Search results for: human activity recognition
3321 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm
Authors: Abdullah A. AlShaher
Abstract:
In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.
Keywords: Shape recognition, Arabic handwritten characters, regression curves, expectation maximization algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7133320 Bidirectional Discriminant Supervised Locality Preserving Projection for Face Recognition
Abstract:
Dimensionality reduction and feature extraction are of crucial importance for achieving high efficiency in manipulating the high dimensional data. Two-dimensional discriminant locality preserving projection (2D-DLPP) and two-dimensional discriminant supervised LPP (2D-DSLPP) are two effective two-dimensional projection methods for dimensionality reduction and feature extraction of face image matrices. Since 2D-DLPP and 2D-DSLPP preserve the local structure information of the original data and exploit the discriminant information, they usually have good recognition performance. However, 2D-DLPP and 2D-DSLPP only employ single-sided projection, and thus the generated low dimensional data matrices have still many features. In this paper, by combining the discriminant supervised LPP with the bidirectional projection, we propose the bidirectional discriminant supervised LPP (BDSLPP). The left and right projection matrices for BDSLPP can be computed iteratively. Experimental results show that the proposed BDSLPP achieves higher recognition accuracy than 2D-DLPP, 2D-DSLPP, and bidirectional discriminant LPP (BDLPP).Keywords: Face recognition, dimension reduction, locality preserving projection, discriminant information, bidirectional projection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6893319 Pre-Clinical Studying of Antitumor Ramon Preparation: Specific Activity
Authors: Raissa A. Muzychkina, Irina M. Korulkina, Dmitriy Yu. Korulkin
Abstract:
In article the data of pre-clinical researches of Ramon preparation is described. Antitumor activity of Ramon has been studied on 19 strains of transplantated tumors of different hystogenesis.
Keywords: Cancer, antitumor activity, pre-clinical testing, anthraquinones, phytopreparation, Ramon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17003318 Study on Phytochemical Properties, Antibacterial Activity and Cytotoxicity of Aloe vera L.
Authors: K. Thu, Yin Y. Mon, Tin A. Khaing, Ohn M. Tun
Abstract:
The aim of the study was to investigate phytochemical properties, antimicrobial activity and cytotoxicity of Aloe vera. The phytochemical screening of the extracts of leaves of A. vera revealed the presence of bioactive compounds such as alkaloids, tannins, flavonoids phenolic compounds, and etc. with absence of cyanogenic glycosides. Three different solvents such as methanol, ethanol and Di-Methyl sulfoxide were used to screen the antimicrobial activity of A. vera leaves against four human clinical pathogens by agar well diffusion method. The maximum antibacterial activities were observed in methanol extract followed by ethanol and Di-Methyl sulfoxide. It was also found that remarkable antibacterial activities with methanolic and ethanolic extracts of A. vera compared with the standard antibiotic, tetracycline that was not active against E. coli and S. boydii and supported the view that A. vera is a potent antimicrobial agent compared with the conventional antibiotic. Moreover, the brine shrimps (Artemia salina) toxicity test exhibited LC50 value was 569.52 ppm. The resulting data indicated that the A. vera plant have less toxic effects on brine shrimp. Hence, it is signified that Aloe vera plant extract is safe to be used as an antimicrobial agent.Keywords: Aloe vera L., antimicrobial activity, brine shrimp, cytotoxicity, phytochemical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60513317 Human Behavior Modeling in Video Surveillance of Conference Halls
Authors: Nour Charara, Hussein Charara, Omar Abou Khaled, Hani Abdallah, Elena Mugellini
Abstract:
In this paper, we present a human behavior modeling approach in videos scenes. This approach is used to model the normal behaviors in the conference halls. We exploited the Probabilistic Latent Semantic Analysis technique (PLSA), using the 'Bag-of-Terms' paradigm, as a tool for exploring video data to learn the model by grouping similar activities. Our term vocabulary consists of 3D spatio-temporal patch groups assigned by the direction of motion. Our video representation ensures the spatial information, the object trajectory, and the motion. The main importance of this approach is that it can be adapted to detect abnormal behaviors in order to ensure and enhance human security.Keywords: Activity modeling, clustering, PLSA, video representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8423316 A Smart-Visio Microphone for Audio-Visual Speech Recognition “Vmike“
Abstract:
The practical implementation of audio-video coupled speech recognition systems is mainly limited by the hardware complexity to integrate two radically different information capturing devices with good temporal synchronisation. In this paper, we propose a solution based on a smart CMOS image sensor in order to simplify the hardware integration difficulties. By using on-chip image processing, this smart sensor can calculate in real time the X/Y projections of the captured image. This on-chip projection reduces considerably the volume of the output data. This data-volume reduction permits a transmission of the condensed visual information via the same audio channel by using a stereophonic input available on most of the standard computation devices such as PC, PDA and mobile phones. A prototype called VMIKE (Visio-Microphone) has been designed and realised by using standard 0.35um CMOS technology. A preliminary experiment gives encouraged results. Its efficiency will be further investigated in a large variety of applications such as biometrics, speech recognition in noisy environments, and vocal control for military or disabled persons, etc.
Keywords: Audio-Visual Speech recognition, CMOS Smartsensor, On-Chip image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18263315 Effects of Adding Different Levels of Anaerobic Fungi on Cellulase Activity of Ostrich Digestive Tract-s Microorganisms under in Vitro Condition
Authors: Seyed Azizollah Ghotb, Mohammad Chamani, Elmira Abdollahzadeh Esmaeili, Farhad Foroudi
Abstract:
the objective of this study is to measure the levels of cellulas activity of ostrich GI microorganisms, and comparing it with the levels of cellulas activity of rumen-s microorganisms, and also to estimate the probability of increasing enzyme activity with injecting different dosages (30%, 50% and 70%) of pure anaerobic goat rumen fungi. The experiment was conducted in laboratory and under a complete anaerobic condition (in vitro condition). 40 ml of “CaldWell" medium and 1.4g wheat straw were placed in incubator for an hour. The cellulase activity of ostrich microorganisms was compared with other treatments, and then different dosages (30%, 50% and 70%) of pure anaerobic goat rumen fungi were injected to ostrich microorganism-s media. Due to the results, cattle and goat with 2.13 and 2.08 I.U (international units) respectively showed the highest activity and ostrich with 0.91 (I.U) had the lowest cellulose activity (p < 0.05). Injecting 30% and 50% of anaerobic fungi had no significant incensement in enzyme activity, but with injecting 70% of rumen fungi to ostrich microorganisms culture a significant increase was observed 1.48 I.U. (p < 0.05).Keywords: Cellulase enzyme, Microorganisms, Ostrich, Ruminants
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20913314 Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.
Keywords: Bayesian rule, Gaussian process classification model with multiclass, Gaussian process prior, human action classification, laplace approximation, variational EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17583313 Optimization of Enzymatic Activities in Malting of Oat
Authors: E. Hosseini, M. Kadivar, M. Shahedi
Abstract:
Malting is usually carried out on intact barley seed, while hull is still attached to it. In this study, oat grain with and without hull was subjected to controlled germination to optimize its enzymes activity, in such a way that lipase has the lowest and α- amylase and proteinase the highest activities. Since pH has a great impact on the activity of the enzymes, the pH of germination media was set up to 3 to 8. In dehulled oats, lipase and α-amylase had the lowest and highest activities in pHs 3 and 6, respectively whereas the highest proteinase activity was evidenced at pH 7 and 4 in the oats with and without hull respectively. While measurements indicated that the effect of hull on the enzyme activities particularly in lipase and amylase at each level of the pH are significantly different, the best results were obtained in those samples in which their hull had been removed. However, since the similar lipase activity in germinated dehulled oat were recorded at the pHs 4 and 5, therefore it was concluded that pH 5 in dehulled oat seed may provide the optimum enzyme activity for all the enzymes.Keywords: Enzyme activity, malting, oat, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29293312 Shift Invariant Support Vector Machines Face Recognition System
Authors: J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay, R. Jaime-Rivas
Abstract:
In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.Keywords: Face recognition, support vector machines, shiftinvariance, image registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17573311 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton
Abstract:
Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.
Keywords: Pollen recognition, logistic model tree, expectation-maximization, local binary pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7703310 Human Pose Estimation using Active Shape Models
Authors: Changhyuk Jang, Keechul Jung
Abstract:
Human pose estimation can be executed using Active Shape Models. The existing techniques for applying to human-body research using Active Shape Models, such as human detection, primarily take the form of silhouette of human body. This technique is not able to estimate accurately for human pose to concern two arms and legs, as the silhouette of human body represents the shape as out of round. To solve this problem, we applied the human body model as stick-figure, “skeleton". The skeleton model of human body can give consideration to various shapes of human pose. To obtain effective estimation result, we applied background subtraction and deformed matching algorithm of primary Active Shape Models in the fitting process. The images which were used to make the model were 600 human bodies, and the model has 17 landmark points which indicate body junction and key features of human pose. The maximum iteration for the fitting process was 30 times and the execution time was less than .03 sec.
Keywords: Active shape models, skeleton, pose estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24163309 Parameters Influencing Human-Machine Interaction in Hospitals
Authors: Hind Bouami, Patrick Millot
Abstract:
Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedback helps identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.
Keywords: Life-critical systems, situation awareness, human-machine interaction, decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5753308 Human Capacity Building in Manufacturing Sector: A Factor to Industrial Growth in Nigeria
Authors: Williams S. Ebhota, Ckikaodili Virginia Ugwu
Abstract:
Human ability is a major source of constraint to manufacturing industries in Nigeria. This paper therefore, discusses the importance of human influences on manufacturing and consequently to industrialization and National development. In this paper, the development of manufacturing was anchored on two main factors; Infrastructural Capacity Development (ICD) and Human Capacity Development (HCD). However, a wider view was given to the HCD and the various contemporary human capacity issues militating against manufacturing in Nigeria. It went further to discuss various ways of acquiring and upgrading workers’ skills and finally, suggestions were made on how to tackle the onerous human capacity issues in manufacturing.
Keywords: Manufacturing, Human, Capacity, Development, Innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34963307 Anti-Inflammatory Activity of Topical Anthocyanins by Complexation and Niosomal Encapsulation
Authors: Aroonsri Priprem, Sucharat Limsitthichaikoon, Suttasinee Thappasarapong
Abstract:
Anthocyanins are natural pigments with effective UV protection but their topical use could be limited due to their physicochemical characteristics. An attempt to overcome such limitations by complexation of 2 major anthocyanin-rich sources, C. ternatea and Z. mays, has potentiated its use as topical antiinflammatory. Cell studies indicate no cytotoxicity of the anthocyanin complex (AC) up to 1 mg/ml tested in HaCaT and human fore head fibroblasts by MTT. Croton oil-induced ear edema in Wistar rats suggests an effective dose of 5 mg/cm2 of AC as a topical anti-inflammatory in comparison to 0.5 mg/cm2 of fluocinolone acetonide. Niosomal encapsulation of the AC significantly prolonged the anti-inflammatory activity particularly at 8 h after topical application (p = 0.0001). The AC was not cytotoxic and its anti-inflammatory and activity was dose-dependent and prolonged by niosomal encapsulation. It has also shown to promote collagen type 1 production in cell culture. Thus, AC could be a potential candidate for topical anti-inflammatory agent from natural resources.
Keywords: Anthocyanin complex, ear edema, inflammation, niosomes, skin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31443306 Local Curvelet Based Classification Using Linear Discriminant Analysis for Face Recognition
Authors: Mohammed Rziza, Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Driss Aboutajdine
Abstract:
In this paper, an efficient local appearance feature extraction method based the multi-resolution Curvelet transform is proposed in order to further enhance the performance of the well known Linear Discriminant Analysis(LDA) method when applied to face recognition. Each face is described by a subset of band filtered images containing block-based Curvelet coefficients. These coefficients characterize the face texture and a set of simple statistical measures allows us to form compact and meaningful feature vectors. The proposed method is compared with some related feature extraction methods such as Principal component analysis (PCA), as well as Linear Discriminant Analysis LDA, and independent component Analysis (ICA). Two different muti-resolution transforms, Wavelet (DWT) and Contourlet, were also compared against the Block Based Curvelet-LDA algorithm. Experimental results on ORL, YALE and FERET face databases convince us that the proposed method provides a better representation of the class information and obtains much higher recognition accuracies.Keywords: Curvelet, Linear Discriminant Analysis (LDA) , Contourlet, Discreet Wavelet Transform, DWT, Block-based analysis, face recognition (FR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18083305 An Antibacterial Dental Restorative Containing 3,4-Dichlorocrotonolactone: Synthesis, Formulation and Evaluation
Authors: Dong Xie, Leah Howard, Yiming Weng
Abstract:
The objective of this study was to synthesize and characterize 5-acryloyloxy-3,4-dichlorocrotonolactone (a furanone derivative), use this derivative to modify a dental restorative, and study the effect of the derivative on the antibacterial activity and compressive strength of the formed restorative. In this study, a furanone derivative was synthesized, characterized, and used to formulate a dental restorative. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed restorative. The fabricated restorative specimens were photocured and conditioned in distilled water at 37oC for 24 h, followed by direct testing for CS or/and incubating with S. mutans for 48 h for antibacterial testing. The results show that the modified dental restorative showed a significant antibacterial activity without substantially decreasing the mechanical strengths. With addition of the antibacterial derivative up to 30%, the restorative kept its original CS nearly unchanged but showed a significant antibacterial activity with 68% reduction in the S. mutans viability. Furthermore, the antibacterial function of the modified restorative was not affected by human saliva. The aging study also indicates that the modified restorative may have a long-lasting antibacterial function. It is concluded that this experimental antibacterial restorative may potentially be developed into a clinically attractive dental filling restorative due to its high mechanical strength and antibacterial function.
Keywords: Antibacterial, dental filling restorative, compressive strength, S. mutans viability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19513304 Face Detection in Color Images using Color Features of Skin
Authors: Fattah Alizadeh, Saeed Nalousi, Chiman Savari
Abstract:
Because of increasing demands for security in today-s society and also due to paying much more attention to machine vision, biometric researches, pattern recognition and data retrieval in color images, face detection has got more application. In this article we present a scientific approach for modeling human skin color, and also offer an algorithm that tries to detect faces within color images by combination of skin features and determined threshold in the model. Proposed model is based on statistical data in different color spaces. Offered algorithm, using some specified color threshold, first, divides image pixels into two groups: skin pixel group and non-skin pixel group and then based on some geometric features of face decides which area belongs to face. Two main results that we received from this research are as follow: first, proposed model can be applied easily on different databases and color spaces to establish proper threshold. Second, our algorithm can adapt itself with runtime condition and its results demonstrate desirable progress in comparison with similar cases.Keywords: face detection, skin color modeling, color, colorfulimages, face recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23133303 Innovative Activity and Firm Performance: The Case of Eurozone Periphery
Authors: Ilias A. Makris
Abstract:
In this work, we attempt to analyze the contribution of innovative activities to firm performance and growth. We examine economic data from some of the economies that were heavily affected by current economic crisis: the countries of southern Europe (Portugal, Italy, Greece and Spain) and Ireland. Following literature, an appropriate econometric model is developed and several indicators are tested in order to disclose possible relation with innovative activity. Findings confirm the crucial effect of innovative process in economic activity, in firm and country level.
Keywords: Eurozone Periphery, Firm Performance, Innovative activity, R&D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22103302 Pattern Recognition Techniques Applied to Biomedical Patterns
Authors: Giovanni Luca Masala
Abstract:
Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.
Keywords: Computer Aided Detection, mammary tumor, pattern recognition, dissimilarity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23603301 Using Data Fusion for Biometric Verification
Authors: Richard A. Wasniowski
Abstract:
A wide spectrum of systems require reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric system and their applicability to access control, authentication and security applications. Strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to performance assessment, deployment and standardization are discussed. Finally future directions of biometric systems development are discussed.Keywords: Multimodal, biometric, recognition, fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17693300 Knowledge Representation and Retrieval in Design Project Memory
Authors: Smain M. Bekhti, Nada T. Matta
Abstract:
Knowledge sharing in general and the contextual access to knowledge in particular, still represent a key challenge in the knowledge management framework. Researchers on semantic web and human machine interface study techniques to enhance this access. For instance, in semantic web, the information retrieval is based on domain ontology. In human machine interface, keeping track of user's activity provides some elements of the context that can guide the access to information. We suggest an approach based on these two key guidelines, whilst avoiding some of their weaknesses. The approach permits a representation of both the context and the design rationale of a project for an efficient access to knowledge. In fact, the method consists of an information retrieval environment that, in the one hand, can infer knowledge, modeled as a semantic network, and on the other hand, is based on the context and the objectives of a specific activity (the design). The environment we defined can also be used to gather similar project elements in order to build classifications of tasks, problems, arguments, etc. produced in a company. These classifications can show the evolution of design strategies in the company.Keywords: Project Memory, Knowledge re-use, Design rationale, Knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16263299 The Relationship between Motivation for Physical Activity and Level of Physical Activity over Time
Authors: Keyvan Molanorouzi, Selina Khoo, Tony Morris
Abstract:
In recent years, there has been a decline in physical activity among adults. Motivation has been shown to be a crucial factor in maintaining physical activity. The purpose of this study was to whether PA motives measured by the Physical Activity and Leisure Motivation Scale PALMS predicted the actual amount of PA at a later time to provide evidence for the construct validity of the PALMS. A quantitative, cross-sectional descriptive research design was employed. The Demographic Form, PALMS, and International Physical Activity Questionnaire Short form (IPAQ-S) questionnaires were used to assess motives and amount for physical activity in adults on two occasions. A sample of 489 male undergraduate students aged 18 to 25 years (mean ±SD; 22.30±8.13 years) took part in the study. Participants were divided into three types of activities, namely exercise, racquet sport, and team sports and female participants only took part in one type of activity, namely team sports. After 14 weeks, all 489 undergraduate students who had filled in the initial questionnaire (Occasion 1) received the questionnaire via email (Occasion 2). Of the 489 students, 378 males emailed back the completed questionnaire. The results showed that not only were pertinent sub-scales of PALMS positively related to amount of physical activity, but separate regression analyses showed the positive predictive effect of PALMS motives for amount of physical activity for each type of physical activity among participants. This study supported the construct validity of the PALMS by showing that the motives measured by PALMS did predict amount of PA. This information can be obtained to match people with specific sport or activity which in turn could potentially promote longer adherence to the specific activity.Keywords: Physical activity, motivation, the level of physical activity, types of physical activities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35973298 Neural Network Based Approach for Face Detection cum Face Recognition
Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh
Abstract:
Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23013297 The Impact of Germination and In Vitro Digestion on the Formation of Angiotensin Converting Enzyme (ACE) Inhibitory Peptides from Lentil Proteins Compared to Whey Proteins
Authors: F. Bamdad, Sh. Dokhani, J. Keramat, R. Zareie
Abstract:
Biologically active peptides are of particular interest in food science and human nutrition because they have been shown to play several physiological roles. In vitro gastrointestinal digestion of lentil and whey proteins in this study produced high angiotensin-I converting enzyme inhibitory activity with 75.5±1.9 and 91.4±2.3% inhibition, respectively. High ACE inhibitory activity was observed in lentil after 5 days of germination (84.3±1.2%). Fractionation by reverse phase chromatography gave inhibitory activities as high as 86.3±2.0 for lentil, 94.8±1.8% for whey and 93.7±1.7% at 5th day of germination. Further purification by HPLC resulted in several inhibitory peptides with IC50 values ranging from 0.064 to 0.164 mg/ml. These results demonstrate that lentil proteins are a good source of peptides with ACE inhibitory activity that can be released by germination or gastrointestinal digestion. Despite the lower bioactivity in comparison with whey proteins, incorporation of lentil proteins in functional food formulations and natural drugs look promising.Keywords: ACE inhibitory peptides, digestion, germination, lentil proteins, whey proteins
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24503296 Robust Human Rights Governance: Developing International Criteria
Authors: Helen P. Greatrex
Abstract:
Many states are now committed to implementing international human rights standards domestically. In terms of practical governance, how might effectiveness be measured? A facevalue answer can be found in domestic laws and institutions relating to human rights. However, this article provides two further tools to help states assess their status on the spectrum of robust to fragile human rights governance. The first recognises that each state has its own 'human rights history' and the ideal end stage is robust human rights governance, and the second is developing criteria to assess robustness. Although a New Zealand case study is used to illustrate these tools, the widespread adoption of human rights standards by many states inevitably means that the issues are relevant to other countries. This is even though there will always be varying degrees of similarity-difference in constitutional background and developed or emerging human rights systems.Keywords: robust human rights governance, fragile states.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17673295 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: Deep-learning, image classification, image identification, industrial engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7583294 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network
Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane
Abstract:
Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.
Keywords: ASD, stereotypical motor movements, repetitive gesture, kinect, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19063293 An Automatic Pipeline Monitoring System Based on PCA and SVM
Abstract:
This paper proposes a novel system for monitoring the health of underground pipelines. Some of these pipelines transport dangerous contents and any damage incurred might have catastrophic consequences. However, most of these damage are unintentional and usually a result of surrounding construction activities. In order to prevent these potential damages, monitoring systems are indispensable. This paper focuses on acoustically recognizing road cutters since they prelude most construction activities in modern cities. Acoustic recognition can be easily achieved by installing a distributed computing sensor network along the pipelines and using smart sensors to “listen" for potential threat; if there is a real threat, raise some form of alarm. For efficient pipeline monitoring, a novel monitoring approach is proposed. Principal Component Analysis (PCA) was studied and applied. Eigenvalues were regarded as the special signature that could characterize a sound sample, and were thus used for the feature vector for sound recognition. The denoising ability of PCA could make it robust to noise interference. One class SVM was used for classifier. On-site experiment results show that the proposed PCA and SVM based acoustic recognition system will be very effective with a low tendency for raising false alarms.Keywords: One class SVM, pipeline monitoring system, principal component analysis, sound recognition, third party damage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20183292 2.5D Face Recognition Using Gabor Discrete Cosine Transform
Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao
Abstract:
In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.Keywords: Gabor filter, discrete cosine transform, 2.5D face recognition, pose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754