Search results for: selection method
8463 Copy-Move Image Forgery Detection in Virtual Electrostatic Field
Authors: Michael Zimba, Darlison Nyirenda
Abstract:
A novel copy-move image forgery, CMIF, detection method is proposed. The proposed method presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilized to extract robust features. The extracted features are invariant to additive noise, JPEG compression, and affine transformation. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. SATS is a better option than the common shift vector method because SATS is insensitive to affine transformation. Consequently, the proposed CMIF algorithm is not only fast but also more robust to attacks compared to the existing related CMIF algorithms. The experimental results show high detection rates, as high as 100% in some cases.
Keywords: Affine transformation, Radix sort, SATS, Virtual electrostatic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18168462 Investigating the Effective Parameters in Determining the Type of Traffic Congestion Pricing Schemes in Urban Streets
Authors: Saeed Sayyad Hagh Shomar
Abstract:
Traffic congestion pricing – as a strategy in travel demand management in urban areas to reduce traffic congestion, air pollution and noise pollution – has drawn many attentions towards itself. Unlike the satisfying findings in this method, there are still problems in determining the best functional congestion pricing scheme with regard to the situation. The so-called problems in this process will result in further complications and even the scheme failure. That is why having proper knowledge of the significance of congestion pricing schemes and the effective factors in choosing them can lead to the success of this strategy. In this study, first, a variety of traffic congestion pricing schemes and their components are introduced; then, their functional usage is discussed. Next, by analyzing and comparing the barriers, limitations and advantages, the selection criteria of pricing schemes are described. The results, accordingly, show that the selection of the best scheme depends on various parameters. Finally, based on examining the effective parameters, it is concluded that the implementation of area-based schemes (cordon and zonal) has been more successful in non-diversion of traffic. That is considering the topology of the cities and the fact that traffic congestion is often created in the city centers, area-based schemes would be notably functional and appropriate.Keywords: Congestion pricing, demand management, flat toll, variable toll.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6108461 A Fuzzy Multi-objective Model for a Machine Selection Problem in a Flexible Manufacturing System
Authors: Phruksaphanrat B.
Abstract:
This research presents a fuzzy multi-objective model for a machine selection problem in a flexible manufacturing system of a tire company. Two main objectives are minimization of an average machine error and minimization of the total setup time. Conventionally, the working team uses trial and error in selecting a pressing machine for each task due to the complexity and constraints of the problem. So, both objectives may not satisfy. Moreover, trial and error takes a lot of time to get the final decision. Therefore, in this research preemptive fuzzy goal programming model is developed for solving this multi-objective problem. The proposed model can obtain the appropriate results that the Decision Making (DM) is satisfied for both objectives. Besides, alternative choice can be easily generated by varying the satisfaction level. Additionally, decision time can be reduced by using the model, which includes all constraints of the system to generate the solutions. A numerical example is also illustrated to show the effectiveness of the proposed model.Keywords: Machine Selection, Preemptive Fuzzy Goal Programming, Mixed Integer Programming, Application of Tire Industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14448460 Numerical Modeling and Computer Simulation of Ground Movement above Underground Mine
Authors: A. Nuric, S. Nuric, L. Kricak, I. Lapandic, R. Husagic
Abstract:
This paper describes topic of computer simulation with regard to the ground movement above an underground mine. Simulation made with software package ADINA for nonlinear elastic-plastic analysis with finite elements method. The one of representative profiles from Mine 'Stara Jama' in Zenica has been investigated. A collection and selection of both geo-mechanical data and geometric parameters of the mine was necessary for performing these simulations. Results of estimation have been compared with measured values (vertical displacement of surface), and then simulation performed with assumed dynamic and dimensions of excavation, over a period of time. Results are presented with bitmaps and charts.
Keywords: Computer, finite element method, mine, nonlinear analysis, numerical modeling, simulation, subsidence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28328459 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM
Authors: Mehdi Ghayoumi
Abstract:
We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.Keywords: lda, adaptive, svm, face recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14238458 A General Regression Test Selection Technique
Authors: Walid S. Abd El-hamid, Sherif S. El-etriby, Mohiy M. Hadhoud
Abstract:
This paper presents a new methodology to select test cases from regression test suites. The selection strategy is based on analyzing the dynamic behavior of the applications that written in any programming language. Methods based on dynamic analysis are more safe and efficient. We design a technique that combine the code based technique and model based technique, to allow comparing the object oriented of an application that written in any programming language. We have developed a prototype tool that detect changes and select test cases from test suite.Keywords: Regression testing, Model based testing, Dynamicbehavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19798457 Artificial Intelligence Support for Interferon Treatment Decision in Chronic Hepatitis B
Authors: Alexandru George Floares
Abstract:
Chronic hepatitis B can evolve to cirrhosis and liver cancer. Interferon is the only effective treatment, for carefully selected patients, but it is very expensive. Some of the selection criteria are based on liver biopsy, an invasive, costly and painful medical procedure. Therefore, developing efficient non-invasive selection systems, could be in the patients benefit and also save money. We investigated the possibility to create intelligent systems to assist the Interferon therapeutical decision, mainly by predicting with acceptable accuracy the results of the biopsy. We used a knowledge discovery in integrated medical data - imaging, clinical, and laboratory data. The resulted intelligent systems, tested on 500 patients with chronic hepatitis B, based on C5.0 decision trees and boosting, predict with 100% accuracy the results of the liver biopsy. Also, by integrating the other patients selection criteria, they offer a non-invasive support for the correct Interferon therapeutic decision. To our best knowledge, these decision systems outperformed all similar systems published in the literature, and offer a realistic opportunity to replace liver biopsy in this medical context.Keywords: Interferon, chronic hepatitis B, intelligent virtualbiopsy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14588456 A Low-Voltage Tunable Channel Selection Filter for WiMAX Applications
Authors: Kayvan Ahmadi, Hossein Shamsi
Abstract:
This paper proposes a low-voltage and low-power fully integrated digitally tuned continuous-time channel selection filter for WiMAX applications. A 5th-order elliptic low-pass filter is realized in a Gm-C topology. The bandwidth of the fully differential filter is reconfigurable from 2.5MHz to 20MHz (8x) for different requirements in WiMAX applications. The filter is simulated in a standard 90nm CMOS process. Simulation results show the THD (@Vout =100mVpp) is less than -66dB. The in-band ripple of the filter is about 0.15dB. The filter consumes 1.5mW from a supply voltage of 0.9V.Keywords: Common-mode feedback, continuous-time, fully differential transconductor, Gm-C topology, low-voltage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16088455 Neutrosophic Multiple Criteria Decision Making Analysis Method for Selecting Stealth Fighter Aircraft
Authors: C. Ardil
Abstract:
In this paper, a neutrosophic multiple criteria decision analysis method is proposed to select stealth fighter aircraft. Neutrosophic multiple criteria decision analysis methods are used to analyze the neutrosophic environment and give results under uncertainty and incompleteness. Neutrosophic numbers are used to evaluate alternatives over a set of evaluation criteria in decision making problems. Finally, the proposed model is applied to a practical decision problem for selecting stealth fighter aircraft.
Keywords: neutrosophic sets, multiple criteria decision making analysis, stealth fighter aircraft, aircraft selection, MCDMA, SVNNs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5918454 Handover for Dense Small Cells Heterogeneous Networks: A Power-Efficient Game Theoretical Approach
Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz
Abstract:
In this paper, a non-cooperative game method is formulated where all players compete to transmit at higher power. Every base station represents a player in the game. The game is solved by obtaining the Nash equilibrium (NE) where the game converges to optimality. The proposed method, named Power Efficient Handover Game Theoretic (PEHO-GT) approach, aims to control the handover in dense small cell networks. Players optimize their payoff by adjusting the transmission power to improve the performance in terms of throughput, handover, power consumption and load balancing. To select the desired transmission power for a player, the payoff function considers the gain of increasing the transmission power. Then, the cell selection takes place by deploying Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). A game theoretical method is implemented for heterogeneous networks to validate the improvement obtained. Results reveal that the proposed method gives a throughput improvement while reducing the power consumption and minimizing the frequent handover.Keywords: Energy efficiency, game theory, handover, HetNets, small cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4698453 Robust Detection of R-Wave Using Wavelet Technique
Authors: Awadhesh Pachauri, Manabendra Bhuyan
Abstract:
Electrocardiogram (ECG) is considered to be the backbone of cardiology. ECG is composed of P, QRS & T waves and information related to cardiac diseases can be extracted from the intervals and amplitudes of these waves. The first step in extracting ECG features starts from the accurate detection of R peaks in the QRS complex. We have developed a robust R wave detector using wavelets. The wavelets used for detection are Daubechies and Symmetric. The method does not require any preprocessing therefore, only needs the ECG correct recordings while implementing the detection. The database has been collected from MIT-BIH arrhythmia database and the signals from Lead-II have been analyzed. MatLab 7.0 has been used to develop the algorithm. The ECG signal under test has been decomposed to the required level using the selected wavelet and the selection of detail coefficient d4 has been done based on energy, frequency and cross-correlation analysis of decomposition structure of ECG signal. The robustness of the method is apparent from the obtained results.Keywords: ECG, P-QRS-T waves, Wavelet Transform, Hard Thresholding, R-wave Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24758452 Lean Thinking Process in the Determination of Design Suggestions to Optimize Treatment of WEEE
Authors: Anastasia Katsamaki, Nikolaos Bilalis, Vassilis Dedoussis
Abstract:
This work proposes a set of actions to assist redesign procedure in existing products of Electric and Electronic Equipment (EEE). The aim is to improve their environmental behavior after their withdrawal in the End-of-Life (EOL) phase. In the beginning data collection takes place. Then follows selection and implementation of the optimal EOL Treatment Strategy (EOL_TS) and its results- evaluation concerning the environment. In parallel, product design characteristics that can be altered are selected based on their significance for the environment in the EOL stage. All results from the previous stages are combined and possible redesign actions are formulated for further examination and afterwards configuration in the design stage. The applied method to perform these tasks is Lean Thinking (LT). At the end, results concerning the application of the proposed method on a distribution transformer are presented.Keywords: End-of-life treatment, Lean thinking, WEEE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14568451 Evaluation of Internal Ballistics of Multi-Perforated Grain in a Closed Vessel
Authors: B. A. Parate, C. P. Shetty
Abstract:
This research article describes the evaluation methodology of an internal ballistics of multi-perforated grain in a closed vessel (CV). The propellant testing in a CV is conducted to characterize the propellants and to ascertain the various internal ballistic parameters. The assessment of an internal ballistics plays a very crucial role for suitability of its use in the selection for a given particular application. The propellant used in defense sectors has to satisfy the user requirements as per laid down specifications. The outputs from CV evaluation of multi-propellant grain are maximum pressure of 226.75 MPa, differentiation of pressure with respect to time of 36.99 MPa/ms, average vivacity of 9.990×10-4/MPa ms, force constant of 933.9 J/g, rise time of 9.85 ms, pressure index of 0.878 including burning coefficient of 0.2919. This paper addresses an internal ballistic of multi-perforated grain, propellant selection, its calculation, and evaluation of various parameters in a CV testing. For the current analysis, the propellant is evaluated in 100 cc CV with propellant mass 20 g. The loading density of propellant is 0.2 g/cc. The method for determination of internal ballistic properties consists of burning of propellant mass under constant volume.
Keywords: Burning rate, closed vessel, force constant, internal ballistic, loading density, maximum pressure, multi-propellant grain, propellant, rise time, vivacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3798450 A Convenient Part Library Based On SolidWorks Platform
Authors: Wei Liu, Xionghui Zhou, Qiang Niu, Yunhao Ni
Abstract:
3D part library is an ideal approach to reuse the existing design and thus facilitates the modeling process, which will enhance the efficiency. In this paper, we implemented the thought on the SolidWorks platform. The system supports the functions of type and parameter selection, 3D template driving and part assembly. Finally, BOM is exported in Excel format. Experiment shows that our method can satisfy the requirement of die and mold designers.
Keywords: Intelligent, SolidWorks, automatic assembly, part library.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21478449 Autonomous Virtual Agent Navigation in Virtual Environments
Authors: Jafreezal Jaafar, Eric McKenzie
Abstract:
This paper presents a solution for the behavioural animation of autonomous virtual agent navigation in virtual environments. We focus on using Dempster-Shafer-s Theory of Evidence in developing visual sensor for virtual agent. The role of the visual sensor is to capture the information about the virtual environment or identifie which part of an obstacle can be seen from the position of the virtual agent. This information is require for vitual agent to coordinate navigation in virtual environment. The virual agent uses fuzzy controller as a navigation system and Fuzzy α - level for the action selection method. The result clearly demonstrates the path produced is reasonably smooth even though there is some sharp turn and also still not diverted too far from the potential shortest path. This had indicated the benefit of our method, where more reliable and accurate paths produced during navigation task.Keywords: Agent, Navigation, Demster Shafer, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16298448 Hybrid Weighted Multiple Attribute Decision Making Handover Method for Heterogeneous Networks
Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz
Abstract:
Small cell deployment in 5G networks is a promising technology to enhance the capacity and coverage. However, unplanned deployment may cause high interference levels and high number of unnecessary handovers, which in turn result in an increase in the signalling overhead. To guarantee service continuity, minimize unnecessary handovers and reduce signalling overhead in heterogeneous networks, it is essential to properly model the handover decision problem. In this paper, we model the handover decision problem using Multiple Attribute Decision Making (MADM) method, specifically Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS), and propose a hybrid TOPSIS method to control the handover in heterogeneous network. The proposed method adopts a hybrid weighting policy, which is a combination of entropy and standard deviation. A hybrid weighting control parameter is introduced to balance the impact of the standard deviation and entropy weighting on the network selection process and the overall performance. Our proposed method show better performance, in terms of the number of frequent handovers and the mean user throughput, compared to the existing methods.
Keywords: Handover, HetNets, interference, MADM, small cells, TOPSIS, weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5778447 Analysis of Different Combining Schemes of Two Amplify-Forward Relay Branches with Individual Links Experiencing Nakagami Fading
Authors: Babu Sena Paul, Ratnajit Bhattacharjee
Abstract:
Relay based communication has gained considerable importance in the recent years. In this paper we find the end-toend statistics of a two hop non-regenerative relay branch, each hop being Nakagami-m faded. Closed form expressions for the probability density functions of the signal envelope at the output of a selection combiner and a maximal ratio combiner at the destination node are also derived and analytical formulations are verified through computer simulation. These density functions are useful in evaluating the system performance in terms of bit error rate and outage probability.
Keywords: co-operative diversity, diversity combining, maximal ratio combining, selection combining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16078446 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures
Authors: Adriano Z. Zambom, Preethi Ravikumar
Abstract:
One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.Keywords: Additive models, local polynomial regression, residuals, mean square error, variable selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10118445 Curvelet Transform Based Two Class Motor Imagery Classification
Authors: Nebi Gedik
Abstract:
One of the important parts of the brain-computer interface (BCI) studies is the classification of motor imagery (MI) obtained by electroencephalography (EEG). The major goal is to provide non-muscular communication and control via assistive technologies to people with severe motor disorders so that they can communicate with the outside world. In this study, an EEG signal classification approach based on multiscale and multi-resolution transform method is presented. The proposed approach is used to decompose the EEG signal containing motor image information (right- and left-hand movement imagery). The decomposition process is performed using curvelet transform which is a multiscale and multiresolution analysis method, and the transform output was evaluated as feature data. The obtained feature set is subjected to feature selection process to obtain the most effective ones using t-test methods. SVM and k-NN algorithms are assigned for classification.
Keywords: motor imagery, EEG, curvelet transform, SVM, k-NN
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6238444 A Robust Diverged Localization and Recognition of License Registration Characters
Authors: M. Sankari, R. Bremananth, C.Meena
Abstract:
Localization and Recognition of License registration characters from the moving vehicle is a computationally complex task in the field of machine vision and is of substantial interest because of its diverse applications such as cross border security, law enforcement and various other intelligent transportation applications. Previous research used the plate specific details such as aspect ratio, character style, color or dimensions of the plate in the complex task of plate localization. In this paper, license registration character is localized by Enhanced Weight based density map (EWBDM) method, which is independent of such constraints. In connection with our previous method, this paper proposes a method that relaxes constraints in lighting conditions, different fonts of character occurred in the plate and plates with hand-drawn characters in various aspect quotients. The robustness of this method is well suited for applications where the appearance of plates seems to be varied widely. Experimental results show that this approach is suited for recognizing license plates in different external environments.
Keywords: Character segmentation, Connectivity checking, Edge detection, Image analysis, license plate localization, license number recognition, Quality frame selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18978443 Porul: Option Generation and Selection and Scoring Algorithms for a Tamil Flash Card Game
Authors: Anitha Narasimhan, Aarthy Anandan, Madhan Karky, C. N. Subalalitha
Abstract:
Games can be the excellent tools for teaching a language. There are few e-learning games in Indian languages like word scrabble, cross word, quiz games etc., which were developed mainly for educational purposes. This paper proposes a Tamil word game called, “Porul”, which focuses on education as well as on players’ thinking and decision-making skills. Porul is a multiple choice based quiz game, in which the players attempt to answer questions correctly from the given multiple options that are generated using a unique algorithm called the Option Selection algorithm which explores the semantics of the question in various dimensions namely, synonym, rhyme and Universal Networking Language semantic category. This kind of semantic exploration of the question not only increases the complexity of the game but also makes it more interesting. The paper also proposes a Scoring Algorithm which allots a score based on the popularity score of the question word. The proposed game has been tested using 20,000 Tamil words.Keywords: Porul game, Tamil word game, option selection, flash card, scoring, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11628442 Using PFA in Feature Analysis and Selection for H.264 Adaptation
Authors: Nora A. Naguib, Ahmed E. Hussein, Hesham A. Keshk, Mohamed I. El-Adawy
Abstract:
Classification of video sequences based on their contents is a vital process for adaptation techniques. It helps decide which adaptation technique best fits the resource reduction requested by the client. In this paper we used the principal feature analysis algorithm to select a reduced subset of video features. The main idea is to select only one feature from each class based on the similarities between the features within that class. Our results showed that using this feature reduction technique the source video features can be completely omitted from future classification of video sequences.
Keywords: Adaptation, feature selection, H.264, Principal Feature Analysis (PFA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16078441 Transform-Domain Rate-Distortion Optimization Accelerator for H.264/AVC Video Encoding
Authors: Mohammed Golam Sarwer, Lai Man Po, Kai Guo, Q.M. Jonathan Wu
Abstract:
In H.264/AVC video encoding, rate-distortion optimization for mode selection plays a significant role to achieve outstanding performance in compression efficiency and video quality. However, this mode selection process also makes the encoding process extremely complex, especially in the computation of the ratedistortion cost function, which includes the computations of the sum of squared difference (SSD) between the original and reconstructed image blocks and context-based entropy coding of the block. In this paper, a transform-domain rate-distortion optimization accelerator based on fast SSD (FSSD) and VLC-based rate estimation algorithm is proposed. This algorithm could significantly simplify the hardware architecture for the rate-distortion cost computation with only ignorable performance degradation. An efficient hardware structure for implementing the proposed transform-domain rate-distortion optimization accelerator is also proposed. Simulation results demonstrated that the proposed algorithm reduces about 47% of total encoding time with negligible degradation of coding performance. The proposed method can be easily applied to many mobile video application areas such as a digital camera and a DMB (Digital Multimedia Broadcasting) phone.Keywords: Context-adaptive variable length coding (CAVLC), H.264/AVC, rate-distortion optimization (RDO), sum of squareddifference (SSD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16068440 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors
Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam
Abstract:
Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.Keywords: Construction safety, contractor selection, decision support system, relational database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15858439 Parkinsons Disease Classification using Neural Network and Feature Selection
Authors: Anchana Khemphila, Veera Boonjing
Abstract:
In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.
Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37798438 Adaptive and Personalizing Learning Sequence Using Modified Roulette Wheel Selection Algorithm
Authors: Melvin A. Ballera
Abstract:
Prior literature in the field of adaptive and personalized learning sequence in e-learning have proposed and implemented various mechanisms to improve the learning process such as individualization and personalization, but complex to implement due to expensive algorithmic programming and need of extensive and prior data. The main objective of personalizing learning sequence is to maximize learning by dynamically selecting the closest teaching operation in order to achieve the learning competency of learner. In this paper, a revolutionary technique has been proposed and tested to perform individualization and personalization using modified reversed roulette wheel selection algorithm that runs at O(n). The technique is simpler to implement and is algorithmically less expensive compared to other revolutionary algorithms since it collects the dynamic real time performance matrix such as examinations, reviews, and study to form the RWSA single numerical fitness value. Results show that the implemented system is capable of recommending new learning sequences that lessens time of study based on student's prior knowledge and real performance matrix.Keywords: E-learning, fitness value, personalized learning sequence, reversed roulette wheel selection algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20278437 Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor
Authors: C. Gunavathi, K. Premalatha
Abstract:
Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.
Keywords: Microarray, T-Statistics, Signal-to-Noise Ratio, FStatistics, Particle Swarm Optimization, Shuffled Frog Leaping, Naïve Bayes Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19458436 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm
Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin
Abstract:
In today’s business environment, companies should make strategic decisions to gain sustainable competitive advantage. Order selection is a crucial issue among these decisions especially for steel production industry. When the companies allocate a high proportion of their design and production capacities to their ongoing projects, determining which customer order should be chosen among the potential orders without exceeding the remaining capacity is the major critical problem. In this study, it is aimed to identify and prioritize the evaluation factors for the customer order selection problem. Conjoint Analysis is used to examine the importance level of each factor which is determined as the potential profit rate per unit of time, the compatibility of potential order with available capacity, the level of potential future order with higher profit, customer credit of future business opportunity, and the negotiability level of production schedule for the order.
Keywords: Conjoint analysis, order prioritization, profit management, structural steel firm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20818435 River Stage-Discharge Forecasting Based on Multiple-Gauge Strategy Using EEMD-DWT-LSSVM Approach
Authors: Farhad Alizadeh, Alireza Faregh Gharamaleki, Mojtaba Jalilzadeh, Houshang Gholami, Ali Akhoundzadeh
Abstract:
This study presented hybrid pre-processing approach along with a conceptual model to enhance the accuracy of river discharge prediction. In order to achieve this goal, Ensemble Empirical Mode Decomposition algorithm (EEMD), Discrete Wavelet Transform (DWT) and Mutual Information (MI) were employed as a hybrid pre-processing approach conjugated to Least Square Support Vector Machine (LSSVM). A conceptual strategy namely multi-station model was developed to forecast the Souris River discharge more accurately. The strategy used herein was capable of covering uncertainties and complexities of river discharge modeling. DWT and EEMD was coupled, and the feature selection was performed for decomposed sub-series using MI to be employed in multi-station model. In the proposed feature selection method, some useless sub-series were omitted to achieve better performance. Results approved efficiency of the proposed DWT-EEMD-MI approach to improve accuracy of multi-station modeling strategies.Keywords: River stage-discharge process, LSSVM, discrete wavelet transform (DWT), ensemble empirical decomposition mode (EEMD), multi-station modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6648434 Georgia Case: Tourism Expenses of International Visitors on the Basis of Growing Attractiveness
Authors: Nino Abesadze, Marine Mindorashvili, Nino Paresashvili
Abstract:
At present actual tourism indicators cannot be calculated in Georgia, making it impossible to perform their quantitative analysis. Therefore, the study conducted by us is highly important from a theoretical as well as practical standpoint. The main purpose of the article is to make complex statistical analysis of tourist expenses of foreign visitors and to calculate statistical attractiveness indices of the tourism potential of Georgia. During the research, the method involving random and proportional selection has been applied. Computer software SPSS was used to compute statistical data for corresponding analysis. Corresponding methodology of tourism statistics was implemented according to international standards. Important information was collected and grouped from major Georgian airports, and a representative population of foreign visitors and a rule of selection of respondents were determined. The results show a trend of growth in tourist numbers and the share of tourists from post-soviet countries are constantly increasing. The level of satisfaction with tourist facilities and quality of service has improved, but still we have a problem of disparity between the service quality and the prices. The design of tourist expenses of foreign visitors is diverse; competitiveness of tourist products of Georgian tourist companies is higher. Attractiveness of popular cities of Georgia has increased by 43%.
Keywords: Tourist, expenses, indexes, statistics, analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916