Search results for: Energy conversion technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4045

Search results for: Energy conversion technologies

3685 Adoption of E-Business by Thai SMEs

Authors: Pisit Chanvarasuth

Abstract:

The use of e-business in small and medium-sized enterprises (SMEs) has been recently received an enormous attention in information systems research by both academic and practitioners. With the adoption of new and efficient technologies to enhance businesses, Thai SMEs should be able to compete worldwide. Unfortunately, most of the owners are not used to new technologies. It is clear that most Thai SMEs prefer to work manually rather than electronically. This paper aims to provide a fundamental conceptual framework for E-business adoption by Thai SMEs. Rooted in Knowledge transfer model, several factors are identified, which drive and enable e-business adoption. By overlooking the benefits associated with implementing new technologies, it is difficult for Thai SMEs to perform well enough to compete globally. The paper also helps Thai SMEs to understand factors related to E-business adoption.

Keywords: E-business, SME, Adoption, Knowledge Transfer, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2933
3684 Influence of Combined Drill Coulters on Seedbed Compaction under Conservation Tillage Technologies

Authors: E. Šarauskis, L. Masilionyte, Z. Kriaučiūniene, K. Romaneckas

Abstract:

All over the world, including the Middle and East European countries, sustainable tillage and sowing technologies are applied increasingly broadly with a view to optimising soil resources, mitigating soil degradation processes, saving energy resources, preserving biological diversity, etc. As a result, altered conditions of tillage and sowing technological processes are faced inevitably. The purpose of this study is to determine the seedbed topsoil hardness when using a combined sowing coulter in different sustainable tillage technologies. The research involved a combined coulter consisting of two dissected blade discs and a shoe coulter. In order to determine soil hardness at the seedbed area, a multipenetrometer was used. It was found by experimental studies that in loosened soil, a combined sowing coulter equally suppresses the furrow bottom, walls and soil near the furrow; therefore, here, soil hardness was similar at all researched depths and no significant differences were established. In loosened and compacted (double-rolled) soil, the impact of a combined coulter on the hardness of seedbed soil surface was more considerable at a depth of 2 mm. Soil hardness at the furrow bottom and walls to a distance of up to 26 mm was 1.1 MPa. At a depth of 10 mm, the greatest hardness was established at the furrow bottom. In loosened and heavily compacted (rolled for 6 times) soil, at a depth of 2 and 10 mm a combined coulter most of all compacted the furrow bottom, which has a hardness of 1.8 MPa. At a depth of 20 mm, soil hardness within the whole investigated area varied insignificantly and fluctuated by around 2.0 MPa. The hardness of furrow walls and soil near the furrow was by approximately 1.0 MPa lower than that at the furrow bottom

Keywords: Coulters design, seedbed, soil hardness, combined coulters, soil compaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386
3683 Optimum Operating Conditions for Direct Oxidation of H2S in a Fluidized Bed Reactor

Authors: Fahimeh Golestani, Mohammad Kazemeini, Moslem Fattahi, Ali Amjadian

Abstract:

In this research a mathematical model for direct oxidization of hydrogen sulfide into elemental sulfur in a fluidized bed reactor with external circulation was developed. As the catalyst is deactivated in the fluidized bed, it might be placed in a reduction tank in order to remove sulfur through heating above its dew point. The reactor model demonstrated via MATLAB software. It was shown that variations of H2S conversion as well as; products formed were reasonable in comparison with corresponding results of a fixed bed reactor. Through analyzing results of this model, it became possible to propose the main optimized operating conditions for the process considered. These conditions included; the temperature range of 100-130ºC and utilizing the catalyst as much as possible providing the highest bed density respect to dimensions of bed, economical aspects that the bed ever remained in fluidized mode. A high active and stable catalyst under the optimum conditions exhibited 100% conversion in a fluidized bed reactor.

Keywords: Direct oxidization, Fluidized bed, H2S, Mathematical modeling, Optimum conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
3682 Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

Authors: Ahmed M. Hemeida, Wael A. Farag, Osama A. Mahgoub

Abstract:

This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.

Keywords: FAST, Permanent Magnet Synchronous Generator(PMSG), TurbSim, Vector Control and Pitch Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5566
3681 Numerical Calculation of the Ionization Energy of Donors in a Cubic Quantum well and Wire

Authors: Sara Sedaghat, Mahmood Barati, Iraj Kazeminezhad

Abstract:

The ionization energy in semiconductor systems in nano scale was investigated by using effective mass approximation. By introducing the Hamiltonian of the system, the variational technique was employed to calculate the ground state and the ionization energy of a donor at the center and in the case that the impurities are randomly distributed inside a cubic quantum well. The numerical results for GaAs/GaAlAs show that the ionization energy strongly depends on the well width for both cases and it decreases as the well width increases. The ionization energy of a quantum wire was also calculated and compared with the results for the well.

Keywords: quantum well, quantum wire, quantum dot, impuritystate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
3680 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control

Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba

Abstract:

This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.

Keywords: Wind turbine, modeling, emulator, electrical generator, renewable energy, induction motor drive, field oriented control, real time control, wind turbine emulator, pitch angle control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
3679 Active Power Filtering Implementation Using Photovoltaic System with Reduced Energy Storage Capacitor

Authors: Horng-Yuan Wu, Chin-Yuan Hsu, Tsair-Fwu Lee

Abstract:

A novel three-phase active power filter (APF) circuit with photovoltaic (PV) system to improve the quality of service and to reduce the capacity of energy storage capacitor is presented. The energy balance concept and sampling technique were used to simplify the calculation algorithm for the required utility source current and to control the voltage of the energy storage capacitor. The feasibility was verified by using the Pspice simulations and experiments. When the APF mode was used during non-operational period, not only the utilization rate, power factor and power quality could be improved, but also the capacity of energy storage capacitor could sparing. As the results, the advantages of the APF circuit are simplicity of control circuits, low cost, and good transient response.

Keywords: active power filter, sampling, energy-storagecapacitor, harmonic current, energy balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
3678 Sustainable Development in Iranian South Coastal and Islands Using Wind Energy

Authors: Amir Gandomkar

Abstract:

The development incompatible with environment cannot be sustainable. Using renewable energy sources such as solar energy, geothermal energy and wind energy can make sustainable development in a region. Iran has a lot of renewable and nonrenewable energy resources. Since Iran has a special geographic position, it has lot of solar and wind energy resources. Both solar and wind energy are free, renewable and adaptable with environment. The study of 10 year wind data in Iranian South coastal and Islands synoptic stations shows that the production of wind power electricity and water pumping is possible in this region. In this research, we studied the local and temporal distribution of wind using three – hour statistics of windspeed in Iranian South coastal and Islands synoptic stations. This research shows that the production of wind power electricity is possible in this region all the year.

Keywords: Wind energy, wind regime, wind electricity, synoptic station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
3677 An Energy-Latency-Efficient MAC Protocol for Wireless Sensor Networks

Authors: Tahar Ezzedine, Mohamed Miladi, Ridha Bouallegue

Abstract:

Because nodes are usually battery-powered, the energy presents a very scarce resource in wireless sensor networks. For this reason, the design of medium access control had to take energy efficiency as one of its hottest concerns. Accordingly, in order to improve the energy performance of MAC schemes in wireless sensor networks, several ways can be followed. In fact, some researchers try to limit idle listening while others focus on mitigating overhearing (i.e. a node can hear a packet which is destined to another node) or reducing the number of the used control packets. We, in this paper, propose a new hybrid MAC protocol termed ELE-MAC (i.e. Energy Latency Efficient MAC). The ELE-MAC major design goals are energy and latency efficiencies. It adopts less control packets than SMAC in order to preserve energy. We carried out ns- 2 simulations to evaluate the performance of the proposed protocol. Thus, our simulation-s results prove the ELE-MAC energy efficiency. Additionally, our solution performs statistically the same or better latency characteristic compared to adaptive SMAC.

Keywords: Control packet, energy efficiency, medium access control, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
3676 Numerical Analysis of Pressure Admission Angle to Vane Angle Ratios on Performance of a Vaned Type Novel Air Turbine

Authors: B.R. Singh, O. Singh

Abstract:

Worldwide conventional resources of fossil fuel are depleting very fast due to large scale increase in use of transport vehicles every year, therefore consumption rate of oil in transport sector alone has gone very high. In view of this, the major thrust has now been laid upon the search of alternative energy source and also for cost effective energy conversion system. The air converted into compressed form by non conventional or conventional methods can be utilized as potential working fluid for producing shaft work in the air turbine and thus offering the capability of being a zero pollution energy source. This paper deals with the mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine. Effect of expansion action and steady flow work in the air turbine at high admission air pressure of 6 bar, for varying injection to vane angles ratios 0.2-1.6, at the interval of 0.2 and at different vane angles such as 30o, 45o, 51.4o, 60o, 72o, 90o, and 120o for 12, 8, 7, 6, 5, 4 and 3 vanes respectively at speed of rotation 2500 rpm, has been quantified and analyzed here. Study shows that the expansion power has major contribution to total power, whereas the contribution of flow work output has been found varying only up to 19.4%. It is also concluded that for variation of injection to vane angle ratios from 0.2 to 1.2, the optimal power output is seen at vane angle 90o (4 vanes) and for 1.4 to 1.6 ratios, the optimal total power is observed at vane angle 72o (5 vanes). Thus in the vaned type novel air turbine the optimum shaft power output is developed when rotor contains 4-5 vanes for almost all situations of injection to vane angle ratios from 0.2 to 1.6.

Keywords: zero pollution, compressed air, air turbine, vaneangle, injection to vane angle ratios

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
3675 Numerical and Experimental Assessment of a PCM Integrated Solar Chimney

Authors: J. Carlos Frutos Dordelly, M. Coillot, M. El Mankibi, R. Enríquez Miranda, M. José Jimenez, J. Arce Landa

Abstract:

Natural ventilation systems have increasingly been the subject of research due to rising energetic consumption within the building sector and increased environmental awareness. In the last two decades, the mounting concern of greenhouse gas emissions and the need for an efficient passive ventilation system have driven the development of new alternative passive technologies such as ventilated facades, trombe walls or solar chimneys. The objective of the study is the assessment of PCM panels in an in situ solar chimney for the establishment of a numerical model. The PCM integrated solar chimney shows slight performance improvement in terms of mass flow rate and external temperature and outlet temperature difference. An increase of 11.3659 m3/h can be observed during low wind speed periods. Additionally, the surface temperature across the chimney goes beyond 45 °C and allows the activation of PCM panels.

Keywords: Energy storage, passive ventilation, phase changing materials, solar chimney, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
3674 Delay and Energy Consumption Analysis of Conventional SRAM

Authors: Arash Azizi-Mazreah, Mohammad T. Manzuri Shalmani, Hamid Barati, Ali Barati

Abstract:

The energy consumption and delay in read/write operation of conventional SRAM is investigated analytically as well as by simulation. Explicit analytical expressions for the energy consumption and delay in read and write operation as a function of device parameters and supply voltage are derived. The expressions are useful in predicting the effect of parameter changes on the energy consumption and speed as well as in optimizing the design of conventional SRAM. HSPICE simulation in standard 0.25μm CMOS technology confirms precision of analytical expressions derived from this paper.

Keywords: Read energy consumption, write energy consumption, read delay, write delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3288
3673 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation

Authors: Ying Xin, Shigeki Kametani

Abstract:

This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does.

In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.

Keywords: Energy-saving, VRF, GHP, EHP, Air Conditioning System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
3672 Energy Efficiency: An Engineering Pathway towards Sustainability

Authors: A. M. Hasna

Abstract:

Today global warming, climate change and energy supply are of greater concern as it is widely realized that the planet earth does not provide an infinite capacity for absorbing human industrialization in the 21st century. The aim of this paper is to analyze upstream and downstream electricity production in selected case studies: a coal power plant, a pump system and a microwave oven covering and consumption to explore the position of energy efficiency in engineering sustainability. Collectively, the analysis presents energy efficiency as a major pathway towards sustainability that requires an inclusive and a holistic supply chain response in the engineering design process.

Keywords: Sustainability, technology, efficiency, engineering, energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
3671 An Energy Efficient Protocol for Target Localization in Wireless Sensor Networks

Authors: Shun-Kai Yang, Kuo-Feng Ssu

Abstract:

Target tracking and localization are important applications in wireless sensor networks. In these applications, sensor nodes collectively monitor and track the movement of a target. They have limited energy supplied by batteries, so energy efficiency is essential for sensor networks. Most existing target tracking protocols need to wake up sensors periodically to perform tracking. Some unnecessary energy waste is thus introduced. In this paper, an energy efficient protocol for target localization is proposed. In order to preserve energy, the protocol fixes the number of sensors for target tracking, but it retains the quality of target localization in an acceptable level. By selecting a set of sensors for target localization, the other sensors can sleep rather than periodically wake up to track the target. Simulation results show that the proposed protocol saves a significant amount of energy and also prolongs the network lifetime.

Keywords: Coverage, energy efficiency, target localization, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
3670 Improved p-Xylene Selectivity of n-Pentane Aromatization over Silylated Ga-exchanged HZSM- 5 Catalysts

Authors: Tunchanok Nitipan, Siriporn Jongpatiwut, Thirasak Rirksomboon, Boonyarach Kitiyanan, Tivaporn Apphakvan

Abstract:

In this study, the conversion of n-pentane to aromatics is investigated on HZSM-5 zeolites modified by Ga ion-exchange and silylation using tetraethyl orthosilicate (TEOS) via chemical liquid deposition (CLD). The effect of SiO2/Al2O3 ratios of HZSM-5 was also studied. Parameters in preparing catalysts i.e. TEOS loading and cycles of deposition were varied to obtain the optimal condition for enhancing p-xylene selectivity. The highest p-xylene selectivity 99.7% was achieved when the amount of TEOS was 20 vol.%.The catalysts were characterized by TPD, TPO, XRF, and BET. Results show that the conversion of n-pentane was influenced remarkably by the SiO2/Al2O3 ratios of HZSM-5. The highest p-xylene selectivity 99.7% was achieved when the amount of TEOS was 20 vol.%. And cycles of deposition greatly improves HZSM-5 shape-selectivity.

Keywords: Aromatization, Chemical Liquid Deposition (CLD), p-Xylene, ZSM-5 Zeolite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
3669 Performance Analysis of Energy-Efficient Home Femto Base Stations

Authors: Yun Won Chung

Abstract:

The energy consumption of home femto base stations (BSs) can be reduced, by turning off the Wi-Fi radio interface when there is no mobile station (MS) under the coverage of the BSs or MSs do not transmit or receive data packet for long time, especially in late night. In the energy-efficient home femto BSs, if MSs have any data packet to transmit and the Wi-Fi radio interface in off state, MSs wake up the Wi-Fi radio interface of home femto BSs by using additional low power radio interface. In this paper, the performance of the energy-efficient home femto BSs from the aspect of energy consumption and cumulative average delay, and show the effect of various parameters on energy consumption and cumulative average delay. From the results, the tradeoff relationship between energy consumption and cumulative average delay is shown and thus, appropriate operation should be needed to balance the tradeoff.

Keywords: energy consumption, power saving, femto base station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
3668 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors

Authors: G. Bumanis, D. Bajare

Abstract:

With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.

Keywords: Alkaline material, buffer capacity, biogas production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
3667 Energy-Aware Routing in Mobile Wireless Sensor Networks

Authors: R. Geetha, G. Umarani Srikanth, S. Prabhu

Abstract:

Wireless sensor networks are resource constrained networks, where energy is the major resource in such networks. Therefore, energy conservation is major aspect in the deployment of Wireless Sensor Network. This work makes use of an extended Greedy Perimeter Stateless Routing (eGPSR) protocol that mainly focuses on energy efficient data transmission. This data transmission is based on the fact that the message that is sent to a distant node consumes more energy than the message that is sent to a short range transmission. Every cluster contains a head set that consists of many virtual cluster heads. Routing is decided by head set members. The energy level of the received signal is the major constraint to choose head set from its members. The experimental result shows that the use of eGPSR in routing has improved throughput with comparatively less delay.

Keywords: eGPSR, energy efficiency, routing, wireless sensor networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
3666 Doubly Fed Induction Generator Based Variable Speed Wind Conversion System Control Enhancement by Applying Fractional Order Controller

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

In an electric power grid connected wind generation system, dynamic control strategy is essential to use the wind energy efficiently as well as for an energy optimization. The present study has focused on decoupled power regulation of doubly fed induction generator, operating in wind turbine, in accordance with the vector control approach by applying fractional order proportional integral (FOPI) controller. The FOPI controller is designed based on a simple method; up such that the response of closed loop process is similar to the response of a specified fractional model whose transfer function is Bode’s ideal function. In this tuning operation, the parameters of the proposed fractional controller are established analytically using the impulse closed-loop response of the controlled process. To show the superior action of the developed FOPI controller in comparison with standard PI controller in different function conditions, the study is validated through simulation using the software MATLAB/Simulink.

Keywords: Wind generation system, DFIG, vector control approach, fractional order PI controller, Bode’s ideal transfer function, impulse response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 651
3665 Energy Intensity of a Historical Downtown: Estimating the Energy Demand of a Budapest District

Authors: Viktória Sugár, Attila Talamon, András Horkai, Michihiro Kita

Abstract:

The dense urban fabric of the 7th district of Budapest -known as the former Jewish Quarter-, contains mainly historical style, multi-story tenement houses with courtyards. The high population density and the unsatisfactory energetic state of the buildings result high energy consumption. As a preliminary survey of a complex rehabilitation plan, the authors aim to determine the energy demand of the area. The energy demand was calculated by analyzing the structure and the energy consumption of each building by using Geographic Information System (GIS) methods. The carbon dioxide emission was also calculated, to assess the potential of reducing the present state value by complex structural and energetic rehabilitation. As a main focus of the survey, an energy intensity map has been created about the area.

Keywords: Carbon dioxide, energy intensity map, geographic information system, GIS, Hungary, Jewish quarter, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 954
3664 An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors.

Keywords: Energy-efficient, fog computing, IoT, telehealth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77
3663 Concepts for Designing Low Power Wireless Sensor Network

Authors: Bahareh Gholamzadeh, Hooman Nabovati

Abstract:

Wireless sensor networks have been used in wide areas of application and become an attractive area for researchers in recent years. Because of the limited energy storage capability of sensor nodes, Energy consumption is one of the most challenging aspects of these networks and different strategies and protocols deals with this area. This paper presents general methods for designing low power wireless sensor network. Different sources of energy consumptions in these networks are discussed here and techniques for alleviating the consumption of energy are presented.

Keywords: Energy consumption, MAC protocol, Routing protocol, Sensor node, Topology control, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
3662 JENOSYS: Application of a Web-Based Online Energy Performance Reporting Tool for Government Buildings in Malaysia

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Faiz Fadzil, Mohd Yusof Aizad Mukhtar

Abstract:

One of the areas that present an opportunity to reduce the national carbon emission is the energy management of public buildings. To our present knowledge, there is no easy-to-use and centralized mechanism that enables the government to monitor the overall energy performance, as well as the carbon footprint, of Malaysia’s public buildings. Therefore, the Public Works Department Malaysia, or PWD, has developed a web-based energy performance reporting tool called JENOSYS (JKR Energy Online System), which incorporates a database of utility account numbers acquired from the utility service provider for analysis and reporting. For test case purposes, 23 buildings under PWD were selected and monitored for their monthly energy performance (in kWh), carbon emission reduction (in tCO₂eq) and utility cost (in MYR), against the baseline. This paper demonstrates the simplicity with which buildings without energy metering can be monitored centrally and the benefits that can be accrued by the government in terms of building energy disclosure and concludes with the recommendation of expanding the system to all the public buildings in Malaysia.

Keywords: Energy-efficient buildings. energy management systems, government buildings, JENOSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
3661 Proposals for the Thermal Regulation of Buildings in Algeria: An Energy Label for Social Housing

Authors: Marco Morini, Nicolandrea Calabrese, Dario Chello

Abstract:

Despite the international commitment of Algeria towards the development of energy efficiency and renewable energy in the country, the internal energy demand has been continuously growing during the last decade due to the substantial increase of population and of living conditions, which in turn has led to an unprecedented expansion of the residential building sector. The RTB (Thermal Building Regulation) is the technical document that establishes the calculation framework for the thermal performance of buildings in Algeria, setting up minimum obligatory targets for the thermal performance of new buildings. An update of this regulation is due in the coming years and this paper discusses some proposals in this regard, with the aim to improve the energy efficiency of the building sector, particularly with regard to social housing. In particular, it proposes a methodology for drafting an energy performance label of new Algerian residential buildings, moving from the results of the thermal compliance verification and sizing of technical systems as defined in the RTB. Such an energy performance label – whose calculation method is briefly described in the paper – aims to raise citizens' awareness of the benefits of energy efficiency. It can represent the first step in a process of integrating technical installations into the calculation of the energy performance of buildings in Algeria.

Keywords: building, energy certification, energy efficiency, social housing, international cooperation, Mediterranean Region

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558
3660 Modeling and Simulation of Photovoltaic based LED Lighting System

Authors: Ankit R Patel, Ankit A Patel, Mahesh A Patel, Dhaval R Vyas

Abstract:

Although lighting systems powered by Photovoltaic (PV) cells have existed for many years, they are not widely used, especially in lighting for buildings, due to their high initial cost and low conversion efficiency. One of the technical challenges facing PV powered lighting systems has been how to use dc power generated by the PV module to energize common light sources that are designed to operate efficiently under ac power. Usually, the efficiency of the dc light sources is very poor compared to ac light sources. Rapid developments in LED lighting systems have made this technology a potential candidate for PV powered lighting systems. This study analyzed the efficiency of each component of PV powered lighting systems to identify optimum system configurations for different applications.

Keywords: Energy Efficiency, LED, Modeling of systems, Photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3174
3659 Modelling of Energy Consumption in Wheat Production Using Neural Networks “Case Study in Canterbury Province, New Zealand“

Authors: M. Safa, S. Samarasinghe

Abstract:

An artificial neural network (ANN) approach was used to model the energy consumption of wheat production. This study was conducted over 35,300 hectares of irrigated and dry land wheat fields in Canterbury in the 2007-2008 harvest year.1 In this study several direct and indirect factors have been used to create an artificial neural networks model to predict energy use in wheat production. The final model can predict energy consumption by using farm condition (size of wheat area and number paddocks), farmers- social properties (education), and energy inputs (N and P use, fungicide consumption, seed consumption, and irrigation frequency), it can also predict energy use in Canterbury wheat farms with error margin of ±7% (± 1600 MJ/ha).

Keywords: Artificial neural network, Canterbury, energy consumption, modelling, New Zealand, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
3658 The Energy Impacts of Using Top-Light Daylighting Systems for Academic Buildings in Tropical Climate

Authors: M. S. Alrubaih, M. F. M. Zain, N. L. N. Ibrahim, M.A. Alghoul, K. I. Ben Sauod

Abstract:

Careful design and selection of daylighting systems can greatly help in reducing not only artificial lighting use, but also decrease cooling energy consumption and, therefore, potential for downsizing air-conditioning systems. This paper aims to evaluate the energy performance of two types of top-light daylighting systems due to the integration of daylight together with artificial lighting in an existing examinaton hall in University Kebangsaan Malaysia, based on a hot and humid climate. Computer simulation models have been created for building case study (base case) and the two types of toplight daylighting designs for building energy performance evaluation using the VisualDOE 4.0 building energy simulation program. The finding revealed that daylighting through top-light systems is a very beneficial design strategy in reducing annual lighting energy consumption and the overall total annual energy consumption.

Keywords: Academic buildings, Daylighting, Top-lighting, Energy savings, Tropical Climate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
3657 Study on Specific Energy in Grinding of DRACs: A Response Surface Methodology Approach

Authors: Dayananda Pai, Shrikantha S. Rao, Savitha G.Kini

Abstract:

In this study, the effects of machining parameters on specific energy during surface grinding of 6061Al-SiC35P composites are investigated. Vol% of SiC, feed and depth of cut were chosen as process variables. The power needed for the calculation of the specific energy is measured from the two watt meter method. Experiments are conducted using standard RSM design called Central composite design (CCD). A second order response surface model was developed for specific energy. The results identify the significant influence factors to minimize the specific energy. The confirmation results demonstrate the practicability and effectiveness of the proposed approach.

Keywords: ANOVA, Metal matrix composites, Response surface methodology, Specific energy, Two watt meter method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
3656 Combining Minimum Energy and Minimum Direct Jerk of Linear Dynamic Systems

Authors: V. Tawiwat, P. Jumnong

Abstract:

Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper proposes a simple yet very interesting when combining the minimum energy and jerk of indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of the minimum energy, the minimum jerk and combining them together are found using the dynamic optimization methods together with the numerical approximation. This is to allow us to simulate and compare visually and statistically the time history of state inputs employed by combining minimum energy and jerk designs. The numerical solution of minimum direct jerk and energy problem are exactly the same solution; however, the solutions from problem of minimum energy yield the similar solution especially in term of tendency.

Keywords: Optimization, Dynamic, Linear Systems, Jerks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546