Search results for: Online flood prediction system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9718

Search results for: Online flood prediction system

9358 OSEME: A Smart Learning Environment for Music Education

Authors: Konstantinos Sofianos, Michael Stefanidakis

Abstract:

Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at anytime, anywhere, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.

Keywords: Intelligent learning systems, e-learning, music education, ontology, semantic web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89
9357 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period

Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider

Abstract:

This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.

Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
9356 Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations

Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai, Wiriya Lueangaram

Abstract:

A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.

Keywords: energy balance equation, numerical analysis, primitiveequation, storm surge, wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
9355 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: Semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
9354 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: Landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate, Morocco.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
9353 An Exploratory Approach to Consumer Based Online Authenticity: The Case of Terroir Product of Souss Massa Region, Morocco

Authors: F-E. Ouboutaib, A. Aitheda, S. Mekkaoui

Abstract:

Marketing research is starting to focus on authenticity to position an offer, especially terroir products. However, with internet its usage remains more problematic. This paper investigates how digitalization impacts the satisfaction of the quest for authenticity. On the theoretical level, it explains authenticity in the online and offline context in the postmodernism era. Then, an exploratory qualitative study tries to understand the contribution of the digitization to the satisfaction of the search of authenticity. Therefore, cooperatives selling terroir product on the internet are advised to keep also direct contact which tends to show traditional manner of production, in order to enhance customers’ perception of terroir product authenticity.

Keywords: Authenticity, online authenticity, postmodernism, terroir products.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517
9352 Adaptive Naïve Bayesian Anti-Spam Engine

Authors: Wojciech P. Gajewski

Abstract:

The problem of spam has been seriously troubling the Internet community during the last few years and currently reached an alarming scale. Observations made at CERN (European Organization for Nuclear Research located in Geneva, Switzerland) show that spam mails can constitute up to 75% of daily SMTP traffic. A naïve Bayesian classifier based on a Bag Of Words representation of an email is widely used to stop this unwanted flood as it combines good performance with simplicity of the training and classification processes. However, facing the constantly changing patterns of spam, it is necessary to assure online adaptability of the classifier. This work proposes combining such a classifier with another NBC (naïve Bayesian classifier) based on pairs of adjacent words. Only the latter will be retrained with examples of spam reported by users. Tests are performed on considerable sets of mails both from public spam archives and CERN mailboxes. They suggest that this architecture can increase spam recall without affecting the classifier precision as it happens when only the NBC based on single words is retrained.

Keywords: Text classification, naïve Bayesian classification, spam, email.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4415
9351 A Fast Object Detection Method with Rotation Invariant Features

Authors: Zilong He, Yuesheng Zhu

Abstract:

Based on the combined shape feature and texture feature, a fast object detection method with rotation invariant features is proposed in this paper. A quick template matching scheme based online learning designed for online applications is also introduced in this paper. The experimental results have shown that the proposed approach has the features of lower computation complexity and higher detection rate, while keeping almost the same performance compared to the HOG-based method, and can be more suitable for run time applications.

Keywords: gradient feature, online learning, rotationinvariance, template feature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477
9350 Artificial Neural Networks Technique for Seismic Hazard Prediction Using Seismic Bumps

Authors: Belkacem Selma, Boumediene Selma, Samira Chouraqui, Hanifi Missoum, Tourkia Guerzou

Abstract:

Natural disasters have occurred and will continue to cause human and material damage. Therefore, the idea of "preventing" natural disasters will never be possible. However, their prediction is possible with the advancement of technology. Even if natural disasters are effectively inevitable, their consequences may be partly controlled. The rapid growth and progress of artificial intelligence (AI) had a major impact on the prediction of natural disasters and risk assessment which are necessary for effective disaster reduction. Earthquake prediction to prevent the loss of human lives and even property damage is an important factor; that, is why it is crucial to develop techniques for predicting this natural disaster. This study aims to analyze the ability of artificial neural networks (ANNs) to predict earthquakes that occur in a given area. The used data describe the problem of high energy (higher than 104 J) seismic bumps forecasting in a coal mine using two long walls as an example. For this purpose, seismic bumps data obtained from mines have been analyzed. The results obtained show that the ANN is able to predict earthquake parameters with  high accuracy; the classification accuracy through neural networks is more than 94%, and the models developed are efficient and robust and depend only weakly on the initial database.

Keywords: Earthquake prediction, artificial intelligence, AI, Artificial Neural Network, ANN, seismic bumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1187
9349 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: Bioassay, machine learning, preprocessing, virtual screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
9348 Factors Influencing University Students' Online Disinhibition Behavior – The Moderating Effects of Deterrence and Social Identity

Authors: Wang, Kuei-Ing, Jou-Fan Shih

Abstract:

This study adopts deterrence theory as well as social identities as moderators, and explores their moderating affects on online toxic disinhibition. Survey and Experimental methodologies are applied to test the research model and four hypotheses are developed in this study. The controllability of identity positively influenced the behavior of toxic disinhibition both in experimental and control groups while the fluidity of the identity did not have significant influences on online disinhibition. Punishment certainty, punishment severity as well as social identity negatively moderated the relation between the controllability of the identity and the toxic disinhibition. The result of this study shows that internet users hide their real identities when they behave inappropriately on internet, but once they acknowledge that the inappropriate behavior will be found and punished severely, the inappropriate behavior then will be weakened.

Keywords: Seductive properties of Internet, Online Disinhibition, Punishment Certainty, Punishment Severity, Social Identity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3887
9347 NEAR: Visualizing Information Relations in Multimedia Repository A•VI•RE

Authors: Qian, C. Z., Chen, V. Y., R. F. Woodbury

Abstract:

This paper describes the NEAR (Navigating Exhibitions, Annotations and Resources) panel, a novel interactive visualization technique designed to help people navigate and interpret groups of resources, exhibitions and annotations by revealing hidden relations such as similarities and references. NEAR is implemented on A•VI•RE, an extended online information repository. A•VI•RE supports a semi-structured collection of exhibitions containing various resources and annotations. Users are encouraged to contribute, share, annotate and interpret resources in the system by building their own exhibitions and annotations. However, it is hard to navigate smoothly and efficiently in A•VI•RE because of its high capacity and complexity. We present a visual panel that implements new navigation and communication approaches that support discovery of implied relations. By quickly scanning and interacting with NEAR, users can see not only implied relations but also potential connections among different data elements. NEAR was tested by several users in the A•VI•RE system and shown to be a supportive navigation tool. In the paper, we further analyze the design, report the evaluation and consider its usage in other applications.

Keywords: measure similarity, trace reference, inherentrelation, information visualization, online multimedia repository

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
9346 Research on Online Consumption of College Students in China with Stimulate-Organism-Reaction Driven Model

Authors: Wei Lu

Abstract:

With the development of information technology in China, network consumption is becoming more and more popular. As a special group, college students have a high degree of education and distinct opinions and personalities. In the future, the key groups of network consumption have gradually become the focus groups of network consumption. Studying college students’ online consumption behavior has important theoretical significance and practical value. Based on the Stimulus-Organism-Response (SOR) driving model and the structural equation model, this paper establishes the influencing factors model of College students’ online consumption behavior, evaluates and amends the model by using SPSS and AMOS software, analyses and determines the positive factors of marketing college students’ consumption, and provides an effective basis for guiding and promoting college student consumption.

Keywords: College students, online consumption, stimulus-organism-response driving model, structural equation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
9345 Online Partial Discharge Source Localization and Characterization Using Non-Conventional Method

Authors: Ammar Anwar Khan, Nissar R. Wani, Nazar Malik, Abdulrehman Al-Arainy, and Saad Alghuwainem

Abstract:

Power cables are vulnerable to failure due to aging or defects that occur with the passage of time under continuous operation and loading stresses. PD detection and characterization provide information on the location, nature, form and extent of the degradation. As a result, PD monitoring has become an important part of condition based maintenance (CBM) program among power utilities. Online partial discharge (PD) localization of defect sources in power cable system is possible using the time of flight method. The information regarding the time difference between the main and reflected pulses and cable length can help in locating the partial discharge source along the cable length. However, if the length of the cable is not known and the defect source is located at the extreme ends of the cable or in the middle of the cable, then double ended measurement is required to indicate the location of PD source. Use of multiple sensors can also help in discriminating the cable PD or local/ external PD. This paper presents the experience and results from online partial discharge measurements conducted in the laboratory and the challenges in partial discharge source localization.

Keywords: Power cables, partial discharge localization, HFCT, condition based monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2826
9344 Decision Support System Based on Data Warehouse

Authors: Yang Bao, LuJing Zhang

Abstract:

Typical Intelligent Decision Support System is 4-based, its design composes of Data Warehouse, Online Analytical Processing, Data Mining and Decision Supporting based on models, which is called Decision Support System Based on Data Warehouse (DSSBDW). This way takes ETL,OLAP and DM as its implementing means, and integrates traditional model-driving DSS and data-driving DSS into a whole. For this kind of problem, this paper analyzes the DSSBDW architecture and DW model, and discusses the following key issues: ETL designing and Realization; metadata managing technology using XML; SQL implementing, optimizing performance, data mapping in OLAP; lastly, it illustrates the designing principle and method of DW in DSSBDW.

Keywords: Decision Support System, Data Warehouse, Data Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3862
9343 A Study on Prediction of Cavitation for Centrifugal Pump

Authors: Myung Jin Kim, Hyun Bae Jin, Wui Jun Chung

Abstract:

In this study, to accurately predict cavitation of a centrifugal pump, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump. In this study, numerical analysis was compared with experimental results modeled on a small industrial centrifugal pump for reliable prediction on cavitation of a centrifugal pump. To improve validity of the numerical analysis, transient analysis was conducted on the calculated domain of full-type geometry, such as an experimental apparatus. The numerical analysis from the results was considered to be a reliable prediction of cavitaion.

Keywords: Centrifugal Pump, Cavitation, NPSH, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4222
9342 Consumer Perception of 3D Body Scanning While Online Shopping for Clothing

Authors: A. Grilec, S. Petrak, M. Mahnic Naglic

Abstract:

Technological development and the globalization in production and sales of clothing in the last decade have significantly influenced the changes in consumer relationship with the industrial-fashioned apparel and in the way of clothing purchasing. The Internet sale of clothing is in a constant and significant increase in the global market, but the possibilities offered by modern computing technologies in the customization segment are not yet fully involved, especially according to the individual customer requirements and body sizes. Considering the growing trend of online shopping, the main goal of this paper is to investigate the differences in customer perceptions towards online apparel shopping and particularly to discover the main differences in perceptions between customers regarding three different body sizes. In order to complete the research goal, the quantitative study on the sample of 85 Croatian consumers was conducted in 2017 in Zagreb, Croatia. Respondents were asked to indicate their level of agreement according to a five-point Likert scale ranging from strongly disagree (1) to strongly agree (5). To analyze attitudes of respondents, simple and descriptive statistics were used. The main findings highlight the differences in respondent perception of 3D body scanning, using 3D body scanning in Internet shopping, online apparel shopping habits regarding their body sizes.

Keywords: Consumer behavior, online shopping, 3D body scanning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
9341 On Adaptive Optimization of Filter Performance Based on Markov Representation for Output Prediction Error

Authors: Hong Son Hoang, Remy Baraille

Abstract:

This paper addresses the problem of how one can improve the performance of a non-optimal filter. First the theoretical question on dynamical representation for a given time correlated random process is studied. It will be demonstrated that for a wide class of random processes, having a canonical form, there exists a dynamical system equivalent in the sense that its output has the same covariance function. It is shown that the dynamical approach is more effective for simulating and estimating a Markov and non- Markovian random processes, computationally is less demanding, especially with increasing of the dimension of simulated processes. Numerical examples and estimation problems in low dimensional systems are given to illustrate the advantages of the approach. A very useful application of the proposed approach is shown for the problem of state estimation in very high dimensional systems. Here a modified filter for data assimilation in an oceanic numerical model is presented which is proved to be very efficient due to introducing a simple Markovian structure for the output prediction error process and adaptive tuning some parameters of the Markov equation.

Keywords: Statistical simulation, canonical form, dynamical system, Markov and non-Markovian processes, data assimilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
9340 Humanoid Personalized Avatar Through Multiple Natural Language Processing

Authors: Jin Hou, Xia Wang, Fang Xu, Viet Dung Nguyen, Ling Wu

Abstract:

There has been a growing interest in implementing humanoid avatars in networked virtual environment. However, most existing avatar communication systems do not take avatars- social backgrounds into consideration. This paper proposes a novel humanoid avatar animation system to represent personalities and facial emotions of avatars based on culture, profession, mood, age, taste, and so forth. We extract semantic keywords from the input text through natural language processing, and then the animations of personalized avatars are retrieved and displayed according to the order of the keywords. Our primary work is focused on giving avatars runtime instruction from multiple natural languages. Experiments with Chinese, Japanese and English input based on the prototype show that interactive avatar animations can be displayed in real time and be made available online. This system provides a more natural and interesting means of human communication, and therefore is expected to be used for cross-cultural communication, multiuser online games, and other entertainment applications.

Keywords: personalized avatar, mutiple natural luanguage processing, social backgrounds, anmimation, human computer interaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
9339 Evaluation of the Analytic for Hemodynamic Instability as A Prediction Tool for Early Identification of Patient Deterioration

Authors: Bryce Benson, Sooin Lee, Ashwin Belle

Abstract:

Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.

Keywords: Clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 450
9338 The Implementation of Word Study Wall in an Online English Word Memorization Class

Authors: Yidan Shao

Abstract:

With the advancement of the economy, technology promotes online teaching, and learning has become one of the common features in the educational field. Meanwhile, the dramatic expansion of the online environment provides opportunities for more learners, including second language learners. A greater command of vocabulary improves students’ learning capacity, and word acquisition and development play a critical role in learning. Furthermore, the Word Wall is an effective tool to improve students’ knowledge of words, which works for a wide range of age groups. Therefore, this study is going to use the Word Wall as an intervention to examine whether it can bring some memorization changes in an online English language class for a second language learner based on the word morphology method. The participant will take ten courses in the experiment as it plans. The findings show that the Word Wall activity plays a slight role in improving word memorizing, but it does affect instant memorization. If longer periods and more comprehensive designs of research can be applied, it is expected to have more value.

Keywords: Second language acquisition, word morphology, word memorization, the Word Wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 277
9337 A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections

Authors: Wei Jun-xia, Yuan Guang-wei, Yang Shu-lin, Shen Wei-dong

Abstract:

In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.

Keywords: Transport Equation, Discontinuous Finite Element, Domain Decomposition, Interface Prediction And Correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
9336 IRIS: An Interactive Video Game for Children with Long-Term Illness in Hospitals

Authors: Ganetsou Evanthia, Koutsikos Emmanouil, Austin Anna Maria

Abstract:

Information technology has long served the needs of individuals for learning and entertainment, but much less for children in sickness. The aim of the proposed online video game is to provide immersive learning opportunities as well as essential social and emotional scenarios for hospital-bound children with long-term illness. Online self-paced courses on chosen school subjects, including specialized software and multisensory assessments, aim at enhancing children’s academic achievement and sense of inclusion, while doctor minigames familiarize and educate young patients on their medical conditions. Online ethical dilemmas will offer children opportunities to contemplate on the importance of medical procedures and following assigned medication, often challenging for young patients; they will therefore reflect on their condition, re-evaluate their perceptions about hospitalization, and assume greater personal responsibility for their progress. Children’s emotional and psychosocial needs are addressed by engaging in social conventions, such as interactive, daily, collaborative mini games with other hospitalized peers, like virtual competitive sports games, weekly group psychodrama sessions, and online birthday parties or sleepovers. Social bonding is also fostered by having a virtual pet to interact with and take care of, as well as a virtual nurse to discuss and reflect on the mood of the day, engage in constructive dialogue and perspective-taking, and offer reminders. Access to the platform will be available throughout the day depending on the patient’s health status. The program is designed to minimize escapism and feelings of exclusion and can flexibly be adapted to offer post-treatment and a support online system at home.

Keywords: Hospitalized children, interactive games, long-term illness, cognitive enhancement, socioemotional development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189
9335 Web Application Security, Attacks and Mitigation

Authors: Ayush Chugh, Gaurav Gupta

Abstract:

Today’s technology is heavily dependent on web applications. Web applications are being accepted by users at a very rapid pace. These have made our work efficient. These include webmail, online retail sale, online gaming, wikis, departure and arrival of trains and flights and list is very long. These are developed in different languages like PHP, Python, C#, ASP.NET and many more by using scripts such as HTML and JavaScript. Attackers develop tools and techniques to exploit web applications and legitimate websites. This has led to rise of web application security; which can be broadly classified into Declarative Security and Program Security. The most common attacks on the applications are by SQL Injection and XSS which give access to unauthorized users who totally damage or destroy the system. This paper presents a detailed literature description and analysis on Web Application Security, examples of attacks and steps to mitigate the vulnerabilities.

Keywords: Attacks, Injection, JavaScript, SQL, Vulnerability, XSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4968
9334 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image

Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei

Abstract:

Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.

Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
9333 Leveraging Quality Metrics in Voting Model Based Thread Retrieval

Authors: Atefeh Heydari, Mohammadali Tavakoli, Zuriati Ismail, Naomie Salim

Abstract:

Seeking and sharing knowledge on online forums have made them popular in recent years. Although online forums are valuable sources of information, due to variety of sources of messages, retrieving reliable threads with high quality content is an issue. Majority of the existing information retrieval systems ignore the quality of retrieved documents, particularly, in the field of thread retrieval. In this research, we present an approach that employs various quality features in order to investigate the quality of retrieved threads. Different aspects of content quality, including completeness, comprehensiveness, and politeness, are assessed using these features, which lead to finding not only textual, but also conceptual relevant threads for a user query within a forum. To analyse the influence of the features, we used an adopted version of voting model thread search as a retrieval system. We equipped it with each feature solely and also various combinations of features in turn during multiple runs. The results show that incorporating the quality features enhances the effectiveness of the utilised retrieval system significantly.

Keywords: Content quality, Forum search, Thread retrieval, Voting techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
9332 Web-Based Control and Notification for Home Automation Alarm Systems

Authors: Helder Adão, Rui Antunes, Frederico Grilo

Abstract:

This paper describes the project and development of a very low-cost and small electronic prototype, especially designed for monitoring and controlling existing home automation alarm systems (intruder, smoke, gas, flood, etc.), via TCP/IP, with a typical web browser. Its use will allow home owners to be immediately alerted and aware when an alarm event occurs, and being also able to interact with their home automation alarm system, disarming, arming and watching event alerts, with a personal wireless Wi-Fi PDA or smartphone logged on to a dedicated predefined web page, and using also a PC or Laptop.

Keywords: Alarm Systems, Home Automation, Web-Server, TCP/IP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3201
9331 Predicting Bankruptcy using Tabu Search in the Mauritian Context

Authors: J. Cheeneebash, K. B. Lallmamode, A. Gopaul

Abstract:

Throughout this paper, a relatively new technique, the Tabu search variable selection model, is elaborated showing how it can be efficiently applied within the financial world whenever researchers come across the selection of a subset of variables from a whole set of descriptive variables under analysis. In the field of financial prediction, researchers often have to select a subset of variables from a larger set to solve different type of problems such as corporate bankruptcy prediction, personal bankruptcy prediction, mortgage, credit scoring and the Arbitrage Pricing Model (APM). Consequently, to demonstrate how the method operates and to illustrate its usefulness as well as its superiority compared to other commonly used methods, the Tabu search algorithm for variable selection is compared to two main alternative search procedures namely, the stepwise regression and the maximum R 2 improvement method. The Tabu search is then implemented in finance; where it attempts to predict corporate bankruptcy by selecting the most appropriate financial ratios and thus creating its own prediction score equation. In comparison to other methods, mostly the Altman Z-Score model, the Tabu search model produces a higher success rate in predicting correctly the failure of firms or the continuous running of existing entities.

Keywords: Predicting Bankruptcy, Tabu Search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
9330 Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study

Authors: Nilubon Kurubanjerdjit, Nattakarn Iam-On, Ka-Lok Ng

Abstract:

MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation.

Keywords: MicroRNA, miRNAs, lung cancer, machine learning, Naïve Bayes, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
9329 Artificial Neural Network based Parameter Estimation and Design Optimization of Loop Antenna

Authors: Kumaresh Sarmah, Kandarpa Kumar Sarma

Abstract:

Artificial Neural Network (ANN)s are best suited for prediction and optimization problems. Trained ANNs have found wide spread acceptance in several antenna design systems. Four parameters namely antenna radiation resistance, loss resistance, efficiency, and inductance can be used to design an antenna layout though there are several other parameters available. An ANN can be trained to provide the best and worst case precisions of an antenna design problem defined by these four parameters. This work describes the use of an ANN to generate the four mentioned parameters for a loop antenna for the specified frequency range. It also provides insights to the prediction of best and worst-case design problems observed in applications and thereby formulate a model for physical layout design of a loop antenna.

Keywords: MLP, ANN, parameter, prediction, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557