Hostile Environment
Authors: Akhil Kumar Arya, Jagdeep Singh Lather, Lillie Dewan
Abstract:
In this paper is to evaluate audio and speech quality with the help of Digital Audio Watermarking Technique under the different types of attacks (signal impairments) like Gaussian Noise, Compression Error and Jittering Effect. Further attacks are considered as Hostile Environment. Audio and Speech Quality Evaluation is an important research topic. The traditional way for speech quality evaluation is using subjective tests. They are reliable, but very expensive, time consuming, and cannot be used in certain applications such as online monitoring. Objective models, based on human perception, were developed to predict the results of subjective tests. The existing objective methods require either the original speech or complicated computation model, which makes some applications of quality evaluation impossible.Keywords: Digital Watermarking, DCT, Speech Quality, Attacks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16243615 A Kernel Classifier using Linearised Bregman Iteration
Authors: K. A. D. N. K Wimalawarne
Abstract:
In this paper we introduce a novel kernel classifier based on a iterative shrinkage algorithm developed for compressive sensing. We have adopted Bregman iteration with soft and hard shrinkage functions and generalized hinge loss for solving l1 norm minimization problem for classification. Our experimental results with face recognition and digit classification using SVM as the benchmark have shown that our method has a close error rate compared to SVM but do not perform better than SVM. We have found that the soft shrinkage method give more accuracy and in some situations more sparseness than hard shrinkage methods.Keywords: Compressive sensing, Bregman iteration, Generalisedhinge loss, sparse, kernels, shrinkage functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13773614 Quantitative Quality Assessment of Microscopic Image Mosaicing
Authors: Alessandro Bevilacqua, Alessandro Gherardi, Filippo Piccinini
Abstract:
The mosaicing technique has been employed in more and more application fields, from entertainment to scientific ones. In the latter case, often the final evaluation is still left to human beings, that assess visually the quality of the mosaic. Many times, a lack of objective measurements in microscopic mosaicing may prevent the mosaic from being used as a starting image for further analysis. In this work we analyze three different metrics and indexes, in the domain of signal analysis, image analysis and visual quality, to measure the quality of different aspects of the mosaicing procedure, such as registration errors and visual quality. As the case study we consider the mosaicing algorithm we developed. The experiments have been carried out by considering mosaics with very different features: histological samples, that are made of detailed and contrasted images, and live stem cells, that show a very low contrast and low detail levels.
Keywords: Mosaicing, quality assessment, microscopy, stem cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22493613 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging
Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul
Abstract:
Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.
Keywords: Mung bean, near infrared, germinatability, hard seed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11623612 Simulating Voltage Sag Using PSCAD Software
Authors: Kang Chia Yang, Hushairi HJ Zen, Nur Ikhmar@Najemeen Binti Ayob
Abstract:
Power quality is used to describe the degree of consistency of electrical energy expected from generation source to point of use. The term power quality refers to a wide variety of electromagnetic phenomena that characterize the voltage and current at a given time and at a given location on the power system. Power quality problems can be defined as problem that results in failure of customer equipments, which manifests itself as an economic burden to users, or produces negative impacts on the environment. Voltage stability, power factor, harmonics pollution, reactive power and load unbalance are some of the factors that affect the consistency or the quality level. This research proposal proposes to investigate and analyze the causes and effects of power quality to homes and industries in Sarawak. The increasing application of electronics equipment used in the industries and homes has caused a big impact on the power quality. Many electrical devices are now interconnected to the power network and it can be observed that if the power quality of the network is good, then any loads connected to it will run smoothly and efficiently. On the other hand, if the power quality of the network is bad, then loads connected to it will fail or may cause damage to the equipments and reduced its lifetime. The outcome of this research will enable better and novel solutions of poor power quality to small industries and reduce damage of electrical devices and products in the industries.
Keywords: Power quality, power network, voltage dip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43463611 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram
Authors: S. Shanthi, V. Muralibhaskaran
Abstract:
Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.
Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29443610 Stress and Social Support as Predictors of Quality of Life: A Case among Flood Victims in Malaysia
Authors: Najib Ahmad Marzuki, Che Su Mustaffa, Johana Johari, Nur Hafizza Rahaman
Abstract:
The purpose of this paper is to examine the effects and relationship of stress and social support towards the quality of life among flood victims in Malaysia. A total of 764 respondents took part in the survey via convenience sampling. The Depression, Anxiety and Stress scale (DASS) was utilized to measure stress while The Multidimensional Scale of Perceived Social Support was used to measure social support. To measure quality of life, the combination of WHO Quality of Life – BREF (WHOQOL-BREF) and The Impact of Event Scale – Revised (IES-R) were utilized. The findings of this study indicate that there were significant correlations between variables in the study. The findings showed a significant negative relation between stress and quality of life; and significant positive correlations between support from family as well as support from friends with quality of life. Stress and support from family were found to be significant predictors that influence the quality of life among flood victims.Keywords: Stress, social support, quality of life, flood victims.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25313609 Design of a Neural Networks Classifier for Face Detection
Authors: F. Smach, M. Atri, J. Mitéran, M. Abid
Abstract:
Face detection and recognition has many applications in a variety of fields such as security system, videoconferencing and identification. Face classification is currently implemented in software. A hardware implementation allows real-time processing, but has higher cost and time to-market. The objective of this work is to implement a classifier based on neural networks MLP (Multi-layer Perceptron) for face detection. The MLP is used to classify face and non-face patterns. The systm is described using C language on a P4 (2.4 Ghz) to extract weight values. Then a Hardware implementation is achieved using VHDL based Methodology. We target Xilinx FPGA as the implementation support.Keywords: Classification, Face Detection, FPGA Hardware description, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281