Search results for: Adaptive decision feedback equalizer
2232 Digital Predistorter with Pipelined Architecture Using CORDIC Processors
Authors: Kyunghoon Kim, Sungjoon Shim, Jun Tae Kim, Jong Tae Kim
Abstract:
In a wireless communication system, a predistorter(PD) is often employed to alleviate nonlinear distortions due to operating a power amplifier near saturation, thereby improving the system performance and reducing the interference to adjacent channels. This paper presents a new adaptive polynomial digital predistorter(DPD). The proposed DPD uses Coordinate Rotation Digital Computing(CORDIC) processors and PD process by pipelined architecture. It is simpler and faster than conventional adaptive polynomial DPD. The performance of the proposed DPD is proved by MATLAB simulation. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17882231 Fuzzy Multi-Criteria Framework for Supporting Biofuels Policy Making
Authors: Jadwiga R. Ziolkowska
Abstract:
In this paper, a fuzzy algorithm and a fuzzy multicriteria decision framework are developed and used for a practical question of optimizing biofuels policy making. The methodological framework shows how to incorporate fuzzy set theory in a decision process of finding a sustainable biofuels policy among several policy options. Fuzzy set theory is used here as a tool to deal with uncertainties of decision environment, vagueness and ambiguities of policy objectives, subjectivities of human assessments and imprecise and incomplete information about the evaluated policy instruments.Keywords: Fuzzy set theory, multi-criteria decision-makingsupport, uncertainties, policy making, biofuels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20302230 Statistical Genetic Algorithm
Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh
Abstract:
Adaptive Genetic Algorithms extend the Standard Gas to use dynamic procedures to apply evolutionary operators such as crossover, mutation and selection. In this paper, we try to propose a new adaptive genetic algorithm, which is based on the statistical information of the population as a guideline to tune its crossover, selection and mutation operators. This algorithms is called Statistical Genetic Algorithm and is compared with traditional GA in some benchmark problems.Keywords: Genetic Algorithms, Statistical Information ofthe Population, PAUX, SSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17542229 Implementing an Adaptive Behavior for Spread Spectrum Watermarking Procedures
Authors: Franco Frattolillo
Abstract:
The advances in multimedia and networking technologies have created opportunities for Internet pirates, who can easily copy multimedia contents and illegally distribute them on the Internet, thus violating the legal rights of content owners. This paper describes how a simple and well-known watermarking procedure based on a spread spectrum method and a watermark recovery by correlation can be improved to effectively and adaptively protect MPEG-2 videos distributed on the Internet. In fact, the procedure, in its simplest form, is vulnerable to a variety of attacks. However, its security and robustness have been increased, and its behavior has been made adaptive with respect to the video terminals used to open the videos and the network transactions carried out to deliver them to buyers. In fact, such an adaptive behavior enables the proposed procedure to efficiently embed watermarks, and this characteristic makes the procedure well suited to be exploited in web contexts, where watermarks usually generated from fingerprinting codes have to be inserted into the distributed videos “on the fly", i.e. during the purchase web transactions.Keywords: Copyright protection, digital watermarking, intellectualproperty protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13822228 Improvement of Synchronous Machine Dynamic Characteristics via Neural Network Based Controllers
Authors: S. A. Gawish, F. A. Khalifa, R. M. Mostafa
Abstract:
This paper presents Simulation and experimental study aimed at investigating the effectiveness of an adaptive artificial neural network stabilizer on enhancing the damping torque of a synchronous generator. For this purpose, a power system comprising a synchronous generator feeding a large power system through a short tie line is considered. The proposed adaptive neuro-control system consists of two multi-layered feed forward neural networks, which work as a plant model identifier and a controller. It generates supplementary control signals to be utilized by conventional controllers. The details of the interfacing circuits, sensors and transducers, which have been designed and built for use in tests, are presented. The synchronous generator is tested to investigate the effect of tuning a Power System Stabilizer (PSS) on its dynamic stability. The obtained simulation and experimental results verify the basic theoretical concepts.Keywords: Adaptive artificial neural network, power system stabilizer, synchronous generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14552227 A Soft Set based Group Decision Making Method with Criteria Weight
Authors: Samsiah Abdul Razak, Daud Mohamad
Abstract:
Molodstov-s soft sets theory was originally proposed as general mathematical tool for dealing with uncertainty problems. The matrix form has been introduced in soft set and some of its properties have been discussed. However, the formulation of soft matrix in group decision making problem only with equal importance weights of criteria, which does not show the true opinion of decision maker on each criteria. The aim of this paper is to propose a method for solving group decision making problem incorporating the importance of criteria by using soft matrices in a more objective manner. The weight of each criterion is calculated by using the Analytic Hierarchy Process (AHP) method. An example of house selection process is given to illustrate the effectiveness of the proposed method.Keywords: Soft set, Soft Matrix, Soft max-min decision making (SMmDM), Analytic hierarchy process (AHP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19002226 The Development of Decision Support System for Waste Management; a Review
Authors: M. S. Bani, Z. A. Rashid, K. H. K. Hamid, M. E. Harbawi, A.B.Alias, M. J. Aris
Abstract:
Most Decision Support Systems (DSS) for waste management (WM) constructed are not widely marketed and lack practical applications. This is due to the number of variables and complexity of the mathematical models which include the assumptions and constraints required in decision making. The approach made by many researchers in DSS modelling is to isolate a few key factors that have a significant influence to the DSS. This segmented approach does not provide a thorough understanding of the complex relationships of the many elements involved. The various elements in constructing the DSS must be integrated and optimized in order to produce a viable model that is marketable and has practical application. The DSS model used in assisting decision makers should be integrated with GIS, able to give robust prediction despite the inherent uncertainties of waste generation and the plethora of waste characteristics, and gives optimal allocation of waste stream for recycling, incineration, landfill and composting.Keywords: Review, decision support system, GIS and waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37462225 Output Regulation of Perturbed Nonlinear Systems by Nested Sliding Mode Control
Authors: Aras Adhami Mirhoseini, Mohammad J. Yazdanpanah
Abstract:
In this paper, we consider nested sliding mode control of SISO nonlinear systems, perturbed by bounded matched and unmatched uncertainties. The systems are assumed to be in strict-feedback form. A step wise procedure is introduced to obtain the controller. In each step, a continuous sliding mode controller is designed as virtual control law. Then the next step sliding surface is defined by using this virtual controller. These sliding surfaces are selected as nonlinear static functions of the system states. Finally in the last step, smooth static state feedback control law is determined such that the output reaches the desired set-point while the system is forced arbitrary close to the intersection of sliding surfaces and the states remain bounded.
Keywords: Sliding mode control, Strict-feedback form, Unmatched uncertainty, output regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21512224 Integrating Context Priors into a Decision Tree Classification Scheme
Authors: Kasim Terzic, Bernd Neumann
Abstract:
Scene interpretation systems need to match (often ambiguous) low-level input data to concepts from a high-level ontology. In many domains, these decisions are uncertain and benefit greatly from proper context. This paper demonstrates the use of decision trees for estimating class probabilities for regions described by feature vectors, and shows how context can be introduced in order to improve the matching performance.Keywords: Classification, Decision Trees, Interpretation, Vision
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13002223 Hybrid Feature and Adaptive Particle Filter for Robust Object Tracking
Authors: Xinyue Zhao, Yutaka Satoh, Hidenori Takauji, Shun'ichi Kaneko
Abstract:
A hybrid feature based adaptive particle filter algorithm is presented for object tracking in real scenarios with static camera. The hybrid feature is combined by two effective features: the Grayscale Arranging Pairs (GAP) feature and the color histogram feature. The GAP feature has high discriminative ability even under conditions of severe illumination variation and dynamic background elements, while the color histogram feature has high reliability to identify the detected objects. The combination of two features covers the shortage of single feature. Furthermore, we adopt an updating target model so that some external problems such as visual angles can be overcame well. An automatic initialization algorithm is introduced which provides precise initial positions of objects. The experimental results show the good performance of the proposed method.Keywords: Hybrid feature, adaptive Particle Filter, robust Object Tracking, Grayscale Arranging Pairs (GAP) feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15282222 A Study on the Differences of Academic Achievement, Self-Efficacy, and Engineering Self-Efficacy with Gender of Engineering Students
Authors: Seung hee Kang, Jee-Hong Kim, Ji Seong Jang,
Abstract:
The purpose of this study was to investigate relationships between satisfaction with major and career decision efficacy and career attitude maturity of engineering college students by performing correlation analysis. Gender differences in between satisfaction with major and career decision efficacy and career attitude maturity were also examined by T-test. The results T-test revealed gender differences in only career decision efficacy. Male Students scored significantly higher than did female students on career decision efficacy and satisfaction with major. The results of correlation analysis showed a) satisfaction with major were significantly associated with career decision efficacy, b) satisfaction with major were significantly associated with career attitude maturity, and c) career decision efficacy were significantly associated with career attitude maturity. As a result,we found the importance of satisfaction in engineering college students- major studies when deciding their career.
Keywords: Satisfaction with major, career decision efficacy, career attitude maturity, engineering college student.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17652221 Efficacy of Self-Assessment in Written Production among High School Students
Authors: Yoko Suganuma Oi
Abstract:
The purpose of the present study is to find the efficacy of high school student self-assessment of written production. It aimed to explore the following two research questions: 1) How is topic development of their written production improved after student self-assessment and teacher feedback? 2) Does the consistency between student self-assessment and teacher assessment develop after student self-assessment and teacher feedback? The data came from the written production of 82 Japanese high school students aged from 16 to 18 years old, an American English teacher and one Japanese English teacher. Students were asked to write English compositions, about 150 words, for thirty minutes without using dictionaries. It was conducted twice at intervals of two months. Students were supposed to assess their own compositions by themselves. Teachers also assessed students’ compositions using the same assessment sheet. The results showed that both teachers and students assessed the second compositions higher than the first compositions. However, there was not the development of the consistency in coherence.Keywords: Feedback, self-assessment, topic development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19012220 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit
Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu
Abstract:
Efficient matrix-vector multiplication with diagonal sparse matrices is pivotal in a multitude of computational domains, ranging from scientific simulations to machine learning workloads. When encoded in the conventional Diagonal (DIA) format, these matrices often induce computational overheads due to extensive zero-padding and non-linear memory accesses, which can hamper the computational throughput, and elevate the usage of precious compute and memory resources beyond necessity. The ’DIA-Adaptive’ approach, a methodological enhancement introduced in this paper, confronts these challenges head-on by leveraging the advanced parallel instruction sets embedded within Machine Learning Units (MLUs). This research presents a thorough analysis of the DIA-Adaptive scheme’s efficacy in optimizing Sparse Matrix-Vector Multiplication (SpMV) operations. The scope of the evaluation extends to a variety of hardware architectures, examining the repercussions of distinct thread allocation strategies and cluster configurations across multiple storage formats. A dedicated computational kernel, intrinsic to the DIA-Adaptive approach, has been meticulously developed to synchronize with the nuanced performance characteristics of MLUs. Empirical results, derived from rigorous experimentation, reveal that the DIA-Adaptive methodology not only diminishes the performance bottlenecks associated with the DIA format but also exhibits pronounced enhancements in execution speed and resource utilization. The analysis delineates a marked improvement in parallelism, showcasing the DIA-Adaptive scheme’s ability to adeptly manage the interplay between storage formats, hardware capabilities, and algorithmic design. The findings suggest that this approach could set a precedent for accelerating SpMV tasks, thereby contributing significantly to the broader domain of high-performance computing and data-intensive applications.
Keywords: Adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352219 Design of Gain Scheduled Fuzzy PID Controller
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
An adaptive fuzzy PID controller with gain scheduling is proposed in this paper. The structure of the proposed gain scheduled fuzzy PID (GS_FPID) controller consists of both fuzzy PI-like controller and fuzzy PD-like controller. Both of fuzzy PI-like and PD-like controllers are weighted through adaptive gain scheduling, which are also determined by fuzzy logic inference. A modified genetic algorithm called accumulated genetic algorithm is designed to learn the parameters of fuzzy inference system. In order to learn the number of fuzzy rules required for the TSK model, the fuzzy rules are learned in an accumulated way. In other words, the parameters learned in the previous rules are accumulated and updated along with the parameters in the current rule. It will be shown that the proposed GS_FPID controllers learned by the accumulated GA perform well for not only the regular linear systems but also the higher order and time-delayed systems.
Keywords: Gain scheduling, fuzzy PID controller, adaptive control, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40612218 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.
Keywords: Adaptive estimation, fault detection, GNSS, residual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25552217 An Intelligent Human-Computer Interaction System for Decision Support
Authors: Chee Siong Teh, Chee Peng Lim
Abstract:
This paper proposes a novel architecture for developing decision support systems. Unlike conventional decision support systems, the proposed architecture endeavors to reveal the decision-making process such that humans' subjectivity can be incorporated into a computerized system and, at the same time, to preserve the capability of the computerized system in processing information objectively. A number of techniques used in developing the decision support system are elaborated to make the decisionmarking process transparent. These include procedures for high dimensional data visualization, pattern classification, prediction, and evolutionary computational search. An artificial data set is first employed to compare the proposed approach with other methods. A simulated handwritten data set and a real data set on liver disease diagnosis are then employed to evaluate the efficacy of the proposed approach. The results are analyzed and discussed. The potentials of the proposed architecture as a useful decision support system are demonstrated.
Keywords: Interactive evolutionary computation, multivariate data projection, pattern classification, topographic map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14542216 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14242215 Published Financial Statement as a Correlate of Investment Decision among Commercial Bank Stakeholders in Nigeria
Authors: Popoola, C. F., Akinsanya, K., Babarinde, S. B., Farinde, D. A.
Abstract:
This study investigated published financial statement as correlate of investment decision among commercial bank stakeholders in Nigeria. A correlation research design was used in the study. 180 users of published financial statement were purposively sampled from Lagos and Ibadan. Data generated were analyzed using Pearson correlation and regression. The findings of the study revealed that, balance sheet is negatively related with investment decision (r= -.483; p<.01) while income statement (r= .249; p<.001), notes on the account (r= .230; p<.001), cash flow statement (r= .202; p<.001), value added statement (r= .328; p<.001) and five-year financial summary (r= .191; p<.01) are positively related with investment decision. Findings also revealed that components of published financial statement significantly predicted good investment decision (R2= .983; F(5,175)=284.5; p<.05) for commercial bank stakeholders. Therefore, it was suggested that Nigeria banks and professional bodies should instigate programs that will increase the knowledge of stakeholders on published financial statement.
Keywords: Commercial banks, Financial statement, Income Statement, Investment decision, Stakeholders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50052214 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14982213 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors
Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad
Abstract:
In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.Keywords: Adaptive filter, affine projection, selective regressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15742212 Decision Framework for Cross-Border Railway Infrastructure Projects
Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki
Abstract:
Transport infrastructure assets are key components of the national asset portfolio. The decision to invest in a new infrastructure in transports could take from a few years to some decades. This is mainly because of the need to reserve and spent many capitals, the long payback period, the number of the stakeholders involved in decision process and –many times- the investment and business risks are high. Therefore, the decision assessment framework is an essential challenge linked with the key decision factors meet the stakeholder expectations highlighting project trade-offs, financial risks, business uncertainties and market limitations. This paper examines the decision process for new transport infrastructure projects in cross border regions, where a wide range of stakeholders with different expectation is involved. According to a consequences analysis systemic approach, the relationship of transport infrastructure development, economic system development and stakeholder expectation is analyzed. Adopting the on system of system methodological approach, the decision making framework, variables, inputs and outputs are defined, highlighting the key shareholder’s role and expectations. The application provides the methodology outputs presenting the proposed decision framework for a strategic railway project in north Greece deals with the upgrade of the existing railway corridor connecting Greece, Turkey and Bulgaria.
Keywords: System of system approach, decision making, cross-border, infrastructure project.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18022211 Adaptive Score Normalization: A Novel Approach for Multimodal Biometric Systems
Authors: Anouar Ben Khalifa, Sami Gazzah, Najoua Essoukri BenAmara
Abstract:
Multimodal biometric systems integrate the data presented by multiple biometric sources, hence offering a better performance than the systems based on a single biometric modality. Although the coupling of biometric systems can be done at different levels, the fusion at the scores level is the most common since it has been proven effective than the rest of the fusion levels. However, the scores from different modalities are generally heterogeneous. A step of normalizing the scores is needed to transform these scores into a common domain before combining them. In this paper, we study the performance of several normalization techniques with various fusion methods in a context relating to the merger of three unimodal systems based on the face, the palmprint and the fingerprint. We also propose a new adaptive normalization method that takes into account the distribution of client scores and impostor scores. Experiments conducted on a database of 100 people show that the performances of a multimodal system depend on the choice of the normalization method and the fusion technique. The proposed normalization method has given the best results.
Keywords: Multibiometrics, Fusion, Score level, Score normalization, Adaptive normalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35542210 A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry
Authors: Zeynep Sener, Mehtap Dursun
Abstract:
Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision methodology.
Keywords: Fuzzy decision making, fuzzy multiple objective programming, medical supply chain, supplier selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26722209 Attitude Stabilization of Satellites Using Random Dither Quantization
Authors: Attitude Stabilization of Satellites Using Random Dither Quantization
Abstract:
Recently, the effectiveness of random dither quantization method for linear feedback control systems has been shown in several papers. However, the random dither quantization method has not yet been applied to nonlinear feedback control systems. The objective of this paper is to verify the effectiveness of random dither quantization method for nonlinear feedback control systems. For this purpose, we consider the attitude stabilization problem of satellites using discrete-level actuators. Namely, this paper provides a control method based on the random dither quantization method for stabilizing the attitude of satellites using discrete-level actuators.Keywords: Quantized control, nonlinear systems, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9592208 A Contribution to the Application of the Structural Analysis Method in Entrepreneurial Practice
Authors: Kamila Janovská, Šárka Vilamová, Petr Besta, Iveta Vozňáková, Roman Kozel
Abstract:
Quantitative methods of economic decision-making as the methodological base of the so called operational research represent an important set of tools for managing complex economic systems,both at the microeconomic level and on the macroeconomic scale. Mathematical models of controlled and controlling processes allow, by means of artificial experiments, obtaining information foroptimalor optimum approaching managerial decision-making.The quantitative methods of economic decision-making usually include a methodology known as structural analysis -an analysisof interdisciplinary production-consumption relations.Keywords: economic decision-making, mathematical methods, structuralanalysis, technical coefficient
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14422207 Exploiting Self-Adaptive Replication Management on Decentralized Tuple Space
Authors: Xing Jiankuan, Qin Zheng, Zhang Jinxue
Abstract:
Decentralized Tuple Space (DTS) implements tuple space model among a series of decentralized hosts and provides the logical global shared tuple repository. Replication has been introduced to promote performance problem incurred by remote tuple access. In this paper, we propose a replication approach of DTS allowing replication policies self-adapting. The accesses from users or other nodes are monitored and collected to contribute the decision making. The replication policy may be changed if the better performance is expected. The experiments show that this approach suitably adjusts the replication policies, which brings negligible overhead.Keywords: Decentralization, Replication Management, SelfAdaption, Tuple Space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12182206 Efficient Design of Distribution Logistics by Using a Model-Based Decision Support System
Abstract:
The design of distribution logistics has a decisive impact on a company's logistics costs and performance. Hence, such solutions make an essential contribution to corporate success. This article describes a decision support system for analyzing the potential of distribution logistics in terms of logistics costs and performance. In contrast to previous procedures of business process re-engineering (BPR), this method maps distribution logistics holistically under variable distribution structures. Combined with qualitative measures the decision support system will contribute to a more efficient design of distribution logistics.
Keywords: Decision support system distribution logistics, potential analyses, supply chain management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18232205 Rough Set Based Intelligent Welding Quality Classification
Authors: L. Tao, T. J. Sun, Z. H. Li
Abstract:
The knowledge base of welding defect recognition is essentially incomplete. This characteristic determines that the recognition results do not reflect the actual situation. It also has a further influence on the classification of welding quality. This paper is concerned with the study of a rough set based method to reduce the influence and improve the classification accuracy. At first, a rough set model of welding quality intelligent classification has been built. Both condition and decision attributes have been specified. Later on, groups of the representative multiple compound defects have been chosen from the defect library and then classified correctly to form the decision table. Finally, the redundant information of the decision table has been reducted and the optimal decision rules have been reached. By this method, we are able to reclassify the misclassified defects to the right quality level. Compared with the ordinary ones, this method has higher accuracy and better robustness.Keywords: intelligent decision, rough set, welding defects, welding quality level
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16002204 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.
Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20362203 Development of a Real-Time Simulink Based Robotic System to Study Force Feedback Mechanism during Instrument-Object Interaction
Authors: Jaydip M. Desai, Antonio Valdevit, Arthur Ritter
Abstract:
Robotic surgery is used to enhance minimally invasive surgical procedure. It provides greater degree of freedom for surgical tools but lacks of haptic feedback system to provide sense of touch to the surgeon. Surgical robots work on master-slave operation, where user is a master and robotic arms are the slaves. Current, surgical robots provide precise control of the surgical tools, but heavily rely on visual feedback, which sometimes cause damage to the inner organs. The goal of this research was to design and develop a realtime Simulink based robotic system to study force feedback mechanism during instrument-object interaction. Setup includes three VelmexXSlide assembly (XYZ Stage) for three dimensional movement, an end effector assembly for forceps, electronic circuit for four strain gages, two Novint Falcon 3D gaming controllers, microcontroller board with linear actuators, MATLAB and Simulink toolboxes. Strain gages were calibrated using Imada Digital Force Gauge device and tested with a hard-core wire to measure instrument-object interaction in the range of 0-35N. Designed Simulink model successfully acquires 3D coordinates from two Novint Falcon controllers and transfer coordinates to the XYZ stage and forceps. Simulink model also reads strain gages signal through 10-bit analog to digital converter resolution of a microcontroller assembly in real time, converts voltage into force and feedback the output signals to the Novint Falcon controller for force feedback mechanism. Experimental setup allows user to change forward kinematics algorithms to achieve the best-desired movement of the XYZ stage and forceps. This project combines haptic technology with surgical robot to provide sense of touch to the user controlling forceps through machine-computer interface.
Keywords: Haptic feedback, MATLAB, Simulink, Strain Gage, Surgical Robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3212