Search results for: Fuzzy texture feature
1669 A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies
Authors: X. Z. Gao, S. J. Ovaska, X. Wang
Abstract:
Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.Keywords: Predictive filtering, fuzzy logic, sinusoidal signals, time-varying frequencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14931668 A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification
Authors: J. Hossen, A. Rahman, K. Samsudin, F. Rokhani, S. Sayeed, R. Hasan
Abstract:
The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.Keywords: Apriori algorithm, Fuzzy C-means, MAFIE, TSK
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311667 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System
Authors: S. Gherbi, F. Bouchareb
Abstract:
This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.
Keywords: Delayed systems, Fuzzy Immune PID, Optimization, Smith predictor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22211666 Ant Colony Optimization for Feature Subset Selection
Authors: Ahmed Al-Ani
Abstract:
The Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It has recently attracted a lot of attention and has been successfully applied to a number of different optimization problems. Due to the importance of the feature selection problem and the potential of ACO, this paper presents a novel method that utilizes the ACO algorithm to implement a feature subset search procedure. Initial results obtained using the classification of speech segments are very promising.Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31431665 Acceptance Single Sampling Plan with Fuzzy Parameter with The Using of Poisson Distribution
Authors: Ezzatallah Baloui Jamkhaneh, Bahram Sadeghpour-Gildeh, Gholamhossein Yari
Abstract:
This purpose of this paper is to present the acceptance single sampling plan when the fraction of nonconforming items is a fuzzy number and being modeled based on the fuzzy Poisson distribution. We have shown that the operating characteristic (oc) curves of the plan is like a band having a high and low bounds whose width depends on the ambiguity proportion parameter in the lot when that sample size and acceptance numbers is fixed. Finally we completed discuss opinion by a numerical example. And then we compared the oc bands of using of binomial with the oc bands of using of Poisson distribution.
Keywords: Statistical quality control, acceptance single sampling, fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19901664 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched direction to the digital world. The domain of politics, as one of the hottest topics of opinion mining research, merged together with the behavior analysis for affiliation determination in texts, which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 were constituted by Linguistic Inquiry and Word Count (LIWC) features were tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that the “Decision Tree”, “Rule Induction” and “M5 Rule” classifiers when used with “SVM” and “IGR” feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “Function”, as an aggregate feature of the linguistic category, was found as the most differentiating feature among the 68 features with the accuracy of 81% in classifying articles either as Republican or Democrat.Keywords: Politics, machine learning, feature selection, LIWC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23651663 Evaluating Service Quality of Online Auction by Fuzzy MCDM
Authors: Wei-Hsuan Lee, Chien-Hua Wang, Chin-Tzong Pang
Abstract:
This paper applies fuzzy set theory to evaluate the service quality of online auction. Service quality is a composition of various criteria. Among them many intangible attributes are difficult to measure. This characteristic introduces the obstacles for respondent in replying to the survey. So as to overcome this problem, we invite fuzzy set theory into the measurement of performance. By using AHP in obtaining criteria and TOPSIS in ranking, we found the most concerned dimension of service quality is Transaction Safety Mechanism and the least is Charge Item. Regarding to the most concerned attributes are information security, accuracy and information.Keywords: AHP, Fuzzy set theory, TOPSIS, Online auction, Servicequality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17941662 Unsupervised Image Segmentation Based on Fuzzy Connectedness with Sale Space Theory
Authors: Yuanjie Zheng, Jie Yang, Yue Zhou
Abstract:
In this paper, we propose an approach of unsupervised segmentation with fuzzy connectedness. Valid seeds are first specified by an unsupervised method based on scale space theory. A region is then extracted for each seed with a relative object extraction method of fuzzy connectedness. Afterwards, regions are merged according to the values between them of an introduced measure. Some theorems and propositions are also provided to show the reasonableness of the measure for doing mergence. Experiment results on a synthetic image, a color image and a large amount of MR images of our method are reported.Keywords: Image segmentation, unsupervised imagesegmentation, fuzzy connectedness, scale space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13411661 TS Fuzzy Controller to Stochastic Systems
Authors: Joabe Silva, Ginalber Serra
Abstract:
This paper proposes the analysis and design of robust fuzzy control to Stochastic Parametrics Uncertaint Linear systems. This system type to be controlled is partitioned into several linear sub-models, in terms of transfer function, forming a convex polytope, similar to LPV (Linear Parameters Varying) system. Once defined the linear sub-models of the plant, these are organized into fuzzy Takagi- Sugeno (TS) structure. From the Parallel Distributed Compensation (PDC) strategy, a mathematical formulation is defined in the frequency domain, based on the gain and phase margins specifications, to obtain robust PI sub-controllers in accordance to the Takagi- Sugeno fuzzy model of the plant. The main results of the paper are based on the robust stability conditions with the proposal of one Axiom and two Theorems.Keywords: Fuzzy Systems; Robust Stability, Stochastic Control, Stochastic Process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16981660 Finding Fuzzy Association Rules Using FWFP-Growth with Linguistic Supports and Confidences
Authors: Chien-Hua Wang, Chin-Tzong Pang
Abstract:
In data mining, the association rules are used to search for the relations of items of the transactions database. Following the data is collected and stored, it can find rules of value through association rules, and assist manager to proceed marketing strategy and plan market framework. In this paper, we attempt fuzzy partition methods and decide membership function of quantitative values of each transaction item. Also, by managers we can reflect the importance of items as linguistic terms, which are transformed as fuzzy sets of weights. Next, fuzzy weighted frequent pattern growth (FWFP-Growth) is used to complete the process of data mining. The method above is expected to improve Apriori algorithm for its better efficiency of the whole association rules. An example is given to clearly illustrate the proposed approach.Keywords: Association Rule, Fuzzy Partition Methods, FWFP-Growth, Apiroir algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16521659 Conventional and Fuzzy Logic Controllers at Generator Location for Low Frequency Oscillation Damping
Authors: K. Prasertwong, N. Mithulananthan
Abstract:
This paper investigates and compares performance of various conventional and fuzzy logic based controllers at generator locations for oscillation damping. Performance of combination of conventional and fuzzy logic based controllers also studied by comparing overshoot on the active power deviation response for a small disturbance and damping ratio of the critical mode. Fuzzy logic based controllers can not be modeled in the state space form to get the eigenvalues and corresponding damping ratios of various modes of generators and controllers. Hence, a new method based on tracing envelop of time domain waveform is also presented and used in the paper for comparing performance of controllers. The paper also shows that if the fuzzy based controllers designed separately combining them could not lead to a better performance.Keywords: Automatic voltage regulator, damping ratio, fuzzylogic controller, power system stabilizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20111658 Rule-Based Fuzzy Logic Controller with Adaptable Reference
Authors: Sheroz Khan, I. Adam, A. H. M. Zahirul Alam, Mohd Rafiqul Islam, Othman O. Khalifa
Abstract:
This paper attempts to model and design a simple fuzzy logic controller with Variable Reference. The Variable Reference (VR) is featured as an adaptability element which is obtained from two known variables – desired system-input and actual system-output. A simple fuzzy rule-based technique is simulated to show how the actual system-input is gradually tuned in to a value that closely matches the desired input. The designed controller is implemented and verified on a simple heater which is controlled by PIC Microcontroller harnessed by a code developed in embedded C. The output response of the PIC-controlled heater is analyzed and compared to the performances by conventional fuzzy logic controllers. The novelty of this work lies in the fact that it gives better performance by using less number of rules compared to conventional fuzzy logic controllers.Keywords: Fuzzy logic controller, Variable reference, Adaptability, Rule-based.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13131657 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.
Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17401656 A Robust Salient Region Extraction Based on Color and Texture Features
Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen
Abstract:
In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.Keywords: salient regions, color and texture features, image segmentation, saliency metric
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671655 Rock Textures Classification Based on Textural and Spectral Features
Authors: Tossaporn Kachanubal, Somkait Udomhunsakul
Abstract:
In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.Keywords: Texture classification, SFM, neural network, rock texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20101654 A New Intelligent Strategy to Integrated Control of AFS/DYC Based on Fuzzy Logic
Authors: R. Karbalaei, A. Ghaffari, R. Kazemi, S. H. Tabatabaei
Abstract:
An integrated vehicle dynamics control system is developed in this paper by a combination of active front steering (AFS) and direct yaw-moment control (DYC) based on fuzzy logic control. The control system has a hierarchical structure consisting of two layers. A fuzzy logic controller is used in the upper layer (yaw rate controller) to keep the yaw rate in its desired value. The yaw rate error and its rate of change are applied to the upper controlling layer as inputs, where the direct yaw moment control signal and the steering angle correction of the front wheels are the outputs. In the lower layer (fuzzy integrator), a fuzzy logic controller is designed based on the working region of the lateral tire forces. Depending on the directions of the lateral forces at the front wheels, a switching function is activated to adjust the scaling factor of the fuzzy logic controller. Using a nonlinear seven degrees of freedom vehicle model, the simulation results illustrate considerable improvements which are achieved in vehicle handling through the integrated AFS/DYC control system in comparison with the individual AFS or DYC controllers.
Keywords: Intelligent strategy, integrated control, fuzzy logic, AFS/DYC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23141653 Real-time 3D Feature Extraction without Explicit 3D Object Reconstruction
Authors: Kwangjin Hong, Chulhan Lee, Keechul Jung, Kyoungsu Oh
Abstract:
For the communication between human and computer in an interactive computing environment, the gesture recognition is studied vigorously. Therefore, a lot of studies have proposed efficient methods about the recognition algorithm using 2D camera captured images. However, there is a limitation to these methods, such as the extracted features cannot fully represent the object in real world. Although many studies used 3D features instead of 2D features for more accurate gesture recognition, the problem, such as the processing time to generate 3D objects, is still unsolved in related researches. Therefore we propose a method to extract the 3D features combined with the 3D object reconstruction. This method uses the modified GPU-based visual hull generation algorithm which disables unnecessary processes, such as the texture calculation to generate three kinds of 3D projection maps as the 3D feature: a nearest boundary, a farthest boundary, and a thickness of the object projected on the base-plane. In the section of experimental results, we present results of proposed method on eight human postures: T shape, both hands up, right hand up, left hand up, hands front, stand, sit and bend, and compare the computational time of the proposed method with that of the previous methods.Keywords: Fast 3D Feature Extraction, Gesture Recognition, Computer Vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16381652 Iris Recognition Based On the Low Order Norms of Gradient Components
Authors: Iman A. Saad, Loay E. George
Abstract:
Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.
Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651651 A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry
Authors: Zeynep Sener, Mehtap Dursun
Abstract:
Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision methodology.
Keywords: Fuzzy decision making, fuzzy multiple objective programming, medical supply chain, supplier selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26721650 Improving Convergence of Parameter Tuning Process of the Additive Fuzzy System by New Learning Strategy
Authors: Thi Nguyen, Lee Gordon-Brown, Jim Peterson, Peter Wheeler
Abstract:
An additive fuzzy system comprising m rules with n inputs and p outputs in each rule has at least t m(2n + 2 p + 1) parameters needing to be tuned. The system consists of a large number of if-then fuzzy rules and takes a long time to tune its parameters especially in the case of a large amount of training data samples. In this paper, a new learning strategy is investigated to cope with this obstacle. Parameters that tend toward constant values at the learning process are initially fixed and they are not tuned till the end of the learning time. Experiments based on applications of the additive fuzzy system in function approximation demonstrate that the proposed approach reduces the learning time and hence improves convergence speed considerably.Keywords: Additive fuzzy system, improving convergence, parameter learning process, unsupervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15131649 A Comparative Study on Fuzzy and Neuro-Fuzzy Enabled Cluster Based Routing Protocols for Wireless Sensor Networks
Authors: Y. Harold Robinson, E. Golden Julie
Abstract:
Dynamic Routing in Wireless Sensor Networks (WSNs) has played a significant task in research for the recent years. Energy consumption and data delivery in time are the major parameters with the usage of sensor nodes that are significant criteria for these networks. The location of sensor nodes must not be prearranged. Clustering in WSN is a key methodology which is used to enlarge the life-time of a sensor network. It consists of numerous real-time applications. The features of WSNs are minimized the consumption of energy. Soft computing techniques can be included to accomplish improved performance. This paper surveys the modern trends in routing enclose fuzzy logic and Neuro-fuzzy logic based on the clustering techniques and implements a comparative study of the numerous related methodologies.Keywords: Wireless sensor networks, clustering, fuzzy logic, neuro-fuzzy logic, energy efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9891648 On Solving Single-Period Inventory Model under Hybrid Uncertainty
Authors: Madhukar Nagare, Pankaj Dutta
Abstract:
Inventory decisional environment of short life-cycle products is full of uncertainties arising from randomness and fuzziness of input parameters like customer demand requiring modeling under hybrid uncertainty. Prior inventory models incorporating fuzzy demand have unfortunately ignored stochastic variation of demand. This paper determines an unambiguous optimal order quantity from a set of n fuzzy observations in a newsvendor inventory setting in presence of fuzzy random variable demand capturing both fuzzy perception and randomness of customer demand. The stress of this paper is in providing solution procedure that attains optimality in two steps with demand information availability in linguistic phrases leading to fuzziness along with stochastic variation. The first step of solution procedure identifies and prefers one best fuzzy opinion out of all expert opinions and the second step determines optimal order quantity from the selected event that maximizes profit. The model and solution procedure is illustrated with a numerical example.Keywords: Fuzzy expected value, Fuzzy random demand, Hybrid uncertainty, Optimal order quantity, Single-period inventory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20201647 The Orlicz Space of the Entire Sequence Fuzzy Numbers Defined by Infinite Matrices
Authors: N.Subramanian, C.Murugesan
Abstract:
This paper is devoted to the study of the general properties of Orlicz space of entire sequence of fuzzy numbers by using infinite matrices.
Keywords: Fuzzy numbers, infinite matrix, Orlicz space, entiresequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12061646 Existence and Stability Analysis of Discrete-time Fuzzy BAM Neural Networks with Delays and Impulses
Authors: Chao Wang, Yongkun Li
Abstract:
In this paper, the discrete-time fuzzy BAM neural network with delays and impulses is studied. Sufficient conditions are obtained for the existence and global stability of a unique equilibrium of this class of fuzzy BAM neural networks with Lipschitzian activation functions without assuming their boundedness, monotonicity or differentiability and subjected to impulsive state displacements at fixed instants of time. Some numerical examples are given to demonstrate the effectiveness of the obtained results.
Keywords: Discrete-time fuzzy BAM neural networks, ımpulses, global exponential stability, global asymptotical stability, equilibrium point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15081645 Gain Tuning Fuzzy Controller for an Optical Disk Drive
Authors: Shiuh-Jer Huang, Ming-Tien Su
Abstract:
Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.Keywords: Fuzzy control, gain tuning and optical disk drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15871644 Analysis of Periodic Solution of Delay Fuzzy BAM Neural Networks
Authors: Qianhong Zhang, Lihui Yang, Daixi Liao
Abstract:
In this paper, by employing a new Lyapunov functional and an elementary inequality analysis technique, some sufficient conditions are derived to ensure the existence and uniqueness of periodic oscillatory solution for fuzzy bi-directional memory (BAM) neural networks with time-varying delays, and all other solutions of the fuzzy BAM neural networks converge the uniqueness periodic solution. These criteria are presented in terms of system parameters and have important leading significance in the design and applications of neural networks. Moreover an example is given to illustrate the effectiveness and feasible of results obtained.Keywords: Fuzzy BAM neural networks, Periodic solution, Global exponential stability, Time-varying delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15151643 Fuzzy Control of the Air Conditioning System at Different Operating Pressures
Authors: Mohanad Alata , Moh'd Al-Nimr, Rami Al-Jarrah
Abstract:
The present work demonstrates the design and simulation of a fuzzy control of an air conditioning system at different pressures. The first order Sugeno fuzzy inference system is utilized to model the system and create the controller. In addition, an estimation of the heat transfer rate and water mass flow rate injection into or withdraw from the air conditioning system is determined by the fuzzy IF-THEN rules. The approach starts by generating the input/output data. Then, the subtractive clustering algorithm along with least square estimation (LSE) generates the fuzzy rules that describe the relationship between input/output data. The fuzzy rules are tuned by Adaptive Neuro-Fuzzy Inference System (ANFIS). The results show that when the pressure increases the amount of water flow rate and heat transfer rate decrease within the lower ranges of inlet dry bulb temperatures. On the other hand, and as pressure increases the amount of water flow rate and heat transfer rate increases within the higher ranges of inlet dry bulb temperatures. The inflection in the pressure effect trend occurs at lower temperatures as the inlet air humidity increases.
Keywords: Air Conditioning, ANFIS, Fuzzy Control, Sugeno System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33661642 A Novel Fuzzy Logic Based Controller to Adjust the Brightness of the Television Screen with Respect to Surrounding Light
Authors: A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj
Abstract:
One of the major cause of eye strain and other problems caused while watching television is the relative illumination between the screen and its surrounding. This can be overcome by adjusting the brightness of the screen with respect to the surrounding light. A controller based on fuzzy logic is proposed in this paper. The fuzzy controller takes in the intensity of light surrounding the screen and the present brightness of the screen as input. The output of the fuzzy controller is the grid voltage corresponding to the required brightness. This voltage is given to CRT and brightness is controller dynamically. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.Keywords: Fuzzy controller, Grid voltage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27851641 Fuzzy Sliding Mode Speed Controller for a Vector Controlled Induction Motor
Authors: S. Massoum, A. Bentaallah, A. Massoum, F. Benaimeche, P. Wira, A. Meroufel
Abstract:
This paper presents a speed fuzzy sliding mode controller for a vector controlled induction machine (IM) fed by a voltage source inverter (PWM). The sliding mode based fuzzy control method is developed to achieve fast response, a best disturbance rejection and to maintain a good decoupling. The problem with sliding mode control is that there is high frequency switching around the sliding mode surface. The FSMC is the combination of the robustness of Sliding Mode Control (SMC) and the smoothness of Fuzzy Logic (FL). To reduce the torque fluctuations (chattering), the sign function used in the conventional SMC is substituted with a fuzzy logic algorithm. The proposed algorithm was simulated by Matlab/Simulink software and simulation results show that the performance of the control scheme is robust and the chattering problem is solved.Keywords: IM, FOC, FLC, SMC, and FSMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28141640 Evolutionary Feature Selection for Text Documents using the SVM
Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706