Search results for: intelligent networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2295

Search results for: intelligent networks

1995 An Intelligent Water Drop Algorithm for Solving Economic Load Dispatch Problem

Authors: S. Rao Rayapudi

Abstract:

Economic Load Dispatch (ELD) is a method of determining the most efficient, low-cost and reliable operation of a power system by dispatching available electricity generation resources to supply load on the system. The primary objective of economic dispatch is to minimize total cost of generation while honoring operational constraints of available generation resources. In this paper an intelligent water drop (IWD) algorithm has been proposed to solve ELD problem with an objective of minimizing the total cost of generation. Intelligent water drop algorithm is a swarm-based natureinspired optimization algorithm, which has been inspired from natural rivers. A natural river often finds good paths among lots of possible paths in its ways from source to destination and finally find almost optimal path to their destination. These ideas are embedded into the proposed algorithm for solving economic load dispatch problem. The main advantage of the proposed technique is easy is implement and capable of finding feasible near global optimal solution with less computational effort. In order to illustrate the effectiveness of the proposed method, it has been tested on 6-unit and 20-unit test systems with incremental fuel cost functions taking into account the valve point-point loading effects. Numerical results shows that the proposed method has good convergence property and better in quality of solution than other algorithms reported in recent literature.

Keywords: Economic load dispatch, Transmission loss, Optimization, Valve point loading, Intelligent Water Drop Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3602
1994 pth Moment Exponential Synchronization of a Class of Chaotic Neural Networks with Mixed Delays

Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye

Abstract:

This paper studies the pth moment exponential synchronization of a class of stochastic neural networks with mixed delays. Based on Lyapunov stability theory, by establishing a new integrodifferential inequality with mixed delays, several sufficient conditions have been derived to ensure the pth moment exponential stability for the error system. The criteria extend and improve some earlier results. One numerical example is presented to illustrate the validity of the main results.

Keywords: pth Moment Exponential synchronization, Stochastic, Neural networks, Mixed time delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
1993 Face Recognition Using Morphological Shared-weight Neural Networks

Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani

Abstract:

We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.

Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
1992 Alertness States Classification By SOM and LVQ Neural Networks

Authors: K. Ben Khalifa, M.H. Bédoui, M. Dogui, F. Alexandre

Abstract:

Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.

Keywords: Electroencephalogram interpretation, artificialneural networks, vigilance states, hardware implementation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1991 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent

Authors: Zhifeng Kong

Abstract:

Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.

Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
1990 Concepts for Designing Low Power Wireless Sensor Network

Authors: Bahareh Gholamzadeh, Hooman Nabovati

Abstract:

Wireless sensor networks have been used in wide areas of application and become an attractive area for researchers in recent years. Because of the limited energy storage capability of sensor nodes, Energy consumption is one of the most challenging aspects of these networks and different strategies and protocols deals with this area. This paper presents general methods for designing low power wireless sensor network. Different sources of energy consumptions in these networks are discussed here and techniques for alleviating the consumption of energy are presented.

Keywords: Energy consumption, MAC protocol, Routing protocol, Sensor node, Topology control, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1989 Intelligent Aid-Analysis Based on the Use of Digital Twin: Application to Electronic Warfare System

Authors: L. Chaussy, M. Nouvel

Abstract:

Workload of the system engineers during Integration Validation Verification process of Electronic Warfare Systems (EWS) is growing with complexity of the systems and with the diversity of tested cases (diversity of operational scenario in front of EWS). Even if the use of Digital Twin makes easier conception and development phases in term of planning and test equipment availability, time to analyze tests results is still too long and too complex. The idea to reduce the system engineer’s workload and improve test coverage is to introduce some intelligent and aid-analysis algorithms to improve this step.

Keywords: Analysis tools, automatic testing, digital twin, electronic warfare system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 341
1988 A Mobile Agent-based Clustering Data Fusion Algorithm in WSN

Authors: Xiangbin Zhu, Wenjuan Zhang

Abstract:

In wireless sensor networks,the mobile agent technology is used in data fusion. According to the node residual energy and the results of partial integration,we design the node clustering algorithm. Optimization of mobile agent in the routing within the cluster strategy for wireless sensor networks to further reduce the amount of data transfer. Through the experiments, using mobile agents in the integration process within the cluster can be reduced the path loss in some extent.

Keywords: wireless sensor networks, data fusion, mobile agent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
1987 Energy Efficient Clustering and Data Aggregation in Wireless Sensor Networks

Authors: Surender Kumar Soni

Abstract:

Wireless Sensor Networks (WSNs) are wireless networks consisting of number of tiny, low cost and low power sensor nodes to monitor various physical phenomena like temperature, pressure, vibration, landslide detection, presence of any object, etc. The major limitation in these networks is the use of nonrechargeable battery having limited power supply. The main cause of energy consumption WSN is communication subsystem. This paper presents an efficient grid formation/clustering strategy known as Grid based level Clustering and Aggregation of Data (GCAD). The proposed clustering strategy is simple and scalable that uses low duty cycle approach to keep non-CH nodes into sleep mode thus reducing energy consumption. Simulation results demonstrate that our proposed GCAD protocol performs better in various performance metrics.

Keywords: Ad hoc network, Cluster, Grid base clustering, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3113
1986 A Materialized View Approach to Support Aggregation Operations over Long Periods in Sensor Networks

Authors: Minsoo Lee, Julee Choi, Sookyung Song

Abstract:

The increasing interest on processing data created by sensor networks has evolved into approaches to implement sensor networks as databases. The aggregation operator, which calculates a value from a large group of data such as computing averages or sums, etc. is an essential function that needs to be provided when implementing such sensor network databases. This work proposes to add the DURING clause into TinySQL to calculate values during a specific long period and suggests a way to implement the aggregation service in sensor networks by applying materialized view and incremental view maintenance techniques that is used in data warehouses. In sensor networks, data values are passed from child nodes to parent nodes and an aggregation value is computed at the root node. As such root nodes need to be memory efficient and low powered, it becomes a problem to recompute aggregate values from all past and current data. Therefore, applying incremental view maintenance techniques can reduce the memory consumption and support fast computation of aggregate values.

Keywords: Aggregation, Incremental View Maintenance, Materialized view, Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
1985 e-Service Innovation within Open Innovation Networks

Authors: Hung T. Tsou, Hsuan Y. Hsu

Abstract:

Service innovations are central concerns in fast changing environment. Due to the fitness in customer demands and advances in information technologies (IT) in service management, an expanded conceptualization of e-service innovation is required. Specially, innovation practices have become increasingly more challenging, driving managers to employ a different open innovation model to maintain competitive advantages. At the same time, firms need to interact with external and internal customers in innovative environments, like the open innovation networks, to co-create values. Based on these issues, an important conceptual framework of e-service innovation is developed. This paper aims to examine the contributing factors on e-service innovation and firm performance, including financial and non-financial aspects. The study concludes by showing how e-service innovation will play a significant role in growing the overall values of the firm. The discussion and conclusion will lead to a stronger understanding of e-service innovation and co-creating values with customers within open innovation networks.

Keywords: e-Service innovation, performance, open innovation networks, co-create value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
1984 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore , the number of centers will be considered since it affects the performance of approximation.

Keywords: Extended kalmin filter (EKF), classification problem, radial basis function networks (RBFN), finite impulse response (FIR)filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
1983 Cryptanalysis of Chang-Chang-s EC-PAKA Protocol for Wireless Mobile Networks

Authors: Hae-Soon Ahn, Eun-Jun Yoon

Abstract:

With the rapid development of wireless mobile communication, applications for mobile devices must focus on network security. In 2008, Chang-Chang proposed security improvements on the Lu et al.-s elliptic curve authentication key agreement protocol for wireless mobile networks. However, this paper shows that Chang- Chang-s improved protocol is still vulnerable to off-line password guessing attacks unlike their claims.

Keywords: Authentication, key agreement, wireless mobile networks, elliptic curve, password guessing attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1982 Teachers’ Perceptions of Their Principals’ Interpersonal Emotionally Intelligent Behaviours Affecting Their Job Satisfaction

Authors: Prakash Singh

Abstract:

For schools to be desirable places in which to work, it is necessary for principals to recognise their teachers’ emotions, and be sensitive to their needs. This necessitates that principals are capable to correctly identify their emotionally intelligent behaviours (EIBs) they need to use in order to be successful leaders. They also need to have knowledge of their emotional intelligence and be able to identify the factors and situations that evoke emotion at an interpersonal level. If a principal is able to do this, then the control and understanding of emotions and behaviours of oneself and others could improve vastly. This study focuses on the interpersonal EIBS of principals affecting the job satisfaction of teachers. The correlation coefficients in this quantitative study strongly indicate that there is a statistical significance between the respondents’ level of job satisfaction, the rating of their principals’ EIBs and how they believe their principals’ EIBs will affect their sense of job satisfaction. It can be concluded from the data obtained in this study that there is a significant correlation between the sense of job satisfaction of teachers and their principals’ interpersonal EIBs. This means that the more satisfied a teacher is at school, the more appropriate and meaningful a principal’s EIBs will be. Conversely, the more dissatisfied a teacher is at school the less appropriate and less meaningful a principal’s interpersonal EIBs will be. This implies that the leaders’ EIBs can be construed as one of the major factors affecting the job satisfaction of employees.

Keywords: Emotional intelligence, teachers’ emotions, teachers’ job satisfaction, principals’ emotionally intelligent behaviours.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
1981 Web-Based Architecture of a System for Design Assessment of Night Vision Devices

Authors: Daniela I. Borissova, Ivan C. Mustakerov, Evgeni D. Bantutov

Abstract:

Nowadays the devices of night vision are widely used both for military and civil applications. The variety of night vision applications require a variety of the night vision devices designs. A web-based architecture of a software system for design assessment before producing of night vision devices is developed. The proposed architecture of the web-based system is based on the application of a mathematical model for designing of night vision devices. An algorithm with two components – for iterative design and for intelligent design is developed and integrated into system architecture. The iterative component suggests compatible modules combinations to choose from. The intelligent component provides compatible combinations of modules  satisfying given user requirements to device parameters. The proposed web-based architecture of a system for design assessment of night vision devices is tested via a prototype of the system. The testing showed the applicability of both iterative and intelligent components of algorithm. 

Keywords: Night vision devices, design modeling, software architecture, web-based system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
1980 Accelerating Integer Neural Networks On Low Cost DSPs

Authors: Thomas Behan, Zaiyi Liao, Lian Zhao, Chunting Yang

Abstract:

In this paper, low end Digital Signal Processors (DSPs) are applied to accelerate integer neural networks. The use of DSPs to accelerate neural networks has been a topic of study for some time, and has demonstrated significant performance improvements. Recently, work has been done on integer only neural networks, which greatly reduces hardware requirements, and thus allows for cheaper hardware implementation. DSPs with Arithmetic Logic Units (ALUs) that support floating or fixed point arithmetic are generally more expensive than their integer only counterparts due to increased circuit complexity. However if the need for floating or fixed point math operation can be removed, then simpler, lower cost DSPs can be used. To achieve this, an integer only neural network is created in this paper, which is then accelerated by using DSP instructions to improve performance.

Keywords: Digital Signal Processor (DSP), Integer Neural Network(INN), Low Cost Neural Network, Integer Neural Network DSPImplementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
1979 Improved Exponential Stability Analysis for Delayed Recurrent Neural Networks

Authors: Miaomiao Yang, Shouming Zhong

Abstract:

This paper studies the problem of exponential stability analysis for recurrent neural networks with time-varying delay.By establishing a suitable augmented LyapunovCKrasovskii function and a novel sufficient condition is obtained to guarantee the exponential stability of the considered system.In order to get a less conservative results of the condition,zero equalities and reciprocally convex approach are employed. The several exponential stability criterion proposed in this paper is simpler and effective. A numerical example is provided to demonstrate the feasibility and effectiveness of our results.

Keywords: Exponential stability , Neural networks, Linear matrix inequality, Lyapunov-Krasovskii, Time-varying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1978 An Adversarial Construction of Instability Bounds in LIS Networks

Authors: Dimitrios Koukopoulos

Abstract:

In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, ¤ü)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates ¤ü > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.

Keywords: Network stability, quality of service, adversarial queueing theory, greedy scheduling protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
1977 A WIP Control Based On an Intelligent Controller

Authors: Chih-Hui Chiu, Chun-Hsien Lin

Abstract:

In this study, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive output recurrent cerebellar model articulation control (AORCMAC) and H∞ control technique is proposed for wheeled inverted pendulums (WIPs) real-time control with exact system dynamics unknown. Moreover, a robust H∞ controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. The experimental results indicate that the WIPs can stand upright stably when using the proposed RIBTC.

Keywords: Wheeled inverted pendulum, backsteppingtracking control, H∞ control, adaptive output recurrentcerebellar model articulation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
1976 Moving Data Mining Tools toward a Business Intelligence System

Authors: Nittaya Kerdprasop, Kittisak Kerdprasop

Abstract:

Data mining (DM) is the process of finding and extracting frequent patterns that can describe the data, or predict unknown or future values. These goals are achieved by using various learning algorithms. Each algorithm may produce a mining result completely different from the others. Some algorithms may find millions of patterns. It is thus the difficult job for data analysts to select appropriate models and interpret the discovered knowledge. In this paper, we describe a framework of an intelligent and complete data mining system called SUT-Miner. Our system is comprised of a full complement of major DM algorithms, pre-DM and post-DM functionalities. It is the post-DM packages that ease the DM deployment for business intelligence applications.

Keywords: Business intelligence, data mining, functionalprogramming, intelligent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
1975 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network

Authors: Siavash Asadi Ghajarloo

Abstract:

Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.

Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
1974 Knowledge Management in Cross- Organizational Networks as Illustrated by One of the Largest European ICT Associations A Case Study of the “METORA

Authors: Thomas Klauß

Abstract:

In networks, mainly small and medium-sized businesses benefit from the knowledge, experiences and solutions offered by experts from industry and science or from the exchange with practitioners. Associations which focus, among other things, on networking, information and knowledge transfer and which are interested in supporting such cooperations are especially well suited to provide such networks and the appropriate web platforms. Using METORA as an example – a project developed and run by the Federal Association for Information Economy, Telecommunications and New Media e.V. (BITKOM) for the Federal Ministry of Economics and Technology (BMWi) – This paper will discuss how associations and other network organizations can achieve this task and what conditions they have to consider.

Keywords: Associations, collaboration, communities, crossdepartmental organizations, semantic web, web 2.0.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
1973 Enhancing the Connectedness in Ad–hoc Mesh Networks using the Terranet Technology

Authors: Obeidat I., Bsoul M., Khasawneh A., Kilani Y.

Abstract:

This paper simulates the ad-hoc mesh network in rural areas, where such networks receive great attention due to their cost, since installing the infrastructure for regular networks in these areas is not possible due to the high cost. The distance between the communicating nodes is the most obstacles that the ad-hoc mesh network will face. For example, in Terranet technology, two nodes can communicate if they are only one kilometer far from each other. However, if the distance between them is more than one kilometer, then each node in the ad-hoc mesh networks has to act as a router that forwards the data it receives to other nodes. In this paper, we try to find the critical number of nodes which makes the network fully connected in a particular area, and then propose a method to enhance the intermediate node to accept to be a router to forward the data from the sender to the receiver. Much work was done on technological changes on peer to peer networks, but the focus of this paper will be on another feature which is to find the minimum number of nodes needed for a particular area to be fully connected and then to enhance the users to switch on their phones and accept to work as a router for other nodes. Our method raises the successful calls to 81.5% out of 100% attempt calls.

Keywords: Adjacency matrix, Ad-hoc mesh network, Connectedness, Terranet technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
1972 Improved Robust Stability Criteria for Discrete-time Neural Networks

Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye

Abstract:

In this paper, the robust exponential stability problem of uncertain discrete-time recurrent neural networks with timevarying delay is investigated. By constructing a new augmented Lyapunov-Krasovskii function, some new improved stability criteria are obtained in forms of linear matrix inequality (LMI). Compared with some recent results in literature, the conservatism of the new criteria is reduced notably. Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.

Keywords: Robust exponential stability, delay-dependent stability, discrete-time neutral networks, time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1971 Stability Analysis of Neural Networks with Leakage, Discrete and Distributed Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

This paper deals with the problem of stability of neural networks with leakage, discrete and distributed delays. A new Lyapunov functional which contains some new double integral terms are introduced. By using appropriate model transformation that shifts the considered systems into the neutral-type time-delay system, and by making use of some inequality techniques, delay-dependent criteria are developed to guarantee the stability of the considered system. Finally, numerical examples are provided to illustrate the usefulness of the proposed main results.

Keywords: Neural networks, Stability, Time-varying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
1970 Blockchain Security in MANETs

Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara

Abstract:

The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.

Keywords: Ad hoc networks, blockchain, MPR, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
1969 A Systematic Construction of Instability Bounds in LIS Networks

Authors: Dimitrios Koukopoulos

Abstract:

In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, p)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates p > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.

Keywords: Parallel computing, network stability, adversarial queuing theory, greedy scheduling protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
1968 A Novel Fuzzy-Neural Based Medical Diagnosis System

Authors: S. Moein, S. A. Monadjemi, P. Moallem

Abstract:

In this paper, application of artificial neural networks in typical disease diagnosis has been investigated. The real procedure of medical diagnosis which usually is employed by physicians was analyzed and converted to a machine implementable format. Then after selecting some symptoms of eight different diseases, a data set contains the information of a few hundreds cases was configured and applied to a MLP neural network. The results of the experiments and also the advantages of using a fuzzy approach were discussed as well. Outcomes suggest the role of effective symptoms selection and the advantages of data fuzzificaton on a neural networks-based automatic medical diagnosis system.

Keywords: Artificial Neural Networks, Fuzzy Logic, MedicalDiagnosis, Symptoms, Fuzzification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
1967 Evaluating Performance of Quality-of-Service Routing in Large Networks

Authors: V. Narasimha Raghavan, M. Venkatesh, T. Peer Meera Labbai, Praveen Dwarakanath Prabhu

Abstract:

The performance and complexity of QoS routing depends on the complex interaction between a large set of parameters. This paper investigated the scaling properties of source-directed link-state routing in large core networks. The simulation results show that the routing algorithm, network topology, and link cost function each have a significant impact on the probability of successfully routing new connections. The experiments confirm and extend the findings of other studies, and also lend new insight designing efficient quality-of-service routing policies in large networks.

Keywords: QoS, Link-State Routing, Dijkstra, Path Selection, Path Computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
1966 Stability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, one numerical example is given to illustrate the the usefulness and feasibility of the proposed main results.

Keywords: Stability, Markovian jumping neural networks, Timevarying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5119