Search results for: Thermal performance
3413 A Novel Impulse Detector for Filtering of Highly Corrupted Images
Authors: Umesh Ghanekar
Abstract:
As the performance of the filtering system depends upon the accuracy of the noise detection scheme, in this paper, we present a new scheme for impulse noise detection based on two levels of decision. In this scheme in the first stage we coarsely identify the corrupted pixels and in the second stage we finally decide whether the pixel under consideration is really corrupt or not. The efficacy of the proposed filter has been confirmed by extensive simulations.Keywords: Impulse detection, noise removal, image filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14143412 Effects of the Second Entrant in GSM Telecommunication Market in MENA Region
Authors: A.R. Yari, M.R. Sadri
Abstract:
For the first incumbent operator it is very important to understand how to react when the second operator comes to the market. In this paper which is prepared for preliminary study of GSM market in Iran, we have studied five MENA markets according to the similarity point of view. This paper aims at analyzing the impact of second entrants in selected markets on certain marketing key performance indicators (KPI) such as: Market shares (by operator), prepaid share, minutes of use (MoU), Price and average revenue per user (ARPU) (for total market each).Keywords: GSM Market, Second entrant, MENA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14843411 Silver Modified TiO2/Halloysite Thin Films for Decontamination of Target Pollutants
Authors: Dionisios Panagiotaras, Elias Stathatos, Dimitrios Papoulis
Abstract:
Sol-gel method has been used to fabricate nanocomposite films on glass substrates composed halloysite clay mineral and nanocrystalline TiO2. The methodology for the synthesis involves a simple chemistry method utilized nonionic surfactant molecule as pore directing agent along with the acetic acid-based solgel route with the absence of water molecules. The thermal treatment of composite films at 450oC ensures elimination of organic material and lead to the formation of TiO2 nanoparticles onto the surface of the halloysite nanotubes. Microscopy techniques and porosimetry methods used in order to delineate the structural characteristics of the materials. The nanocomposite films produced have no cracks and active anatase crystal phase with small crystallite size were deposited on halloysite nanotubes. The photocatalytic properties for the new materials were examined for the decomposition of the Basic Blue 41 azo dye in solution. These, nanotechnology based composite films show high efficiency for dye’s discoloration in spite of different halloysite quantities and small amount of halloysite/TiO2 catalyst immobilized onto glass substrates. Moreover, we examined the modification of the halloysite/TiO2 films with silver particles in order to improve the photocatalytic properties of the films. Indeed, the presence of silver nanoparticles enhances the discoloration rate of the Basic Blue 41 compared to the efficiencies obtained for unmodified films.
Keywords: Clay mineral, nanotubular Halloysite, Photocatalysis, Titanium Dioxide, Silver modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25413410 Formal Models of Sanitary Inspections Teams Activities
Authors: Tadeusz Nowicki, Radosław Pytlak, Robert Waszkowski, Jerzy Bertrandt, Anna Kłos
Abstract:
This paper presents methods for formal modeling of activities in the area of sanitary inspectors outbreak of food-borne diseases. The models allow you to measure the characteristics of the activities of sanitary inspection and as a result allow improving the performance of sanitary services and thus food security.
Keywords: Food-borne disease, epidemic, sanitary inspection, mathematical models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20163409 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels
Authors: O. Chaudhari, A. N. Ghafar, G. Zirgulis, M. Mousavi, T. Ellison, S. Pousette, P. Fontana
Abstract:
In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.
Keywords: corrosion, durability, mortar, rock bolt
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4313408 Control of Airborne Aromatic Hydrocarbons over TiO2-Carbon Nanotube Composites
Authors: Joon Y. Lee, Seung H. Shin, Ho H. Chun, Wan K. Jo
Abstract:
Poly vinyl acetate (PVA)-based titania (TiO2)–carbon nanotube composite nanofibers (PVA-TCCNs) with various PVA-to-solvent ratios and PVA-based TiO2 composite nanofibers (PVA-TN) were synthesized using an electrospinning process, followed by thermal treatment. The photocatalytic activities of these nanofibers in the degradation of airborne monocyclic aromatics under visible-light irradiation were examined. This study focuses on the application of these photocatalysts to the degradation of the target compounds at sub-part-per-million indoor air concentrations. The characteristics of the photocatalysts were examined using scanning electron microscopy, X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared spectroscopy. For all the target compounds, the PVA-TCCNs showed photocatalytic degradation efficiencies superior to those of the reference PVA-TN. Specifically, the average photocatalytic degradation efficiencies for benzene, toluene, ethyl benzene, and o-xylene (BTEX) obtained using the PVA-TCCNs with a PVA-to-solvent ratio of 0.3 (PVA-TCCN-0.3) were 11%, 59%, 89%, and 92%, respectively, whereas those observed using PVA-TNs were 5%, 9%, 28%, and 32%, respectively. PVA-TCCN-0.3 displayed the highest photocatalytic degradation efficiency for BTEX, suggesting the presence of an optimal PVA-to-solvent ratio for the synthesis of PVA-TCCNs. The average photocatalytic efficiencies for BTEX decreased from 11% to 4%, 59% to 18%, 89% to 37%, and 92% to 53%, respectively, when the flow rate was increased from 1.0 to 4.0 L min1. In addition, the average photocatalytic efficiencies for BTEX increased 11% to ~0%, 59% to 3%, 89% to 7%, and 92% to 13%, respectively, when the input concentration increased from 0.1 to 1.0 ppm. The prepared PVA-TCCNs were effective for the purification of airborne aromatics at indoor concentration levels, particularly when the operating conditions were optimized.
Keywords: Mixing ratio, nanofiber, polymer, reference photocatalyst.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22433407 Convection through Light Weight Timber Constructions with Mineral Wool
Authors: J. Schmidt, O. Kornadt
Abstract:
The major part of light weight timber constructions consists of insulation. Mineral wool is the most commonly used insulation due to its cost efficiency and easy handling. The fiber orientation and porosity of this insulation material enables flowthrough. The air flow resistance is low. If leakage occurs in the insulated bay section, the convective flow may cause energy losses and infiltration of the exterior wall with moisture and particles. In particular the infiltrated moisture may lead to thermal bridges and growth of health endangering mould and mildew. In order to prevent this problem, different numerical calculation models have been developed. All models developed so far have a potential for completion. The implementation of the flow-through properties of mineral wool insulation may help to improve the existing models. Assuming that the real pressure difference between interior and exterior surface is larger than the prescribed pressure difference in the standard test procedure for mineral wool ISO 9053 / EN 29053, measurements were performed using the measurement setup for research on convective moisture transfer “MSRCMT". These measurements show, that structural inhomogeneities of mineral wool effect the permeability only at higher pressure differences, as applied in MSRCMT. Additional microscopic investigations show, that the location of a leak within the construction has a crucial influence on the air flow-through and the infiltration rate. The results clearly indicate that the empirical values for the acoustic resistance of mineral wool should not be used for the calculation of convective transfer mechanisms.Keywords: convection, convective transfer, infiltration, mineralwool, permeability, resistance, leakage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21503406 Revealing Nonlinear Couplings between Oscillators from Time Series
Authors: B.P. Bezruchko, D.A. Smirnov
Abstract:
Quantitative characterization of nonlinear directional couplings between stochastic oscillators from data is considered. We suggest coupling characteristics readily interpreted from a physical viewpoint and their estimators. An expression for a statistical significance level is derived analytically that allows reliable coupling detection from a relatively short time series. Performance of the technique is demonstrated in numerical experiments.Keywords: Nonlinear time series analysis, directional couplings, coupled oscillators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12723405 Adaptive Transient and CW RF Interference Mitigation in HF OTH Radar: Experimental Results
Authors: Pavel Turcaj, Yuri I. Abramovich, Gordon J. Frazer
Abstract:
We introduce an adaptive technique for the joint mitigation of transients and continuous-wave radio-frequency co-channel interference (CW RFI) in high-frequency (HF) over-the-horizon radars (OTHRs). The performance of this technique is illustrated using data from an operational surface-wave radar (SECAR) and from recent experimental trials with sky-wave (SW) and sky-wave–line-of-sight (SKYLOS) HF OTHRs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16193404 Study on the Electrochemical Performance of Graphene Effect on Cadmium Oxide in Lithium Battery
Authors: Atef Y. Shenouda, Anton A. Momchilov
Abstract:
Graphene and CdO with different stoichiometric ratios of Cd(CH₃COO)₂ and graphene samples were prepared by hydrothermal reaction. The crystalline phases of pure CdO and 3CdO:1graphene were identified by X-ray diffraction (XRD). The particle morphology was studied with SEM. Furthermore, impedance measurements were applied. Galvanostatic measurements for the cells were carried out using potential limits between 0.01 and 3 V vs. Li/Li⁺. The current cycling intensity was 10⁻⁴ A. The specific discharge capacity of 3CdO-1G cell was about 450 Ah.Kg⁻¹ up to more than 100 cycles.Keywords: CdO, graphene, negative electrode, lithium battery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6973403 Modification of Electrical and Switching Characteristics of a Non Punch-Through Insulated Gate Bipolar Transistor by Gamma Irradiation
Authors: Hani Baek, Gwang Min Sun, Chansun Shin, Sung Ho Ahn
Abstract:
Fast neutron irradiation using nuclear reactors is an effective method to improve switching loss and short circuit durability of power semiconductor (insulated gate bipolar transistors (IGBT) and insulated gate transistors (IGT), etc.). However, not only fast neutrons but also thermal neutrons, epithermal neutrons and gamma exist in the nuclear reactor. And the electrical properties of the IGBT may be deteriorated by the irradiation of gamma. Gamma irradiation damages are known to be caused by Total Ionizing Dose (TID) effect and Single Event Effect (SEE), Displacement Damage. Especially, the TID effect deteriorated the electrical properties such as leakage current and threshold voltage of a power semiconductor. This work can confirm the effect of the gamma irradiation on the electrical properties of 600 V NPT-IGBT. Irradiation of gamma forms lattice defects in the gate oxide and Si-SiO2 interface of the IGBT. It was confirmed that this lattice defect acts on the center of the trap and affects the threshold voltage, thereby negatively shifted the threshold voltage according to TID. In addition to the change in the carrier mobility, the conductivity modulation decreases in the n-drift region, indicating a negative influence that the forward voltage drop decreases. The turn-off delay time of the device before irradiation was 212 ns. Those of 2.5, 10, 30, 70 and 100 kRad(Si) were 225, 258, 311, 328, and 350 ns, respectively. The gamma irradiation increased the turn-off delay time of the IGBT by approximately 65%, and the switching characteristics deteriorated.Keywords: NPT-IGBT, gamma irradiation, switching, turn-off delay time, recombination, trap center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8803402 Injection Molding of Inconel718 Parts for Aerospace Application Using Novel Binder System Based On Palm Oil Derivatives
Authors: R. Ibrahim, M. Azmirruddin, M. Jabir, N. Johari, M. Muhamad, A. R. A. Talib
Abstract:
Inconel718 has been widely used as a super alloy in aerospace application due to the high strength at elevated temperatures, satisfactory oxidation resistance and heat corrosion resistance. In this study, the Inconel718 has been fabricated using high technology of Metal Injection Molding (MIM) process due to the cost effective technique for producing small, complex and precision parts in high volume compared with conventional method through machining. Through MIM, the binder system is one of the most important criteria in order to successfully fabricate the Inconel718. Even though, the binder system is a temporary, but failure in the selection and removal of the binder system will affect on the final properties of the sintered parts. Therefore, the binder system based on palm oil derivative which is palm stearin has been formulated and developed to replace the conventional binder system. The rheological studies of the mixture between the powder and binders system have been determined properly in order to be successful during injection into injection molding machine. After molding, the binder holds the particles in place. The binder system has to be removed completely through debinding step. During debinding step, solvent debinding and thermal pyrolysis has been used to remove completely of the binder system. The debound part is then sintered to give the required physical and mechanical properties. The results show that the properties of the final sintered parts fulfill the Standard Metal Powder Industries Federation (MPIF) 35 for MIM parts.
Keywords: Binder system, rheological study, metal injection molding, debinding and sintered parts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27233401 Micro-Penetrator for Canadian Planetary Exploration
Authors: Michaela Skulinova, Wanping Zheng, Yan-Ru Hu, Yvan Soucy
Abstract:
Space exploration is a highly visible endeavour of humankind to seek profound answers to questions about the origins of our solar system, whether life exists beyond Earth, and how we could live on other worlds. Different platforms have been utilized in planetary exploration missions, such as orbiters, landers, rovers, and penetrators. Having low mass, good mechanical contact with the surface, ability to acquire high quality scientific subsurface data, and ability to be deployed in areas that may not be conducive to landers or rovers, Penetrators provide an alternative and complimentary solution that makes possible scientific exploration of hardly accessible sites (icy areas, gully sites, highlands etc.). The Canadian Space Agency (CSA) has put space exploration as one of the pillars of its space program, and established ExCo program to prepare Canada for future international planetary exploration. ExCo sets surface mobility as its focus and priority, and invests mainly in the development of rovers because of Canada's niche space robotics technology. Meanwhile, CSA is also investigating how micro-penetrators can help Canada to fulfill its scientific objectives for planetary exploration. This paper presents a review of the micro-penetrator technologies, past missions, and lessons learned. It gives a detailed analysis of the technical challenges of micro-penetrators, such as high impact survivability, high precision guidance navigation and control, thermal protection, communications, and etc. Then, a Canadian perspective of a possible micro-penetrator mission is given, including Canadian scientific objectives and priorities, potential instruments, and flight opportunities.Keywords: micro-penetrator, CSA, planetary exploration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26913400 Removal of Elemental Mercury from Dry Methane Gas with Manganese Oxides
Authors: Junya Takenami, Md. Azhar Uddin, Eiji Sasaoka, Yasushi Shioya, Tsuneyoshi Takase
Abstract:
In this study, we sought to investigate the mercury removal efficiency of manganese oxides from natural gas. The fundamental studies on mercury removal with manganese oxides sorbents were carried out in a laboratory scale fixed bed reactor at 30 °C with a mixture of methane (20%) and nitrogen gas laden with 4.8 ppb of elemental mercury. Manganese oxides with varying surface area and crystalline phase were prepared by conventional precipitation method in this study. The effects of surface area, crystallinity and other metal oxides on mercury removal efficiency were investigated. Effect of Ag impregnation on mercury removal efficiency was also investigated. Ag supported on metal oxide such titania and zirconia as reference materials were also used in this study for comparison. The characteristics of mercury removal reaction with manganese oxide was investigated using a temperature programmed desorption (TPD) technique. Manganese oxides showed very high Hg removal activity (about 73-93% Hg removal) for first time use. Surface area of the manganese oxide samples decreased after heat-treatment and resulted in complete loss of Hg removal ability for repeated use after Hg desorption in the case of amorphous MnO2, and 75% loss of the initial Hg removal activity for the crystalline MnO2. Mercury desorption efficiency of crystalline MnO2 was very low (37%) for first time use and high (98%) after second time use. Residual potassium content in MnO2 may have some effect on the thermal stability of the adsorbed Hg species. Desorption of Hg from manganese oxides occurs at much higher temperatures (with a peak at 400 °C) than Ag/TiO2 or Ag/ZrO2. Mercury may be captured on manganese oxides in the form of mercury manganese oxide.Keywords: Mercury removal, Metal and metal oxide sorbents, Methane, Natural gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21103399 Inheritance Growth: a Biology Inspired Method to Build Structures in P2P
Authors: Panchalee Sukjit, Herwig Unger
Abstract:
IT infrastructures are becoming more and more difficult. Therefore, in the first industrial IT systems, the P2P paradigm has replaced the traditional client server and methods of self-organization are gaining more and more importance. From the past it is known that especially regular structures like grids may significantly improve the system behavior and performance. This contribution introduces a new algorithm based on a biologic analogue, which may provide the growth of several regular structures on top of anarchic grown P2P- or social network structures.Keywords: P2P, Pattern generation, Grid, Social network, Inheritance, Reproduction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14723398 Entropy Generation and Heat Transfer of Cu–Water Nanofluid Mixed Convection in a Cavity
Authors: Mliki Bouchmel, Belgacem Nabil, Abbassi Mohamed Ammar, Geudri Kamel, Omri Ahmed
Abstract:
In this numerical work, mixed convection and entropy generation of Cu–water nanofluid in a lid-driven square cavity have been investigated numerically using the Lattice Boltzmann Method. Horizontal walls of the cavity are adiabatic and vertical walls have constant temperature but different values. The top wall has been considered as moving from left to right at a constant speed, U0. The effects of different parameters such as nanoparticle volume concentration (0–0.05), Rayleigh number (104–106) and Reynolds numbers (1, 10 and 100) on the entropy generation, flow and temperature fields are studied. The results have shown that addition of nanoparticles to the base fluid affects the entropy generation, flow pattern and thermal behavior especially at higher Rayleigh and low Reynolds numbers. For pure fluid as well as nanofluid, the increase of Reynolds number increases the average Nusselt number and the total entropy generation, linearly. The maximum entropy generation occurs in nanofluid at low Rayleigh number and at high Reynolds number. The minimum entropy generation occurs in pure fluid at low Rayleigh and Reynolds numbers. Also at higher Reynolds number, the effect of Cu nanoparticles on enhancement of heat transfer was decreased because the effect of lid-driven cavity was increased. The present results are validated by favorable comparisons with previously published results. The results of the problem are presented in graphical and tabular forms and discussed.Keywords: Entropy generation, mixed convection, nanofluid, lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19563397 Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler
Authors: Yehia A. Eldrainy, Mohammad Nazri Mohd. Jaafar, Tholudin Mat Lazim
Abstract:
This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.
Keywords: cold flow, numerical simulation, combustor;turbulence, axial swirler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22153396 Analysis of a Secondary Autothermal Reformer Using a Thermodynamic POX Model
Authors: Akbar Zamaniyan, Alireza Behroozsarand, Hadi Ebrahimi
Abstract:
Partial oxidation (POX) of light hydrocarbons (e.g. methane) is occurred in the first part of the autothermal reformer (ATR). The results of the detailed modeling of the reformer based on the thermodynamic model of the POX and 1D heterogeneous catalytic model for the fixed bed section are considered here. According to the results, the overall performance of the ATR can be improved by changing the important feed parameters.Keywords: Autothermal Reformer, Partial Oxidation, Mathematical Modeling, Process Simulation, Syngas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22223395 Study of Mechanical Properties of Glutarylated Jute Fiber Reinforced Epoxy Composites
Authors: V. Manush Nandan, K. Lokdeep, R. Vimal, K. Hari Hara Subramanyan, C. Aswin, V. Logeswaran
Abstract:
Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.
Keywords: Flexural properties, glutarylation, glutaric anhydride, tensile properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7113394 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13063393 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells
Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe
Abstract:
Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.Keywords: CNT incorporation, ITO electrode, spin coating, thin film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8343392 Using Data Fusion for Biometric Verification
Authors: Richard A. Wasniowski
Abstract:
A wide spectrum of systems require reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric system and their applicability to access control, authentication and security applications. Strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to performance assessment, deployment and standardization are discussed. Finally future directions of biometric systems development are discussed.Keywords: Multimodal, biometric, recognition, fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17773391 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images
Authors: Meenal Surawar, Rajashree Kotharkar
Abstract:
Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.
Keywords: Land use, land cover, land surface temperature, remote sensing, urban heat island.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26253390 Detection of Clipped Fragments in Speech Signals
Authors: Sergei Aleinik, Yuri Matveev
Abstract:
In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.
Keywords: Clipping, clipped signal, speech signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26813389 Numerical Prediction of NOX in the Exhaust of a Compression Ignition Engine
Authors: A. A. Pawar, R. R. Kulkarni
Abstract:
For numerical prediction of the NOX in the exhaust of a compression ignition engine a model was developed by considering the parameter equivalence ratio. This model was validated by comparing the predicted results of NOX with experimental ones. The ultimate aim of the work was to access the applicability, robustness and performance of the improved NOX model against other NOX models.Keywords: Biodiesel fueled engine, equivalence ratio, Compression ignition engine, exhausts gas temperature, NOX formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21003388 Improvement of Ventilation and Thermal Comfort Using the Atrium Design for Traditional Folk Houses-Fujian Earthen Building
Authors: Ying-Ming Su
Abstract:
Fujian earthen building which was known as a classic for ecological buildings was listed on the world heritage in 2008 (UNESCO) in China. Its design strategy can be applied to modern architecture planning and design. This study chose two different cases (Round Atrium: Er-Yi Building, Double Round Atrium: Zhen-Chen Building) of earthen building in Fu-Jian to compare the ventilation effects of different atrium forms. We adopt field measurements and computational fluid dynamics (CFD) simulation of temperature, humidity, and wind environment to identify the relationship between external environment and atrium about comfort and to confirm the relationship about atrium H/W (height/width). Results indicate that, through the atrium convection effect, it makes the natural wind guides to each space surrounded and keeps indoor comfort. It illustrates that the smaller the ratio of the H/W which is the relationship between the height and the width of an atrium is, the greater the wind speed generated within the street valley. Moreover, the wind speed is very close to the reference wind speed. This field measurement verifies that the value of H/W has great influence of solar radiation heat and sunshine shadows. The ventilation efficiency is: Er-Yi Building (H/W =0.2778) > Zhen-Chen Building (H/W=0.3670). Comparing the cases with the same shape but with different H/W, through the different size patios, airflow revolves in the atriums and can be brought into each interior space. The atrium settings meet the need of building ventilation, and can adjust the humidity and temperature within the buildings. It also creates good ventilation effect.
Keywords: Traditional folk houses, Atrium, Earthen building, Ventilation, Building microclimate, PET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14473387 Individual Differences and Paired Learning in Virtual Environments
Authors: Patricia M. Boechler, Heather M. Gautreau
Abstract:
In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.
Keywords: Avatar-based, virtual environment, paired learning, individual differences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7883386 The Role of Knowledge Management in Enterprise 2.0
Authors: Zeljko Panian
Abstract:
The term Enterprise 2.0 (E2.0) describes a collection of organizational and IT practices that help organizations establish flexible work models, visible knowledge-sharing practices, and higher levels of community participation. E2.0 parallels and builds on another term commonly being used in the industry – Web 2.0. E2.0 represents also new packaging for strategic collaboration and Knowledge Management (KM). Organizations rely on collaboration and KM initiatives to attain innovation, growth, productivity, and performance goals.
Keywords: Web 2.0, Enterprise 2.0, knowledge management, knowledge planner, collaboration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24263385 The Service Appraisal of Soldiers of the Army of the Czech Republic in the Context of Personal Expenses
Authors: Tereza Dolečková
Abstract:
Following article provides the comparison of international norms and standards formulating personal expenses, and then it illustrates the national concept of personal expenses of the Ministry of Defence. Then a new salary system of soldiers and the importance of the service appraisal in the context of personal expenses of the Ministry of Defence are explained. The first part of the article includes formulation of the approach to the definition of personal expenses within the international norms and standards and also within the Ministry of Defence of the Czech Republic. The structure of employees of the Ministry of Defence of the Czech Republic in years 2012 – 2014 and the amount of military expenses and the share of salary expenses of the Ministry of total expenses of the Ministry are clarified there, also the comparison of the amount of military expenses in chosen member states of the North Atlantic Treaty Organization is done. The salary system of professional soldiers in connection with the amendment of the Act No. 221/1999 Coll. on Professional Soldiers is clarified in the second part of this article. The amendment significantly regulates the salary items of soldiers but changes are also in the service appraisal of soldiers which reflects one of seven salary items of soldiers – the performance bonus. The aim of this article is to clarify different approach to define personal expenses with emphasis on the Ministry of Defence of the Czech Republic which overlaps to the service appraisal of soldiers of the Army of the Czech Republic and their salary system in connection with personal expenses of the Ministry of Defence of the Czech Republic. The efficient and objective system of the service appraisal and the use of its results are connected to the principles of the career advancement; only the best soldiers can advance in the system of the service careers to higher positions. That is why it is necessary to improve the service appraisal so it would provide the maximum information about the performance of a soldier and it would also motivate the soldier in his development. The attention should be paid to the service appraisal of the soldiers of the Army of the Czech Republic to achieve as much objectivity as possible.
Keywords: Career, human resource management and development, personal expenses, salary system of soldiers, service appraisal of soldiers, the Army of the Czech Republic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13513384 Numerical Investigation of Developing Mixed Convection in Isothermal Circular and Annular Sector Ducts
Authors: Ayad A. Abdalla, Elhadi I. Elhadi, Hisham A. Elfergani
Abstract:
Developing mixed convection in circular and annular sector ducts is investigated numerically for steady laminar flow of an incompressible Newtonian fluid with Pr = 0.7 and a wide range of Grashof number (0 £ Gr £ 107). Investigation is limited to the case of heating in circular and annular sector ducts with apex angle of 2ϕ = π/4 for the thermal boundary condition of uniform wall temperature axially and peripherally. A numerical, finite control volume approach based on the SIMPLER algorithm is employed to solve the 3D governing equations. Numerical analysis is conducted using marching technique in the axial direction with axial conduction, axial mass diffusion, and viscous dissipation within the fluid are assumed negligible. The results include developing secondary flow patterns, developing temperature and axial velocity fields, local Nusselt number, local friction factor, and local apparent friction factor. Comparisons are made with the literature and satisfactory agreement is obtained. It is found that free convection enhances the local heat transfer in some cases by up to 2.5 times from predictions which account for forced convection only and the enhancement increases as Grashof number increases. Duct geometry and Grashof number strongly influence the heat transfer and pressure drop characteristics.
Keywords: Mixed convection, annular and circular sector ducts, heat transfer enhancement, pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 562