Apoptosis Pathway Targeted by Thymoquinone in MCF7 Breast Cancer Cell Line
Authors: M. Marjaneh, M. Y. Narazah, H. Shahrul
Abstract:
Array-based gene expression analysis is a powerful tool to profile expression of genes and to generate information on therapeutic effects of new anti-cancer compounds. Anti-apoptotic effect of thymoquinone was studied in MCF7 breast cancer cell line using gene expression profiling with cDNA microarray. The purity and yield of RNA samples were determined using RNeasyPlus Mini kit. The Agilent RNA 6000 NanoLabChip kit evaluated the quantity of the RNA samples. AffinityScript RT oligo-dT promoter primer was used to generate cDNA strands. T7 RNA polymerase was used to convert cDNA to cRNA. The cRNA samples and human universal reference RNA were labelled with Cy-3-CTP and Cy-5-CTP, respectively. Feature Extraction and GeneSpring softwares analysed the data. The single experiment analysis revealed involvement of 64 pathways with up-regulated genes and 78 pathways with downregulated genes. The MAPK and p38-MAPK pathways were inhibited due to the up-regulation of PTPRR gene. The inhibition of p38-MAPK suggested up-regulation of TGF-ß pathway. Inhibition of p38-MAPK caused up-regulation of TP53 and down-regulation of Bcl2 genes indicating involvement of intrinsic apoptotic pathway. Down-regulation of CARD16 gene as an adaptor molecule regulated CASP1 and suggested necrosis-like programmed cell death and involvement of caspase in apoptosis. Furthermore, down-regulation of GPCR, EGF-EGFR signalling pathways suggested reduction of ER. Involvement of AhR pathway which control cytochrome P450 and glucuronidation pathways showed metabolism of Thymoquinone. The findings showed differential expression of several genes in apoptosis pathways with thymoquinone treatment in estrogen receptor-positive breast cancer cells.
Keywords: CARD16, CASP10, cDNA microarray, PTPRR, Thymoquinone.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100264
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296References:
[1] Subhasis, D., Kumar, D. K., Goutam, D., Ipsita, P., Abhijit, M., Sujata, M., C, K. S. &Mahitosh, A. M.. Antineoplastic and Apoptotic Potential of Traditional Medicines Thymoquinone and Diosgenin in Squamous Cell Carcinoma. PloS One, 7(10), pp.e46641, 2012.
[2] Roepke, M., Diestel, A., Bajbouj, K., Walluscheck, D., Schonfeld, P., Roessner, A., Schneider-Stock, R., &Gali-Muhtasib, H. Lack of p53 augments Thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer BiolTher, 6(2), pp.160-169, 2007.
[3] El-Mahdy, M. A., Zhu, Q., Wang, Q. E., Wani, G. &Wani, A. A. Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in p53-null myoloblastic leukemia HL-60 cells. Int J Cancer, 117pp.409-417, 2005.
[4] Arafa, El- S. A., Zhu, Q., Shah, Z. I., Wani, G., Barakat, B. M., Racoma, I., El-mahdy, M. A. &Wani, A. A. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 706(1-2), pp.28-35, 2010.
[5] Gali-Muhtasib, H., Diab-Assaf, M., Boltze, C., Al-Hmaira, J., Hartig, R., Roessner, A., & Schneider-Stock, R. Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a p53-dependent mechanism. Int J Oncol, 25(4), pp.857-66, 2004.
[6] Kaseb, A., Chinnakannu, K., Chen, D., Sivanandam, A., Tejwani, S., Menon, M., Dou, Q., & Reddy, G. Androgen receptor and E2F-1 targeted Thymoquinone therapy for hormone-refractory prostate cancer. Cancer Res, 67(16), pp.7782-8, 2007.
[7] Woo, C. C., Loo, S. Y., Gee, V., Yap, C. W., Sethi, G., Kumar, A. P., Benny, T., &Huat, K. Anticancer activity of Thymoquinone in breast cancer cells: Possible involvement of PPAR-
[gamma] pathway. Biochemical Pharmacology, 82(5), pp.464-75, 2011.
[8] Broker, L. E., Kruyt, F. A. E. &Giaccone, G. Cell Death Independent of Caspases: A Review. Clin Cancer Res, 11(9), pp.3155-3162, 2005.
[9] Chen, L., Aann Mayer, J., Krisko, T. I., Speers, C. W., Wang, T., Hilsenbeck, S. G. & Brown, P. H. Inhibition of the p38 Kinase Suppresses the Proliferation of Human ER-Negative Breast Cancer Cells. Cancer Res 69(23), pp.8853-8861, 2009.
[10] Torres, M. P., Ponnusamy, M. P., Chakraborty, S., Smith, L. M., Das, S., Arafat, H. A., &Batra, S. K. Effects of Thymoquinone in the Expression of Mucin 4 in Pancreatic Cancer Cells: Implications for the Development of Novel Cancer Therapies. Mol Cancer Ther, 9(5), pp.1419-1431, 2010.
[11] Mendoza, R. A., Moody, E. E., Enriquez, M. I., Mejia, S. M., &Thordarson, G. Tumourigenicity of MCF7 human breast cancer cells lacking the p38α mitogen-activated protein kinase. J Endocrinol, 208(1), pp.11-19.British Journal of Cancer, 92(1), pp.113-119, 2011.
[12] NCBI Resources. (2014).Gene. http://www.ncbi.nlm.
[13] Tvrdik, D., Skalova, H., Dundr, P., Povysil, C., Velenska, Z., Berkova, A., Stanek, L. &Petruzelka, L., Apoptosis - associated genes and their role in predicting responses to neoadjuvant breast cancer treatment. Med SciMonit, 18(1), BR60-67, 2012.
[14] Wang, X., Wang, H., Figueroa, B., Zhang, W., Huo, C., Guan, Y., Zhang, Y., Bruey, J., Reed, J., &Friendlander, R. Dysregulation of receptor interacting protein-2 and caspase recruitment domain only protein mediates aberrant caspase-1 activation in Huntington's disease. J Neurosci, 25(50), pp.11645-54.
[15] Wang, X., Wang, H., Figueroa, B., Zhang, W., Huo, C., Guan, Y., Zhang, Y., Bruey, J., Reed, J., &Friendlander, R. Dysregulation of receptor interacting protein-2 and caspase recruitment domain only protein mediates aberrant caspase-1 activation in Huntington's disease. J Neurosci, 25(50), pp.11645-54.
[16] Marjaneh, M., Al-hassan, FM., &Shahrul H. Thymoquinoneregulates gene expression levels in the estrogen metabolic and interferon pathways in MCF7 breast cancer cells. Int. J Mol.Med, 33 (1):8-16, 2014.
[17] Hosgood, H. R., Baris, D., Zhang, Y., Zhu, Y., Zheng, T., Yeager, M., Welch, R., Zahm, S., Chanock, S., Rothman, N., &Lan, Q. Caspase polymorphisms and genetic susceptibility to multiple myeloma. HematolOncol, 26(3), pp.148-151, 2009.
[18] Smith, AL., Robin, TP., & Ford, Hl. Molecular pathways: targeting the TGF-β pathway for cancer therapy. Clin Cancer Res, 18(17), pp.4514- 21, 2012.
[19] Dreesen, O. &Brivanlou, A. H. Signalling Pathways in Cancer and Embryonic Stem Cells. Stem Cell Rev, 3(1), pp.7-17, 2007.
[20] Razandi, M., Oh, P., Pedram, A., Schnitzer, J., & Levin, E. R. ERs associate with and regulate the production of caveolin: implications for signalling and cellular actions. MolEndocrinol, 16(1), pp.100-15, 2002
[21] Zhang, G., Ahmed, N., Riley, C., Oliva, K., Barker, G., Quinn, M., & Rice, G. Enhanced expression of peroxisome proliferator-activated receptor gamma in epithelial ovarian carcinoma. British Journal of Cancer, 92(1), pp.113-119, 2005.
[22] Xu, Y., Yang, G., & Hu, G. Binding of IFITM1 enhances the inhibiting effect of caveolin-1 on ERK activation. ActaBiochimBiophys Sin (Shanghai), 41(6), pp.488-94, 2009.
[23] Valeria, B., Larbi, A., Cruz, Hinojos, Jeannie, Z., Maureen, G., Mancini, M., Zelton, D. S., & Mancini, M. A. Activation of Estrogen Receptor-α by E2 or EGF Induces Temporally Distinct Patterns of Large-Scale Chromatin Modification and mRNA Transcription. PlosOne, 3, e2286, 2008.
[24] Finlay, T. M., Abdulkhalek, S., Gilmour, A., Guzzo, C., Jayanth, P., Amith, S. R., Gee, K., Beyaert, R. &Szewczuk, M. R. Thymoquinoneinduced Neu4 sialidase activates NFκB in macrophage cells and proinflammatory cytokines in vivo. Glycoconj J, 27(6), pp.583-600, 2010.
[25] Filardo, E. J, Quinn, J. A., Frackelton, AR. JR & Bland, KI. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signalling axis. MolEndocrinol, 16(1), pp.70-84, 2012.
[26] Albanito, L., Madeo, A., Lappano, R., Vivacqua, A., Rago, V., Carpino, A., Oprea, T., Prossnitz, ER.,Musti, AM., Andò, S., Maggiolini, M. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res. 67(4):1859-66, 2007.
[27] Koka, P. S., Mondal, D., Schultz, M., Abdel-Mageed., & Agrawal, K. C. Studies on molecular mechanisms of growth inhibitory effects of Thymoquinone against prostate cancer cells: role of reactive oxygen species. Experimental Biology and Medicine, 235(6), pp.751-760, 2010.