


Abstract—Agile Software development approaches and

techniques are being considered as efficient, effective, and popular
methods to the development of software. Agile software
developments are useful for developing high-quality software that
completes client requirements with zero defects, and in short delivery
period. In agile software development methodology, quality is related
to coding, which means quality, is managed through the use of
approaches like refactoring, pair programming, test-driven
development, behavior-driven development, acceptance test-driven
development, and demand-driven development. The quality of
software is measured using metrics like the number of defects during
the development and improvement of the software. Usage of the
above-mentioned methods or approaches reduces the possibilities of
defects in developed software, and hence improves quality. This
paper focuses on the study of agile-based quality methods or
approaches for software development that ensures improved quality
of software as well as reduced cost, and customer satisfaction.

Keywords— Agile software development, ASD, Acceptance test-

driven development, ATDD, Behavior-driven development, BDD,
Demand-driven development. DDD, Test-driven development, TDD.

I. INTRODUCTION

LONG with the exposure of dynamic societies or
evolution in the software industry, the development of

software projects is facing dramatic changes. As software
requirements are not clear and prediction to complete a project
within a limited expense and limited period is not possible
using traditional software development strategies, agile-based
software development strategies that work on the basis of
finding a reasonable solution to such problems have been
employed since 2000 [1], [2]. Agile approaches are featured
by the easy and quick techniques to modify the product as per
a user requirement which helps to customer satisfaction and
delivery of product in time. There are many agile approaches
and methodologies that are approved, and used in the software
engineering discipline. Adaptive Software Development,
Crystal family, FDD, XP, and SCRUM are the most well-
known methodologies. Generally, agile software development
(ASD) encourages a management system that supports
teamwork, frequent review, modification, framing the best
methods, and allowing for fast delivery of high-quality
product [3]. Refactoring and testing are critical events in ASD.
In these techniques, there must be continuous modification to
the members of a project: designers, and developers, etc. The
progress of software projects lies in the satisfaction of

Gurmeet Kaur, Research Scholar, is with the Manav Rachna University
Faridabad, Haryana, India (e-mail: grmtkaur02@gmail.com).

Dr. JyotiPruthi, Associate Professor, is with the Manav Rachna University
Faridabad, Haryana, India.

functionalities as well as quality characteristic, such as
reliability, adaptability, and performance. Besides, there are
various corresponding points between the serviceability, and
quality aspects [4]-[6]. Hence, also quality aspects must be
examined and the design of software development must be
assembled in such manners that there are connections between
the quality, and performance aspects. Of course, when a
software project fails or modifies, the reason is not its
incomplete performance but its faulty quality aspects such as
its low performance, applicability, and improvement [7]. This
paper focuses on agile methodology-based quality approaches
for high quality of software development.

II. RELATED STUDY

The main concern in the software development industry is
managing the defect. The primary objective of defect
management is the satisfaction of the customer. The delivery
of a high-quality software product leads to customer
satisfaction [8].The distinct characteristics of a high-quality
software product are that, they are less defective, and produce
predicable results and delivery in time and cost. Software
inspection, review, and testing are some of the most common
strategies to detect defects before the release of a software
product in the market in the traditional software development
life cycle [9], [10]. But ASD guarantees higher project
satisfaction at lower cost with efficient resource usage. In
agile techniques, the development of software takes place in
iterations repeatedly to progressively define steps. In a
software development process, there are phases such as
planning, design, coding, testing, and customer feedback, and
there are various errors that identify in these phases. As ASD
does not concentrate externally on formal review and
inspection techniques, there is a need to add implicit
techniques for defect detection, and quality enhancement
procedures in the development life cycle. ASD uses a non-
formal method of quality management. It is the responsibility
of team members to assure quality preservation, as well as the
implementation of best quality approaches [11]. ASD
strategies are adaptable means, and remain open to change
requirements over time. Organizations that prefer ASD
methods are associates with standard tools and techniques
[12]. The analysis performed for the development of software
includes identification of prime parameters with their levels
for ideal defects acquiring that will help engineers and
managers to make better decisions for improvement of the
quality of products. The software quality process focuses on
controlling product quality and aims to produce non-defective
or adequate products. In real situations, defects can be

A Study of Agile-Based Approaches to Improve
Software Quality

A

Gurmeet Kaur, Jyoti Pruthi

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:5, 2022

158International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
54

8.
pd

f

originated at every stage of the software process [13], for
example the defects could be originated by stakeholders, the
product owner, or the software development team from the
requirement engineering phase. Moreover, different
environments could be the cause of errors, e.g., hardware
specification, platform and the social environment, including
culture and tradition, etc. The general software process
consists of five steps as follows: requirement analysis, design,
construction, test, and delivery, and maintenance. Research in
[13] reported that defects can occur in every phase of the
software process. A software defects could be avoided with
increasing the experience of software developers or by using
the different defect reducing techniques as discussed in the
next section.

III. AGILE-BASED QUALITY APPROACHES OR METHODS

ASD techniques and methods include several approaches
that assure quality. This section describes various approaches
which are practical and employed to perform quality assurance
based on agile.

A. On-site Customers

This is a general method of quality assurance in which the
customer helps the developers to filter and correct the
requirements. Therefore, customer involvement is much
stronger in ASD as compared to traditional development. In
ASD, the involvement of the customer lies in every phase of
development such as planning, designing, coding, and testing,
whereas in traditional development methods their involvement
in the definition, system and software design may be limited.
In traditional development methods, customer input is
generally limited to inspection and review stages as outlined in
the development plan, and therefore their involvement is less
intensive than in ASD techniques.

B. System Metaphor

A metaphor gives a description of the working system using
examples on analogies. It can help overcome any issues
among designers and customers by providing a model and
guide to the dialogue between the relevant parties. As well, it
includes classes and patterns that are useful for coding. It is
used for the common system of names of classes, patterns,
functions, and methods, etc.; thus, every member of a team
can understand the working of code and the right way to
modify the functionality of the system. In this way, system
metaphor aids the team in the evaluation of the design [14].

C. Pair Programming

In pair programming, work is done by two programmers,
who have to sit next to each other on the same workstation.
One programmer writes the code and other reviews it. The
programmers can interchange their jobs after a certain period.
This means that every member of team is fully aware of the
processes of the system at each interval of time. This method
of programming helps reduce defects and improve quality.
Research shows that pair programming is more effective
concerning quality [15]. This shoulder-to-shoulder technique

aids in the process of the continual design and review of code
and results in a reduction in defect rates. As well, this process
has been widely considered as continuous code inspection
[15].

D. Refactoring

This approach is termed as continuous design improvement.
It is a process in which duplicate code is removed to improve
design. In refactoring, the code is restructured changing its
internal configuration without changing its external
functionality. The action of restructure of code delivers code
inspection functionality and increases the probability of
detecting errors during development. The process is composed
of a set of small conversions. Each conversion (called a
‘refactoring’) makes a small change, but a sequence of
conversions can lead to considerable restructuring.
Refactoring is useful for improving the design of existing code
as well as reducing the chance of error [16].

E. Continuous Integration

This approach involves merging code developed by all the
developers across the company into one single common place.
Integration takes place many times and helps to detect many
errors and defects. It saves time in development through
detection of errors and helps to expose compatibility problems
early. In traditional development modeling, integration is done
at the final stage, and the change for error detection is lower
but in agile-based modeling, integration is performed
numerous times, so there is more chance to detect errors at an
early point. Continuous integration is a dynamic technique of
quality assurance [17].

F. Test Driven Development (TDD)

TDD is the main concern of the agile manifesto and
extreme programming. Many positive outcomes have been
reviewed by TDD. TDD is not for testing; instead, it is a
structure and improvement strategy in which tests are
composed before the creation code. This technique
progressively works in small cycles of adding and
implementing a test case. Although the test case passes, the
code is refactored to improve the internal structure of the code.
This process is repeated until whole functionality is executed
[18].

Fig. 1 TDD step cycle

Use of TDD in industry is revealed by its constant high

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:5, 2022

159International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
54

8.
pd

f

ranking from members of the development’s teams [19].
Research in [20] described their work performed on TDD for a
period five and half month under contemporary industry
conditions, and presented a successful application of TDD.
The support of the designer to the TDD approach aids the easy
maintenance of code, reduction in residual defects and rapid
delivery of a product with reference to productivity. The
requirement analysis and initial coordination is more time-
consuming in TDD, but the functional testing takes less time
due to increased unit testing [20]. Research on utilization of
agile methodologies describes that over 80% software
professionals utilize Scrum practices whereas 18% of
professionals utilize Extreme programming. However, there is
industrialists’ enthusiasm in the investigation of TDD and its
impact on productivity, process, cost reduction and product
quality [21]. An investigation at IBM between 2001 and 2006
revealed that TDD takes more time at the initial phase,
however it is compensated with more robust high-quality code
[22].

The procedure of the TDD cycle consists of six basic steps:
1. Structure a test for a user story or piece of code;
2. Execute test and produce a failed test;
3. Write code for functionality that passes the tests;
4. Execute the test to confirm and the code passes;
5. Refactor the code;
6. Execute a set of tests to check that refactoring does not

make changes to the external functionality.

Fig. 2 Flow chart for TDD

Advantages and Disadvantages of TDD

The benefits of TDD:
i. Prevents defects.
ii. Allows code documentation with executable examples.
iii. Helps programmers really to understand their code.
iv. Supports refactoring as needs, and design changes.
v. Encourages better design (more cohesive modules that are

loosely coupled).
vi. Creates basically a free automated regression test.

TDD promotes small steps and a simple working
development system. It supports the programmer’s skills in
designing different kinds of tests. It presents advance warning
to detect design problems early in the design process. The
disadvantages of TDD:
i. A challenge to learn.
ii. Hard to apply to legacy code.
iii. Lots of misconceptions that keep programmers from

learning it.

G. Behavior-Driven Development (BDD)

BDD based on TDD is a methodology that evolved into a
process that does not concern only programmers and testers,
but also deals with the entire team and all-important
stakeholders, both technical and non-technical. Business
stakeholders and domain experts can often determine
engineers for high-level tests that would be useful to deal with
important business aspects. BDD reserves the word, “test” for
low-level technical checks such as data validation. The
important aspect of BDD is that while tests can only be
created by developers and testers, they can be collected and
analyzed by designers and analysts.

BDD is a synthesis and refinement of software engineering
application that supports teams to generate and distribute
higher quality software quickly. The BDD process is similar to
TDD and follows these steps:
1. Write a scenario;
2. Run the scenario that fails;
3. Write the test that corresponds to the specifications of the

scenario;
4. Write the simplest code to pass the test and the scenario,

and lastly;
5. Refractor to eliminate duplication.

Fig. 3 Flowchart for BDD

Advantages and Disadvantages of BDD

If a software team plans to implement BDD, there are a few
points to consider that will benefit them.
i. The software team is no longer defining the ‘test’ instead

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:5, 2022

160International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
54

8.
pd

f

they are defining ‘behavior’.
ii. It generates a best exchange of information between

product owners/stakeholders, tester and developers.
iii. It covers a wider audience since it is non-technical by

nature.
iv. The behavioral approach specifies acceptance guidelines

and rules prior to the software development.
Even the best development approaches can have problems

and BDD is no exception. Some of them are:
i. Prior experience of TDD is required to work with BDD.
ii. BDD is incompatible with the waterfall approach.
iii. If the requirements are not properly specified, BDD may

not be effective.
iv. Testers using BDD need to have sufficient technical

skills.

H. Acceptance Test-Driven Development (ATDD)

It is an approach that represents different methods for
solving software engineering challenges [23].
1. ATDD provides instruction to update every part of a

complete software development phase.
2. ATDD offers a shared medium of communication to

enhance exchange of information between product owner
and stakeholders.

3. ATDD ensures that the project under development
continuously satisfies its requirement by using testing and
refactoring [24].

The basic reasons for lack of the success of many software
projects is the delayed identification of mismatch between
functionality executed in the delivered system and the
customer requirements. The cause of the mismatch is a set of
under specifying, poorly defined, and inconsistent
requirements. The technologies that have been used to upgrade
the quality and usability of the software project in a traditional
development life cycle are mostly proposed and are used in
the testing phase (67.48%), while few methods are used by the
developers in the early stages (15.98% design phase and
13.70% analysis phase) [25]. However, interest in researching
ASD has risen in recent years [26] and adds approaches of
ASD such as ATDD. ATDD focuses on the use of direct
ATDD from the initial phase of the development [27]. ATDD
is a development technique based on communication between
the developers, the tester and the business customers. It is
useful to encourage reusability in the software enhancement
phases and to satisfy customer requirements. As well, ATDD
encompasses acceptance testing by writing acceptance tests
before coding.

The ATDD process follows the following steps:
1. Select user story;
2. Write acceptance test;
3. Implement user story;
4. Run acceptance test; and,
5. Make change/Refactor.

The advantages of ATDD include:
i. Improved communication and collaboration between

project stakeholders.
ii. Shared understanding of what successful implementation

means.
iii. Better coverage of business expectations.
iv. Faster feedback.

Fig. 4 Flowchart for ATDD

The disadvantages of ATDD are few and include:
i. New methodology that requires rigor and discipline.
ii. Find the right balance between people/process/tool.

I. Defect-Driven Development (DDD)

The concept of DDD uses the knowledge of software
defects to proactively drive the software process. The
knowledge base of software defects is collected from every
step of the software processed by experienced software
developers. Then, it is normalized to a standard format and the
software defect pattern is rearranged for novice developers.
The main principle of DDD focuses on proactive activities to
check the design and types of errors that it might lead to, as
well as how to avoid them before coding. This is done by
referencing software defect knowledge that was previously
collected from experienced software developers. A software
developer can use defect information in the design phase to
decide either to deal with those defects or redesign that
software to avoid problems. DDD's objective is similar to
those of TDD hoping that developers foresee the potential
problems before the coding stage. The difference is that TDD
involves a design of unit tests before coding which may not be
a natural process for a novice; while, DDD more conveniently
adds a defect checklist during the design process. This
arguably makes a slight but important change in the process,
and is likely to be more comfortable for beginners. Yet, both
concepts can be implemented simultaneously.

Software Defect Taxonomy

Controlling defects is one of the most important aspects of
software quality management. There are many researchers that
have studied the nature of the software defects, particularly
defect classification. The research in [28] presents a
framework for classifying software defects using cause-effect
analysis. This is done by collecting feedback on defects from
the software developers, which include the phase of defects
injection, the cause of the defect, and the effect of those

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:5, 2022

161International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
54

8.
pd

f

defects. The results of this study identify seven classes of
defect including, Function, Interface, Checking, Assignment,
Timing/Serialization, Documentation, and Algorithm [28].
These classes are distributed in every stage of a software
process, and are termed as “Orthogonal Defect Classification
(ODC)”. ODC can be used in many studies of software
engineering areas, i.e., to classify software defects in a specific
phase of the software development process, and the prediction
of defects [28]. The research by [29] is an example of a study
of the implementation of ODC, which illustrates the new
concept of defect classification for black-box testing. In
addition, it demonstrates that the ODC is not applicable to
black-box defects which results in the accumulation of defects
from the step of black-box testing. Finally, this concept is
described as “Orthogonal Defect Classification for Black-box
Defect (ODC-BD)” in [29].

Software Defect Pattern

Software defect pattern is the collection of software defects
with an aim to reduce repetitive defects. Defects are recorded
and categorized by the cause of the error, the phase of
injection, the effect of the defect, and how to remove it.
Important information from the pattern is the knowledge that
can guide developers on how to prevent defects. A study
examined the implementation of software defect pattern
design in the software development process. The purpose of
that research was to increase the reliability of software design
[30]. This research implements the set of defect classification
in the Knowledge of Software Defect (KSD), and could
identify the defect information at the right stage of the
software process.

Personal Software Process

Personal Software Process (PSP) is a tool for investigating,
and improving personal performance in software development
[31], [32]. PSP collects, and shows the statistics that are
calculated from the data of the engineer’s records. These
results can be used to analyze the strengths, and weaknesses of
an individual; thus, engineers can continually improve
themselves. PSP can be applied in various areas of software
engineering, since there are no limitations with regard to the
software process model or computer language types. It can be
implemented in pair programming [33], and M-V-C
frameworks [34]. Research [31] represents that PSP can
improve the personal performance of engineers in team, and
solo programming styles.

Research described an experiment of MVC-PSP to increase
the reliability of defect logging that includes two activities:
Defect Standard Table (DST) and Defect Detection Capability
Test (DDCT) [35]. DDCT is a test for calculating the
engineers defect detection capability while DST is an analysis
of the development team to produce and update the standard
of defect detection. Based on the results, it was concluded that
the defect standard table has higher reliability. As a result, this
research proposes that the defect standard table can be used
effectively for defect logging.

IV. CONCLUSION

Due to changes in software industry trends, organizations
have had to rapidly update their approaches for quality to
develop high-quality software products that are in demand by
consumers. This paper describes many agile-based approaches
to improve software quality as well as customer satisfaction.
The main points of concern are as follows; refactoring
provides code inspection functionality during reconstruction
of code and reduces the generation of errors. The TDD
approach upgrades the quality of software and enhances client
satisfaction by permitting thorough unit testing before coding.
BDD evolved from TDD to eliminate the shortfalls of TDD,
since it does not work on behavior. As well, BDD describes
the method of developing a feature based on behavior in a
simple language like English, which can be understood by all
members of the development team. ATDD makes the
implementation process more effective by writing code using
requirements, reducing developer efforts and continuously
testing the product until it meets the customer’s expectations.
The DDD approach utilizes the benefit of knowledge of
software defect (KSD), which gathers defect data from
experienced professionals to proactively eliminate deficiency
in novice developers. In this way, the novice developer can
learn from expert knowledge and effectively prevent defects,
especially at an early stage of the software development.
Finally, this paper aimed to describe the feature of various
approaches for improving software quality with their
usefulness.

REFERENCES
[1] P. Abrahamsson, J. Warsta, M. T. Siponen and J. Ronkainen,” New

Directions on Agile Methods: A Comparative Analysis”, 25th ICSE,
2003.

[2] A. Cockburn, “Agile Software Development”, 1st Edition, Addison-
Wesley Professional, 2001

[3] J. Eckstein, “Agile Software Development in the Large: Diving Into the
Deep”. New York: Dorset House, 2004.

[4] M.R. Barbacci, R. Ellison, A.J. Lattanze, J.A. Stafford, C.B. Weinstock
and W.G. Wood, “Quality Attribute Workshops (QAWs)”, Technical
Report, 3rd Edition, SEI, CMU, 2003.

[5] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord and
B. Wood, “Attribute-Driven Design (ADD)”, Technical Report, 2nd
Edition, SEI, CMU, 2006.

[6] R. Nord, M. Barbacci, P. Clements, R. Kazman, L. OBrien and J.
Tomayko, “Integrating the Architecture Tradeoff Analysis
Method(ATAM) with the Cost Benefit Analysis Method (CBAM)”,
Technical Report, 1st Edition, SEI, CMU, 2003.

[7] L. Bass, P. Clements, and R. Kazman, “Software Architecture in
Practice”, 2nd Edition, Addison-Wesley, 2003.

[8] GalinD” Software quality: concepts and practice”. Wiley, NJ,2017
[9] Tian J “Software quality engineering testing, quality assurance, and

quantifiable improvement”. Wiley, New Jersey,2005
[10] Kandt KR “Software engineering quality practices”. Auerbach

Publications, Philadelphia,2006
[11] Dingsøyr T, Dyba ˚ T, Moe NB (Eds) (2010) “Agile software

development: current research and future directions”. Springer, Berlin
[12] Sommerville I “Software engineering”, 10th edn. Pearson, India,2017
[13] R. Chillarege et al., “Orthogonal Defect Classification-A Concept for In-

Process Measurements”, IEEE Trans. Softw. Eng., vol.
18,no.11,1992.http://doi.org/10.1109/32.1773 64

[14] “How Userful Is the Metaphor Component of Agile Methods”? A
Preliminary Study,

[15] A. Cockburn and L. Williams, "The Costs and Benefits of Pair
Programming," in Extreme Programming examined, G. Succi and M.
Marchesi, Eds. Boston: Addison-Wesley, 2001, pp. xv, 569 p.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:5, 2022

162International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
54

8.
pd

f

[16] M. Fowler, "Information about Refactoring," 2004.
[17] “Continuous Integration”,

http://www.martinfowler.com/articles/continuousIntegratio n.html.
[18] Shrivastava and Jain, "Metrics for Test Case Design in Test Driven

Development", International Journal of Computer Theory and
Engineering, Vol.2, No.6, December, 2010, Pg: 1793-8201

[19] Emam K “Finding success in small software projects, agile project
management executive report. Technical report”, Cutter Consortium,
Arlington, Massachusetts, 2003.

[20] Latorre R “A successful application of a test-driven development
strategy in the industrial environment”. EMPSoftwEng 19:753–773,
2014.

[21] Rodriguez P, Markkula J, Oivo M, TurulaK “Survey on agile and lean
usage in Finnish software industry”. In: six international symposiums on
empirical software engineering and measurement, 2012.

[22] Sanchez JC, Williams L, Maximilien EM “On the sustained use of a
test-driven development practice at IBM”. In: AGILE conference, pp 5–
14, 2007.

[23] N. Koudelia, “Acceptance test-driven development”. 2011.
[24] L. Koskela, “Test Driven: TDD and Acceptance TDD for Java

Developers”, Edición: 1. Greenwich, CT: Manning Publications, 2007.
[25] W. Silva, N. M. Costa Valentim, and T. Conte, “Integrating the

Usability into the Software Development Process,” in Proceedings of the
17th International Conference on Enterprise Information Systems -
Volume 3, Portugal, 2015, pp. 105–113.

[26] K. Curcio, R. Santana, S. Reinehr, and A. Malucelli, “Usability in agile
software development: A tertiary study,” Computer Standards &
Interfaces, Jan. 2019.

[27] M. Leotta et al., “An acceptance testing approach for Internet of Things
systems,” IET Software, vol. 12, no. 5, pp. 430–436, 2018.

[28] R. Chillarege et al., “Orthogonal Defect Classification-A Concept for In-
Process Measurements,” IEEE Trans. Softw. Eng., vol.
18,no.11,1992.http://doi.org/10.1109/32.1773 64

[29] N. Li, Z. Li, and X. Sun, “Classification of software defect detected by
black-box testing: An empirical study,” Proc. - 2010 2nd WRI World
Congr. Softw. Eng. WCSE 2010, vol. 2, pp. 234–240, 2010.
http://doi.org/10.1109/WCSE.2010.28

[30] F. Zeng, A. Chen, and X. Tao, “Study on software reliability design
criteria based on defect patterns,” Reliab. Maintainab. Safety, 2009.
ICRMS 2009. 8th Int. Conf., pp. 723–
727,2009.http://doi.org/10.1109/ICRMS.2009. 5270095

[31] W. S. Humphrey, PSP(sm): “A Self Improvement Process for Software
Engineers”, 1st ed. Addison-Wesley Professional, 2005.

[32] W. S. Humphrey, “The personal process in software engineering,” in
Proceedings of the Third International Conference on the Software
Process. Applying the Software Process, 1994, no. c, pp. 69–77.
http://doi.org/10.1109/SPCON.1994.344422

[33] G. Rong, H. Zhang, M. Xie, and D. Shao, “Improving PSP education by
pairing: An empirical study,” Proc. - Int. Conf. Softw. Eng., pp. 1245–
1254, 2012.

[34] W. Nachiengmai and S. Ramingwong, “Implementing Personal
Software Process in Undergraduate Course to Improve Model View-
Controller Software Construction,” in Lecture Notes in Electrical
Engineering, vol. 339, 2015, pp. 949–956. http://doi.org/ 10.1007/978-3-
662-46578-3_113

[35] W. Nachiengmai, and S. Ramingwong, “Improving Reliability of
Defects Logging in MVC-PSP,” in 2015 2nd International Conference
on Information Science, and Security (ICISS), 2015, pp. 1–4.
http://doi.org/ 10.1109/ICISSEC.2015.7371007.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:16, No:5, 2022

163International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
54

8.
pd

f

