Search results for: Critical particle size
3203 Disturbance Observer-Based Predictive Functional Critical Control of a Table Drive System
Authors: Toshiyuki Satoh, Hiroki Hara, Naoki Saito, Jun-ya Nagase, Norihiko Saga
Abstract:
This paper addresses a control system design for a table drive system based on the disturbance observer (DOB)-based predictive functional critical control (PFCC). To empower the previously developed DOB-based PFC to handle constraints on controlled outputs, we propose to take a critical control approach. To this end, we derive the transfer function representation of the PFC controller and yield a detailed design procedure. The effectiveness of the proposed method is confirmed through an experimental evaluation.
Keywords: Critical control, disturbance observer, mechatronics, motion control, predictive functional control, table drive systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18773202 An Optimal Algorithm for HTML Page Building Process
Authors: Maryam Jasim Abdullah, Bassim. H. Graimed, Jalal. S. Hameed
Abstract:
Demand over web services is in growing with increases number of Web users. Web service is applied by Web application. Web application size is affected by its user-s requirements and interests. Differential in requirements and interests lead to growing of Web application size. The efficient way to save store spaces for more data and information is achieved by implementing algorithms to compress the contents of Web application documents. This paper introduces an algorithm to reduce Web application size based on reduction of the contents of HTML files. It removes unimportant contents regardless of the HTML file size. The removing is not ignored any character that is predicted in the HTML building process.
Keywords: HTML code, HTML tag, WEB applications, Document compression, DOM tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20383201 ROI Based Embedded Watermarking of Medical Images for Secured Communication in Telemedicine
Authors: Baisa L. Gunjal, Suresh N. Mali
Abstract:
Medical images require special safety and confidentiality because critical judgment is done on the information provided by medical images. Transmission of medical image via internet or mobile phones demands strong security and copyright protection in telemedicine applications. Here, highly secured and robust watermarking technique is proposed for transmission of image data via internet and mobile phones. The Region of Interest (ROI) and Non Region of Interest (RONI) of medical image are separated. Only RONI is used for watermark embedding. This technique results in exact recovery of watermark with standard medical database images of size 512x512, giving 'correlation factor' equals to 1. The correlation factor for different attacks like noise addition, filtering, rotation and compression ranges from 0.90 to 0.95. The PSNR with weighting factor 0.02 is up to 48.53 dBs. The presented scheme is non blind and embeds hospital logo of 64x64 size.
Keywords: Compression, DWT, ROI, Scrambling, Vertices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32823200 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing
Authors: C. Lanzerstorfer
Abstract:
Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.Keywords: Twin-fluid nozzles, operation data, condition monitoring, flow equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11603199 Identification of an Mechanism Systems by Using the Modified PSO Method
Authors: Chih-Cheng Kao, Hsin- Hua Chu
Abstract:
This paper mainly proposes an efficient modified particle swarm optimization (MPSO) method, to identify a slidercrank mechanism driven by a field-oriented PM synchronous motor. In system identification, we adopt the MPSO method to find parameters of the slider-crank mechanism. This new algorithm is added with “distance" term in the traditional PSO-s fitness function to avoid converging to a local optimum. It is found that the comparisons of numerical simulations and experimental results prove that the MPSO identification method for the slider-crank mechanism is feasible.Keywords: Slider-crank mechanism, distance, systemidentification, modified particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15073198 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces
Authors: K. Akilandeswari, G. M. Nasira
Abstract:
Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21853197 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption
Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu
Abstract:
In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.
Keywords: Comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6433196 Effect of Mesh Size on the Supersonic Viscous Flow Parameters around an Axisymmetric Blunt Body
Authors: Rabah Haoui
Abstract:
The aim of this work is to analyze a viscous flow around the axisymmetric blunt body taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier-Stokes equations is realized by using the finite volume method to determine the flow parameters and detached shock position. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, CFL coefficient and mesh size level are selected to ensure numerical convergence. The effect of the mesh size is significant on the shear stress and velocity profile. The best solution is obtained with using a very fine grid. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.
Keywords: Supersonic flow, viscous flow, finite volume, blunt body.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20493195 Optimal DG Allocation in Distribution Network
Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei
Abstract:
This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27043194 Structural, Optical and Ferroelectric Properties of BaTiO3 Sintered at Different Temperatures
Authors: Anurag Gaur, Neha Sharma
Abstract:
In this work, we have synthesized BaTiO3 via sol gel method by sintering at different temperatures (600, 700, 800, 900, 10000C) and studied their structural, optical and ferroelectric properties through X-ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal and cubic structure of BaTiO3. The Optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 10000C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 40 nm for the samples sintered at 600 to 10000C, respectively. Moreover, it has been observed that the ferroelectricity increases as we increase the sintering temperature.
Keywords: Nanostructures, Ferroelectricity, Sol-gel method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37503193 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent
Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yang Yue, Tianqi Yue
Abstract:
In low permeability reservoirs, the reservoir pore throat is small and the micro heterogeneity is prominent. Conventional microsphere profile control agents generally have good injectability but poor plugging effect; however, profile control agents with good plugging effect generally have poor injectability, which makes it difficult for agent to realize deep profile control of reservoir. To solve this problem, styrene and acrylamide were used as monomers in the laboratory. Emulsion polymerization was used to prepare the Controllable Self-Aggregating Colloidal Particle (CSA), which was rich in amide group. The CSA microsphere dispersion solution with a particle diameter smaller than the pore throat diameter was injected into the reservoir to ensure that the profile control agent had good inject ability. After dispersing the CSA microsphere to the deep part of the reservoir, the CSA microspheres dispersed in static for a certain period of time will self-aggregate into large-sized particle clusters to achieve plugging of hypertonic channels. The CSA microsphere has the characteristics of low expansion and avoids shear fracture in the process of migration. It can be observed by transmission electron microscope that CSA microspheres still maintain regular and uniform spherical and core-shell heterogeneous structure after aging at 100 ºC for 35 days, and CSA microspheres have good thermal stability. The results of bottle test showed that with the increase of cation concentration, the aggregation time of CSA microspheres gradually shortened, and the influence of divalent cations was greater than that of monovalent ions. Physical simulation experiments show that CSA microspheres have good injectability, and the aggregated CSA particle clusters can produce effective plugging and migrate to the deep part of the reservoir for profile control.
Keywords: Heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4863192 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model
Authors: S. Channgam, A. Sae-Tang, T. Termsaithong
Abstract:
In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.
Keywords: Bak-Tang-Wiesenfeld sandpile model, avalanches, cross-correlation, prediction method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11743191 Tuning Cubic Equations of State for Supercritical Water Applications
Authors: Shyh-Ming Chern
Abstract:
Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and reasonable accuracy, are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, they often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance at and above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.
Keywords: Equation of state, EoS, supercritical water, SCW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20263190 The Effect of Unburned Carbon on Coal Fly Ash toward its Adsorption Capacity for Methyl Violet
Authors: Widi Astuti, Agus Prasetya, Endang Tri Wahyuni, I Made Bendiyasa
Abstract:
Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of quartz, mullite, and unburned carbon. In this study, the effect of unburned carbon on CFA toward its adsorption capacity was investigated. CFA with various carbon content was obtained by refluxing it with sulfuric acid having various concentration at various temperature and reflux time, by heating at 400-800°C, and by sieving into 100-mesh in particle size. To evaluate the effect of unburned carbon on CFA toward its adsorption capacity, adsorption of methyl violet solution with treated CFA was carried out. The research shows that unburned carbon leads to adsorption capacity decrease. The highest adsorption capacity of treated CFA was found 5.73 x 10-4mol.g-1.Keywords: CFA, carbon, methyl violet, adsorption capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21703189 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm
Authors: S. Esfandeh, M. Sedighizadeh
Abstract:
Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.Keywords: Weather, Climate, PSO, Prediction, Meteorological
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20773188 Approximate Confidence Interval for Effect Size Base on Bootstrap Resampling Method
Authors: S. Phanyaem
Abstract:
This paper presents the confidence intervals for the effect size base on bootstrap resampling method. The meta-analytic confidence interval for effect size is proposed that are easy to compute. A Monte Carlo simulation study was conducted to compare the performance of the proposed confidence intervals with the existing confidence intervals. The best confidence interval method will have a coverage probability close to 0.95. Simulation results have shown that our proposed confidence intervals perform well in terms of coverage probability and expected length.Keywords: Effect size, confidence interval, Bootstrap Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11473187 Mineral Activator and Physical Characteristics of Slag Cement at Anhydrous and Hydrated States
Authors: A. Naceri, M. S. Bouglada, P. Grosseau
Abstract:
The setting agent Ca(OH)2 for activation of slag cement is used in the proportions of 0%, 2%, 4%, 6%, 8% and 10% by various methods (substitution and addition by mass of slag cement). The physical properties of slag cement activated by the calcium hydroxide at anhydrous and hydrated states (fineness, particle size distribution, consistency of the cement pastes and setting times) were studied. The activation method by the mineral activator of slag cement (latent hydraulicity) accelerates the hydration process and reduces the setting times of the cement activated.Keywords: Mineral activator, slag cement, Anhydrous and hydrated states, physical characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19063186 Lattice Boltzmann Simulation of the Carbonization of Wood Particle
Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri
Abstract:
A numerical study based on the Lattice Boltzmann Method (LBM) is proposed to solve one, two and three dimensional heat and mass transfer for isothermal carbonization of thick wood particles. To check the validity of the proposed model, computational results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and thermal boundary conditions, on the evolution of the local temperature and the mass distributions of the wood particle during carbonization
Keywords: Lattice Boltzmann Method, pyrolysis conduction, carbonization, Heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27073185 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction
Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari
Abstract:
Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.Keywords: Catalytic membrane, hydrogen, methane steam reforming, permeance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8953184 Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network
Authors: Mei Shan Ngan, Chee Wei Tan
Abstract:
Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.Keywords: Photovoltaic (PV), Partial Shading, Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37563183 The Effect of the Parameters of the Grinding on the Characteristics of the Deposit Phosphate Ore of Kef Es Sennoun, Djebel Onk-Tebessa, Algeria
Authors: N. Benabdeslam, N. Bouzidi, F. Atmani, R. Boucif, A. Sakhri
Abstract:
The objective of this study was to provide answers for a better understanding of the mechanisms involved during grinding. To obtain a phosphate powder, we carry out sieving - grinding circuits for each parameter influencing the process. The analysis of the average particle size of the different tests carried out served in the first place as a basis for the determination of the granulometric curve area, the characteristics and the granular coefficients, then the exploitation of the different results for the calculation of the energies consumed for the fragmentation of different ore types, the energy coefficients as well as the ability to grind. Indeed, a time of 5 to 10 minutes can be chosen as the optimal grinding time in a disc mill for a % in weight of the highest pass. However, grinding time can influence the granular characteristics of ore.Keywords: Energy, granular characteristics, grinding, mineralogical composition, phosphate ore.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7863182 Characterization of HD-V2 Gafchromic Film for Measurement of Spatial Dose Distribution from Alpha Particle of 5.5 MeV
Authors: A. Aydarous, M. El Ghazaly
Abstract:
The purpose of this study was to investigate the response of the newly released Gafchromic HD-V2 film for alpha particle of 5.5 MeV. Gafchromic HD-V2 was exposed to alpha particles of energy 5 MeV from 241Am for different durations. Then the films were scanned with a flatbed scanner. The dose response curve up to 2200 Gy has been achieved. The film’s reproducibility and sensitivity were evaluated. The results obtained show that the net optical density increases almost exponentially with the increase in the exposure time, and it becomes saturated after prolonged exposure times. The red channel shows the highest sensitivity, with a value of 4 x 10-3 Gy-1 at netOD of 0.4. The inter-film reproducibility was measured and the relative uncertainty found was 1.7 %, 2.1 % and 2.3 % for grey, red and green channels, respectively.
Keywords: Alpha dosimetry, 241Am, Gafchromic film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31423181 Generator Capability Curve Constraint for PSO Based Optimal Power Flow
Authors: Mat Syai'in, Adi Soeprijanto, Takashi Hiyama
Abstract:
An optimal power flow (OPF) based on particle swarm optimization (PSO) was developed with more realistic generator security constraint using the capability curve instead of only Pmin/Pmax and Qmin/Qmax. Neural network (NN) was used in designing digital capability curve and the security check algorithm. The algorithm is very simple and flexible especially for representing non linear generation operation limit near steady state stability limit and under excitation operation area. In effort to avoid local optimal power flow solution, the particle swarm optimization was implemented with enough widespread initial population. The objective function used in the optimization process is electric production cost which is dominated by fuel cost. The proposed method was implemented at Java Bali 500 kV power systems contain of 7 generators and 20 buses. The simulation result shows that the combination of generator power output resulted from the proposed method was more economic compared with the result using conventional constraint but operated at more marginal operating point.Keywords: Optimal Power Flow, Generator Capability Curve, Particle Swarm Optimization, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25753180 ARCS for Critical Information Retrieval Development
Authors: Suttipong Boonphadung
Abstract:
The research on ARCS for critical information retrieval development aimed to (1) investigate conditions of critical information retrieval skill of the Mathematics pre-service teachers before applying ARCS model in learning activities, (2) study and analyze the development of critical information retrieval skill of the Mathematics pre-service teachers after utilizing ARCS model in learning activities, and (3) evaluate the Mathematics pre-service teachers’ satisfaction on using ARCS model in learning activities as a tool to development critical information retrieval skill. Forty-one of 4th year Mathematics pre-service teachers who have enrolled in the subject of Research for Learning Development of semester 2 in 2012 were purposively selected as the research cohort. The research tools were self-report and interview questionnaire that was approved as content validity and reliability (IOC=.66-1.00, α =.834). The research found that critical information retrieval skill of the research samples before using ARCS model in learning activities was in the normal high level. According to the in-depth interview and focus group, the result however showed that the pre-service teachers still lack inadequate and effective knowledge in information retrieval. Additionally, critical information retrieval skill of the research cohort after applying ARCS model in learning activities appeared to be high level. The result revealed that the pre-service teachers are able to explain the method of searching, extraction, and selecting information as well as evaluating quality of information, and effectively making decision in accepting information. Moreover, the research discovered that the pre-service teachers showed normal high to highest level of satisfaction on using ARCS model in learning activities as a tool to development their critical information retrieval skill.
Keywords: Critical information retrieval skill, ARCS model, Satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15233179 Hydrodynamic Simulation of Fixed Bed GTL Reactor Using CFD
Authors: Sh. Shahhosseini, S. Alinia, M. Irani
Abstract:
In this work, axisymetric CFD simulation of fixed bed GTL reactor has been conducted, using computational fluid dynamics (CFD). In fixed bed CFD modeling, when N (tube-to-particle diameter ratio) has a large value, it is common to consider the packed bed as a porous media. Synthesis gas (a mixture of predominantly carbon monoxide and hydrogen) was fed to the reactor. The reactor length was 20 cm, divided to three sections. The porous zone was in the middle section of the reactor. The model equations were solved employing finite volume method. The effects of particle diameter, bed voidage, fluid velocity and bed length on pressure drop have been investigated. Simulation results showed these parameters could have remarkable impacts on the reactor pressure drop.Keywords: GTL Process, Fixed bed reactor, Pressure drop, CFDsimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23723178 Transmission Lines Loading Enhancement Using ADPSO Approach
Authors: M. Mahdavi, H. Monsef, A. Bagheri
Abstract:
Discrete particle swarm optimization (DPSO) is a powerful stochastic evolutionary algorithm that is used to solve the large-scale, discrete and nonlinear optimization problems. However, it has been observed that standard DPSO algorithm has premature convergence when solving a complex optimization problem like transmission expansion planning (TEP). To resolve this problem an advanced discrete particle swarm optimization (ADPSO) is proposed in this paper. The simulation result shows that optimization of lines loading in transmission expansion planning with ADPSO is better than DPSO from precision view point.Keywords: ADPSO, TEP problem, Lines loading optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16193177 Beneficiation of Pyrolitic Carbon Black
Authors: Jefrey Pilusa, Edison Muzenda
Abstract:
This research investigated treatment of crude carbon black produced from pyrolysis of waste tyres in order to evaluate its quality and possible industrial applications. A representative sample of crude carbon black was dry screened to determine the initial particle size distribution. This was followed by pulverizing the crude carbon black and leaching in hot concentrated sulphuric acid for the removal of heavy metals and other contaminants. Analysis of the refined carbon black showed a significant improvement of the product quality compared to crude carbon black. It was discovered that refined carbon black can be further classified into multiple high value products for various industrial applications such as filler, paint pigment, activated carbon and fuel briquettes.
Keywords: Activated Carbon, Briquettes, Fuel, Filler, Pyrolysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100073176 Designing Pictogram for Food Portion Size
Authors: Y.C. Liu, S.J. Lu, Y.C. Weng, H. Su
Abstract:
The objective of this paper is to investigate a new approach based on the idea of pictograms for food portion size. This approach adopts the model of the United States Pharmacopeia- Drug Information (USP-DI). The representation of each food portion size composed of three parts: frame, the connotation of dietary portion sizes and layout. To investigate users- comprehension based on this approach, two experiments were conducted, included 122 Taiwanese people, 60 male and 62 female with ages between 16 and 64 (divided into age groups of 16-30, 31-45 and 46-64). In Experiment 1, the mean correcting rate of the understanding level of food items is 48.54% (S.D.= 95.08) and the mean response time 2.89sec (S.D.=2.14). The difference on the correct rates for different age groups is significant (P*=0.00<0.05). In Experiment 2, the correcting rate of selecting the right life-size measurement aid is 65.02% (S.D.=21.31). The result showed the potential of the approach for certain food potion sizes. Issues raised for discussions including comprehension on numerous food varieties in an open environment, selection of photograph or drawing, reasons of different correcting rates for the measurement aid. This research also could be used for those interested in systematic and pictorial representation of dietary portion size information.Keywords: Comprehension, Food Portion Size, Model of DietaryInformation, Pictogram Design, USP-DI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19363175 Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles
Authors: Merve Küçük, M. Lütfi Öveçoğlu
Abstract:
Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution resulted in a narrow size distribution at submicron levels. The deposit of ZnO on polyester fabrics yielded a homogeneous spread of spherical particles. Energy dispersive X-ray spectroscopy (EDX) results also affirmed the presence of ZnO particles on the polyester fabrics.
Keywords: Dip coating, polyester fabrics, sol-gel, zinc oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15183174 Determination of Strain Rate Sensitivity (SRS) for Grain Size Variants on Nanocrystalline Material Produced by ARB and ECAP
Authors: P. B. Sob, A. A. Alugongo, T. B. Tengen
Abstract:
Mechanical behavior of 6082T6 aluminum is investigated at different temperatures. The strain rate sensitivity is investigated at different temperatures on the grain size variants. The sensitivity of the measured grain size variants on 3-D grain is discussed. It is shown that the strain rate sensitivities are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the strain rate sensitivities vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results, it is shown that the variation of strain rate sensitivity with temperature suggests that the strain rate sensitivity at the low and the high temperature ends of the 6082T6 aluminum range is different. The obtained results revealed transition at different temperature from negative strain rate sensitivity as temperature increased on the grain size variants.Keywords: Nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844