Search results for: window data envelopment analysis
10117 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.
Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73210116 Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques
Authors: P. Satish Kumar, K. Ramakrishna, Ch. Lokeshwar Reddy, G. Sridhar
Abstract:
This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-frequency pulse width modulation (FFPWM) and Multilevel sinusoidal-modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase opposition disposition (APOD), Phase shifted carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.
Keywords: Cascaded multilevel inverters, hybrid modulation, power loss analysis, pulse width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 298610115 A Growing Natural Gas Approach for Evaluating Quality of Software Modules
Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur
Abstract:
The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.
Keywords: Growing Neural Gas, data clustering, fault prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187010114 Prediction of Dissolved Oxygen in Rivers Using a Wang-Mendel Method – Case Study of Au Sable River
Authors: Mahmoud R. Shaghaghian
Abstract:
Amount of dissolve oxygen in a river has a great direct affect on aquatic macroinvertebrates and this would influence on the region ecosystem indirectly. In this paper it is tried to predict dissolved oxygen in rivers by employing an easy Fuzzy Logic Modeling, Wang Mendel method. This model just uses previous records to estimate upcoming values. For this purpose daily and hourly records of eight stations in Au Sable watershed in Michigan, United States are employed for 12 years and 50 days period respectively. Calculations indicate that for long period prediction it is better to increase input intervals. But for filling missed data it is advisable to decrease the interval. Increasing partitioning of input and output features influence a little on accuracy but make the model too time consuming. Increment in number of input data also act like number of partitioning. Large amount of train data does not modify accuracy essentially, so, an optimum training length should be selected.
Keywords: Dissolved oxygen, Au Sable, fuzzy logic modeling, Wang Mendel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189710113 Antecedents and Loyalty of Foreign Tourists towards Attractions in Bangkok Metropolitan Area, Thailand
Authors: Arunroong Wongkungwan
Abstract:
This study aimed to investigate the influence of selected antecedents, which were tourists’ satisfaction towards attractions in Bangkok, perceived value of the attractions, feelings of engagement with the attractions, acquaintance with the attractions, push factors, pull factors and motivation to seek novelty, on foreign tourist’s loyalty towards tourist attractions in Bangkok. By using multi stage sampling technique, 400 international tourists were sampled. After that, Semi Structural Equation Model was utilized in the analysis stage by LISREL. The Semi Structural Equation Model of the selected antecedents of tourist’s loyalty attractions had a correlation with the empirical data through the following statistical descriptions: Chi- square = 3.43, df = 4, P- value = 0.48893; RMSEA = 0.000; CFI = 1.00; CN = 1539.75; RMR = 0.0022; GFI = 1.00 and AGFI = 0.98. The findings indicated that all antecedents were able together to predict the loyalty of the foreign tourists who visited Bangkok at 73 percent.
Keywords: Antecedents, Loyalty, Foreign Tourists, Tourist Attractions, Bangkok.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212610112 Towards a Framework for Evaluating Scientific Efficiency of World-Class Universities
Authors: Veljko Jeremic, Milica Kostic-Stankovic, Aleksandar Markovic, Milan Martic
Abstract:
Evaluating the efficiency of decision making units has been frequently elaborated on in numerous publications. In this paper, the theoretical framework for a novel method of Distance Based Analysis (DBA) is presented. In addition, the method is performed on a sample of the ARWU’s top 54 Universities of the United States; the findings of which clearly demonstrate that the best ranked Universities are far from also being the most efficient.
Keywords: Evaluating Efficiency, Distance Based Analysis, Ranking of Universities, ARWU.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157410111 Satisfaction of Distance Education University Students with the Use of Audio Media as a Medium of Instruction: The Case of Mountains of the Moon University in Uganda
Authors: Mark Kaahwa, Chang Zhu, Moses Muhumuza
Abstract:
This study investigates the satisfaction of distance education university students (DEUS) with the use of audio media as a medium of instruction. Studying students’ satisfaction is vital because it shows whether learners are comfortable with a certain instructional strategy or not. Although previous studies have investigated the use of audio media, the satisfaction of students with an instructional strategy that combines radio teaching and podcasts as an independent teaching strategy has not been fully investigated. In this study, all lectures were delivered through the radio and students had no direct contact with their instructors. No modules or any other material in form of text were given to the students. They instead, revised the taught content by listening to podcasts saved on their mobile electronic gadgets. Prior to data collection, DEUS received orientation through workshops on how to use audio media in distance education. To achieve objectives of the study, a survey, naturalistic observations and face-to-face interviews were used to collect data from a sample of 211 undergraduate and graduate students. Findings indicate that there was no statistically significant difference in the levels of satisfaction between male and female students. The results from post hoc analysis show that there is a statistically significant difference in the levels of satisfaction regarding the use of audio media between diploma and graduate students. Diploma students are more satisfied compared to their graduate counterparts. T-test results reveal that there was no statistically significant difference in the general satisfaction with audio media between rural and urban-based students. And ANOVA results indicate that there is no statistically significant difference in the levels of satisfaction with the use of audio media across age groups. Furthermore, results from observations and interviews reveal that DEUS found learning using audio media a pleasurable medium of instruction. This is an indication that audio media can be considered as an instructional strategy on its own merit.
Keywords: Audio media, distance education, distance education university students, medium of instruction, satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81010110 Does Corporate Governance or Transparency Affect Foreign Direct Investment?
Authors: Haksoon Kim
Abstract:
The paper investigates the relationship between the foreign direct investment (FDI) and the corporate governance or transparency by investigating the country-level FDI flows, FDI inward performance, corporate governance and transparency variables. From the regression analysis with Newey-West estimator of 28 country panel data from 1990- 2002, we find strong positive relationships between corporate governance or transparency level of hosting countries and FDI inward performance within hosting countries. A strong positive relationship is found between anti-director rights level or number of analysts of hosting countries and FDI inward performance within hosting countries. Also, we find a positive relationship between the number of analysts of hosting countries and FDI inflows. The empirical results are consistent with stock market liberalizations and corporate governance explanations of reasons for FDI.
Keywords: corporate governance, corporate transparency, FDIflows, FDI inward performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 277010109 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.
Keywords: Angle of internal friction, Cone penetrating test, General regression neural network, Soil modulus of elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228610108 Direct Measurements of Wind Data over 100 Meters above the Ground in the Site of Lendinara, Italy
Authors: A. Dal Monte, M. Raciti Castelli, G. B. Bellato, L. Stevanato, E. Benini
Abstract:
The wind resource in the Italian site of Lendinara (RO) is analyzed through a systematic anemometric campaign performed on the top of the bell tower, at an altitude of over 100 m above the ground. Both the average wind speed and the Weibull distribution are computed. The resulting average wind velocity is in accordance with the numerical predictions of the Italian Wind Atlas, confirming the accuracy of the extrapolation of wind data adopted for the evaluation of wind potential at higher altitudes with respect to the commonly placed measurement stations.Keywords: Anemometric campaign, wind resource, Weibull distribution, wind atlas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196710107 Some Morphological Characteristics of Perennial Ryegrass Genotypes and Correlations among Their Characteristics
Abstract:
The present study involved analysis of certain characteristics of the perennial ryegrass (Lolium perenne L.) genotypes collected from the natural flora of Ankara, and explores a correlation among them. In order to evaluate the plants for breeding purpose as per Turkey's environmental conditions, the perennial ryegrass plants were collected from natural pasture of Ankara in 2004 and were utilized for the study. Seeds of the collected plants were sown in pots and seedlings were prepared in a greenhouse. In 2005, the seedlings were transplanted at 50 × 50 cm2 intervals in Randomized Complete Blocks Design in an experimental field. In 2007 and 2008, data were recorded from the observations and measurements of 568 perennial ryegrasses. The plant characteristics, which were investigated, included re-growth time in spring, color, density, growth habit, tendency to form inflorescence, time of inflorescence, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area, leaf shape, number of spikelets per spike, seed yield per spike and 1000 grain weight and the correlation analyses were made using this data. Correlation coefficients were estimated between all paired combinations of the studied traits. The yield components exhibited varying trends of association among themselves. Seed yield per spike showed significant and positive association with the number of spikelets per spike, 1000 grain weight, plant height, length of upper internode, spike length, leaf length, leaf width, leaf area and color, but significant and negative association with the growth habit and re-growth time in spring.
Keywords: Correlation, morphological traits, Lolium perenne.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194810106 Apoptosis Pathway Targeted by Thymoquinone in MCF7 Breast Cancer Cell Line
Authors: M. Marjaneh, M. Y. Narazah, H. Shahrul
Abstract:
Array-based gene expression analysis is a powerful tool to profile expression of genes and to generate information on therapeutic effects of new anti-cancer compounds. Anti-apoptotic effect of thymoquinone was studied in MCF7 breast cancer cell line using gene expression profiling with cDNA microarray. The purity and yield of RNA samples were determined using RNeasyPlus Mini kit. The Agilent RNA 6000 NanoLabChip kit evaluated the quantity of the RNA samples. AffinityScript RT oligo-dT promoter primer was used to generate cDNA strands. T7 RNA polymerase was used to convert cDNA to cRNA. The cRNA samples and human universal reference RNA were labelled with Cy-3-CTP and Cy-5-CTP, respectively. Feature Extraction and GeneSpring softwares analysed the data. The single experiment analysis revealed involvement of 64 pathways with up-regulated genes and 78 pathways with downregulated genes. The MAPK and p38-MAPK pathways were inhibited due to the up-regulation of PTPRR gene. The inhibition of p38-MAPK suggested up-regulation of TGF-ß pathway. Inhibition of p38-MAPK caused up-regulation of TP53 and down-regulation of Bcl2 genes indicating involvement of intrinsic apoptotic pathway. Down-regulation of CARD16 gene as an adaptor molecule regulated CASP1 and suggested necrosis-like programmed cell death and involvement of caspase in apoptosis. Furthermore, down-regulation of GPCR, EGF-EGFR signalling pathways suggested reduction of ER. Involvement of AhR pathway which control cytochrome P450 and glucuronidation pathways showed metabolism of Thymoquinone. The findings showed differential expression of several genes in apoptosis pathways with thymoquinone treatment in estrogen receptor-positive breast cancer cells.
Keywords: CARD16, CASP10, cDNA microarray, PTPRR, Thymoquinone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229710105 A Comprehensive Method of Fault Detection and Isolation Based On Testability Modeling Data
Authors: Junyou Shi, Weiwei Cui
Abstract:
Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.
Keywords: BIT, fault detection, fault isolation, testability modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167310104 Elastic Lateral Features of a New Glass Fiber Reinforced Gypsum Wall
Authors: Zhengyong Liu, Huiqing Ying
Abstract:
GFRG(Glass Fiber Reinforced Gypsum) wall is a green product which can erect a building fast in prefabricated method, but its application to high-rise residential buildings is limited for its poor lateral stiffness. This paper has proposed a modification to GFRG walls structure to increase its lateral stiffness, which aiming to erect small high-rise residential buildings as load-bearing walls. The elastic finite element analysis to it has shown the lateral deformation feature and the distributions of the axial force and the shear force. The analysis results show that the new GFRG reinforced concrete wall can be used for small high-rise residential buildings.
Keywords: GFRG wall, lateral features, elastic analysis, residential building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 334110103 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis
Authors: Kunya Bowornchockchai
Abstract:
The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0) without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt is the time series data at time t, respectively.Keywords: Box–Jenkins Method, Holt’s Method, Mean Absolute Percentage Error (MAPE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171710102 Model-Free Distributed Control of Dynamical Systems
Authors: Javad Khazaei, Rick S. Blum
Abstract:
Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.
Keywords: Consensus tracking, distributed control, model-free control, sparse identification of dynamical systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54710101 Improving Classification in Bayesian Networks using Structural Learning
Authors: Hong Choon Ong
Abstract:
Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260810100 Challenges of e-Government Services Adoption in Saudi Arabia from an e-Ready Citizen Perspective
Authors: Mohammed Alshehri, Steve Drew
Abstract:
More and more governments around the world are introducing e-government as a means of reducing costs, improving services, saving time and increasing effectiveness and efficiency in the public sector Therefore e-government has been identified as one of the top priorities for Saudi government and all its agencies. However, the adoption of e-government is facing many challenges and barriers such as technological, cultural, organizational, and social issues which must be considered and treated carefully by any government contemplating its adoption. This paper reports on a pilot study amongst online (e-ready) citizens to identify the challenges and barriers that affect the adoption of e-government services especially from their perspective in Saudi society. Based on the analysis of data collected from an online survey the researcher was able to identify some of the important barriers and challenges from the e-ready citizen perspective. As a result, this study has generated a list of possible strategies to move towards successful adoption of egovernment services in Saudi Arabia.Keywords: Challenges, E-government services, adoption, SaudiArabia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367110099 Analytical Solution for Free Vibration of Rectangular Kirchhoff Plate from Wave Approach
Authors: Mansour Nikkhah-Bahrami, Masih Loghmani, Mostafa Pooyanfar
Abstract:
In this paper, an analytical approach for free vibration analysis of four edges simply supported rectangular Kirchhoff plates is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for plate with simply supported boundary condition are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of a simply supported rectangular Kirchhoff plate. Subsequently, the eigenvalue problem for free vibration of plates is formulated and the equation of plate natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.Keywords: Kirchhoff plate, propagation matrix, reflection matrix, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 242810098 Reliability Analysis of Tubular Joints of Offshore Platforms in Malaysia
Authors: Nelson J. Cossa, Narayanan S. Potty, Mohd Shahir Liew, Arazi B. Idrus
Abstract:
The oil and gas industry has moved towards Load and Resistance Factor Design through API RP2A - LRFD and the recently published international standard, ISO-19902, for design of fixed steel offshore structures. The ISO 19902 is intended to provide a harmonized design practice that offers a balanced structural fitness for the purpose, economy and safety. As part of an ongoing work, the reliability analysis of tubular joints of the jacket structure has been carried out to calibrate the load and resistance factors for the design of offshore platforms in Malaysia, as proposed in the ISO. Probabilistic models have been established for the load effects (wave, wind and current) and the tubular joints strengths. In this study the First Order Reliability Method (FORM), coded in MATLAB Software has been employed to evaluate the reliability index of the typical joints, designed using API RP2A - WSD and ISO 19902.Keywords: FORM, Reliability Analysis, Tubular Joints
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 350110097 Analysis on Influence of Gravity on Convection Heat Transfer in Manned Spacecraft during Terrestrial Test
Authors: Wang Jing, Tao Tao, Li Xiyuan, Pei Yifei
Abstract:
How to simulate experimentally the air flow and heat transfer under microgravity on the ground is important, which has not been completely solved so far. Influence of gravity on air natural convection results in convection heat transfer on ground difference from that on orbit. In order to obtain air temperature and velocity deviations of manned spacecraft during terrestrial thermal test, dimensionless number analysis and numerical simulation analysis are performed. The calculated temperature distribution and velocity distribution of the horizontal test cases are compared to the vertical cases. The results show that the influence of gravity is neglected for facility drawer racks and more obvious for vertical cabins.Keywords: Gravity, Convection heat transfer, Manned spacecraft, Dimensionless number, Numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170010096 Electricity Load Modeling: An Application to Italian Market
Authors: Giovanni Masala, Stefania Marica
Abstract:
Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149210095 Effects of Synchronous Music on Gymnastics' Motor Skills Performance among Undergraduate Female Students in Physical Education College
Authors: Sanaa Ali Ahmed Alrashid
Abstract:
The present study aimed to investigate the effect of synchronous music in Gymnastics' motor skill performance among undergraduate female students in physical education college at Basra University. The researcher used experimental design. 20 female students of physical education divided equally into two groups, (10) experimental group with music, (10) control group without music. All participants complete 6 weeks in testing. Data analysis based on T-test shows significant difference at (α = 0.05) in all skills level between experimental and control groups in favor of experimental group. Results of this study contribute to developing the role of synchronous music in improving gymnastic skills performance.Keywords: Performance, motor skill, music, synchronous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272210094 Aerial Firefighting Aircraft Selection with Standard Fuzzy Sets using Multiple Criteria Group Decision Making Analysis
Authors: C. Ardil
Abstract:
Aircraft selection decisions can be challenging due to their multidimensional and interdisciplinary nature. They involve multiple stakeholders with conflicting objectives and numerous alternative options with uncertain outcomes. This study focuses on the analysis of aerial firefighting aircraft that can be chosen for the Air Fire Service to extinguish forest fires. To make such a selection, the characteristics of the fire zones must be considered, and the capability to manage the logistics involved in such operations, as well as the purchase and maintenance of the aircraft, must be determined. The selection of firefighting aircraft is particularly complex because they have longer fleet lives and require more demanding operation and maintenance than scheduled passenger air service. This paper aims to use the fuzzy proximity measure method to select the most appropriate aerial firefighting aircraft based on decision criteria using multiple attribute decision making analysis. Following fuzzy decision analysis, the most suitable aerial firefighting aircraft is ranked and determined for the Air Fire Service.
Keywords: Aerial firefighting aircraft selection, multiple criteria decision making, fuzzy sets, standard fuzzy sets, determinate fuzzy sets, indeterminate fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, MCDM, PMM, PMM-F
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41810093 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.
Keywords: Soft jar test, jar test, water treatment plant process, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67310092 Potential of Solar Energy in Zarqa Region
Authors: Ali M. Jawarneh, Ahmad S. AL-Shyyab
Abstract:
The purpose of this work is to present the potential of solar energy in Zarqa region. The solar radiation along year 2009 was obtained from Pyranometer which measures the global radiation over horizontal surfaces. Solar data in several different forms, over period of 5 minutes, hour-by-hour, daily and monthly data radiation have been presented. Briefly, the yearly global solar radiation in Zarqa is 7297.5 MJ/m2 (2027 kWh/m²) and the average annual solar radiation per day is 20 MJ/m2 (5.5 Kwh/m2). More specifically, the average annual solar radiation per day is 12.9 MJ/m2 (3.57 Kwh/m2) in winter and 25 MJ/m2 (7 Kwh/m2) in summer.Keywords: Solar Energy, Pyranometer, Zarqa Region
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192910091 Applications of Drones in Infrastructures: Challenges and Opportunities
Authors: Jin Fan, M. Ala Saadeghvaziri
Abstract:
Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.
Keywords: Bridge, construction, drones, infrastructure, information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132510090 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy
Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie
Abstract:
In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.
Keywords: Data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 256610089 Natural Disaster Impact on Annual Visitors of Recreation Area: The Taiwan Case
Authors: Ya-Fen Lee, Yun-Yao Chi
Abstract:
This paper aims to quantify the impact of natural disaster on tourism by the change of annual visitors to scenic spots. The data of visitors to Alishan, Sun Moon Lake, Sitou and Palace Museum in Taiwan during 1986 to 2012 year is collected, and the trend analysis is used to predict the annual visitors to these scenic spots. The findings show that 1999 Taiwan earthquake had significant effect on the visitors to Alishan, Sun Moon Lake and Sitou with an average impact of 55.75% during 1999 to 2000 year except for Palace Museum. The impact was greater as closer epicenter of 1999 earthquake. And the discovery period of visitors is about 2 to 9 years. Further, the impact of heavy rainfall on Alishan, Taiwan is estimated. As the accumulative rainfall reaches to 500 mm, the impact on visitors can be predicted.
Keywords: Impact, Natural disaster, tourism, visitors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201610088 Standard Fuzzy Sets for Aircraft Selection using Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This study uses two-dimensional standard fuzzy sets to enhance multiple criteria decision-making analysis for passenger aircraft selection, allowing decision-makers to express judgments with uncertain and vague information. Using two-dimensional fuzzy numbers, three decision makers evaluated three aircraft alternatives according to seven decision criteria. A validity analysis based on two-dimensional standard fuzzy weighted geometric (SFWG) and two-dimensional standard fuzzy weighted average (SFGA) operators is conducted to test the proposed approach's robustness and effectiveness in the fuzzy multiple criteria decision making (MCDM) evaluation process.
Keywords: Standard fuzzy sets (SFSs), aircraft selection, multiple criteria decision making, intuitionistic fuzzy sets (IFSs), SFWG, SFGA, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420