Search results for: adaptive front-lighting system (AFS).
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8830

Search results for: adaptive front-lighting system (AFS).

8530 A Generalized Coordination Setting Method for Distribution Systems with Closed-loop

Authors: Kang-Le Guan, Seung-Jae Lee, Myeon-Song Choi

Abstract:

The protection issues in distribution systems with open and closed-loop are studied, and a generalized protection setting scheme based on the traditional over current protection theories is proposed to meet the new requirements. The setting method is expected to be easier realized using computer program, so that the on-line adaptive setting for coordination in distribution system can be implemented. An automatic setting program is created and several cases are taken into practice. The setting results are verified by the coordination curves of the protective devices which are plotted using MATLAB.

Keywords: protection setting, on-line system analysis, over current protection, closed-loop distribution system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
8529 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering

Authors: Elizabeth B. Varghese, M. Wilscy

Abstract:

A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.

Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242
8528 Statistical Genetic Algorithm

Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh

Abstract:

Adaptive Genetic Algorithms extend the Standard Gas to use dynamic procedures to apply evolutionary operators such as crossover, mutation and selection. In this paper, we try to propose a new adaptive genetic algorithm, which is based on the statistical information of the population as a guideline to tune its crossover, selection and mutation operators. This algorithms is called Statistical Genetic Algorithm and is compared with traditional GA in some benchmark problems.

Keywords: Genetic Algorithms, Statistical Information ofthe Population, PAUX, SSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
8527 Implementing an Adaptive Behavior for Spread Spectrum Watermarking Procedures

Authors: Franco Frattolillo

Abstract:

The advances in multimedia and networking technologies have created opportunities for Internet pirates, who can easily copy multimedia contents and illegally distribute them on the Internet, thus violating the legal rights of content owners. This paper describes how a simple and well-known watermarking procedure based on a spread spectrum method and a watermark recovery by correlation can be improved to effectively and adaptively protect MPEG-2 videos distributed on the Internet. In fact, the procedure, in its simplest form, is vulnerable to a variety of attacks. However, its security and robustness have been increased, and its behavior has been made adaptive with respect to the video terminals used to open the videos and the network transactions carried out to deliver them to buyers. In fact, such an adaptive behavior enables the proposed procedure to efficiently embed watermarks, and this characteristic makes the procedure well suited to be exploited in web contexts, where watermarks usually generated from fingerprinting codes have to be inserted into the distributed videos “on the fly", i.e. during the purchase web transactions.

Keywords: Copyright protection, digital watermarking, intellectualproperty protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
8526 Hybrid Feature and Adaptive Particle Filter for Robust Object Tracking

Authors: Xinyue Zhao, Yutaka Satoh, Hidenori Takauji, Shun'ichi Kaneko

Abstract:

A hybrid feature based adaptive particle filter algorithm is presented for object tracking in real scenarios with static camera. The hybrid feature is combined by two effective features: the Grayscale Arranging Pairs (GAP) feature and the color histogram feature. The GAP feature has high discriminative ability even under conditions of severe illumination variation and dynamic background elements, while the color histogram feature has high reliability to identify the detected objects. The combination of two features covers the shortage of single feature. Furthermore, we adopt an updating target model so that some external problems such as visual angles can be overcame well. An automatic initialization algorithm is introduced which provides precise initial positions of objects. The experimental results show the good performance of the proposed method.

Keywords: Hybrid feature, adaptive Particle Filter, robust Object Tracking, Grayscale Arranging Pairs (GAP) feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
8525 Robust Design of Power System Stabilizers Using Adaptive Genetic Algorithms

Authors: H. Alkhatib, J. Duveau

Abstract:

Genetic algorithms (GAs) have been widely used for global optimization problems. The GA performance depends highly on the choice of the search space for each parameter to be optimized. Often, this choice is a problem-based experience. The search space being a set of potential solutions may contain the global optimum and/or other local optimums. A bad choice of this search space results in poor solutions. In this paper, our approach consists in extending the search space boundaries during the GA optimization, only when it is required. This leads to more diversification of GA population by new solutions that were not available with fixed search space boundaries. So, these dynamic search spaces can improve the GA optimization performances. The proposed approach is applied to power system stabilizer optimization for multimachine power system (16-generator and 68-bus). The obtained results are evaluated and compared with those obtained by ordinary GAs. Eigenvalue analysis and nonlinear system simulation results show the effectiveness of the proposed approach to damp out the electromechanical oscillation and enhance the global system stability.

Keywords: Genetic Algorithms, Multiobjective Optimization, Power System Stabilizer, Small Signal Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
8524 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
8523 Performance Analysis and Optimization for Diagonal Sparse Matrix-Vector Multiplication on Machine Learning Unit

Authors: Qiuyu Dai, Haochong Zhang, Xiangrong Liu

Abstract:

Efficient matrix-vector multiplication with diagonal sparse matrices is pivotal in a multitude of computational domains, ranging from scientific simulations to machine learning workloads. When encoded in the conventional Diagonal (DIA) format, these matrices often induce computational overheads due to extensive zero-padding and non-linear memory accesses, which can hamper the computational throughput, and elevate the usage of precious compute and memory resources beyond necessity. The ’DIA-Adaptive’ approach, a methodological enhancement introduced in this paper, confronts these challenges head-on by leveraging the advanced parallel instruction sets embedded within Machine Learning Units (MLUs). This research presents a thorough analysis of the DIA-Adaptive scheme’s efficacy in optimizing Sparse Matrix-Vector Multiplication (SpMV) operations. The scope of the evaluation extends to a variety of hardware architectures, examining the repercussions of distinct thread allocation strategies and cluster configurations across multiple storage formats. A dedicated computational kernel, intrinsic to the DIA-Adaptive approach, has been meticulously developed to synchronize with the nuanced performance characteristics of MLUs. Empirical results, derived from rigorous experimentation, reveal that the DIA-Adaptive methodology not only diminishes the performance bottlenecks associated with the DIA format but also exhibits pronounced enhancements in execution speed and resource utilization. The analysis delineates a marked improvement in parallelism, showcasing the DIA-Adaptive scheme’s ability to adeptly manage the interplay between storage formats, hardware capabilities, and algorithmic design. The findings suggest that this approach could set a precedent for accelerating SpMV tasks, thereby contributing significantly to the broader domain of high-performance computing and data-intensive applications.

Keywords: Adaptive method, DIA, diagonal sparse matrices, MLU, sparse matrix-vector multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 237
8522 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.

Keywords: Adaptive estimation, fault detection, GNSS, residual.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555
8521 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
8520 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors

Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad

Abstract:

In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.

Keywords: Adaptive filter, affine projection, selective regressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
8519 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
8518 Variable Step-Size Affine Projection Algorithm With a Weighted and Regularized Projection Matrix

Authors: Tao Dai, Andy Adler, Behnam Shahrrava

Abstract:

This paper presents a forgetting factor scheme for variable step-size affine projection algorithms (APA). The proposed scheme uses a forgetting processed input matrix as the projection matrix of pseudo-inverse to estimate system deviation. This method introduces temporal weights into the projection matrix, which is typically a better model of the real error's behavior than homogeneous temporal weights. The regularization overcomes the ill-conditioning introduced by both the forgetting process and the increasing size of the input matrix. This algorithm is tested by independent trials with coloured input signals and various parameter combinations. Results show that the proposed algorithm is superior in terms of convergence rate and misadjustment compared to existing algorithms. As a special case, a variable step size NLMS with forgetting factor is also presented in this paper.

Keywords: Adaptive signal processing, affine projection algorithms, variable step-size adaptive algorithms, regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
8517 Fault Classification of Double Circuit Transmission Line Using Artificial Neural Network

Authors: Anamika Jain, A. S. Thoke, R. N. Patel

Abstract:

This paper addresses the problems encountered by conventional distance relays when protecting double-circuit transmission lines. The problems arise principally as a result of the mutual coupling between the two circuits under different fault conditions; this mutual coupling is highly nonlinear in nature. An adaptive protection scheme is proposed for such lines based on application of artificial neural network (ANN). ANN has the ability to classify the nonlinear relationship between measured signals by identifying different patterns of the associated signals. One of the key points of the present work is that only current signals measured at local end have been used to detect and classify the faults in the double circuit transmission line with double end infeed. The adaptive protection scheme is tested under a specific fault type, but varying fault location, fault resistance, fault inception angle and with remote end infeed. An improved performance is experienced once the neural network is trained adequately, which performs precisely when faced with different system parameters and conditions. The entire test results clearly show that the fault is detected and classified within a quarter cycle; thus the proposed adaptive protection technique is well suited for double circuit transmission line fault detection & classification. Results of performance studies show that the proposed neural network-based module can improve the performance of conventional fault selection algorithms.

Keywords: Double circuit transmission line, Fault detection and classification, High impedance fault and Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3187
8516 Diversity for Safety and Security of Autonomous Vehicles against Accidental and Deliberate Faults

Authors: Anil Ranjitbhai Patel, Clement John Shaji, Peter Liggesmeyer

Abstract:

Safety and security of Autonomous Vehicles (AVs) is a growing concern, first, due to the increased number of safety-critical functions taken over by automotive embedded systems; second, due to the increased exposure of the software-intensive systems to potential attackers; third, due to dynamic interaction in an uncertain and unknown environment at runtime which results in changed functional and non-functional properties of the system. Frequently occurring environmental uncertainties, random component failures, and compromise security of the AVs might result in hazardous events, sometimes even in an accident, if left undetected. Beyond these technical issues, we argue that the safety and security of AVs against accidental and deliberate faults are poorly understood and rarely implemented. One possible way to overcome this is through a well-known diversity approach. As an effective approach to increase safety and security, diversity has been widely used in the aviation, railway, and aerospace industries. Thus, paper proposes fault-tolerance by diversity model taking into consideration the mitigation of accidental and deliberate faults by application of structure and variant redundancy. The model can be used to design the AVs with various types of diversity in hardware and software-based multi-version system. The paper evaluates the presented approach by employing an example from adaptive cruise control, followed by discussing the case study with initial findings.

Keywords: Autonomous vehicles, diversity, fault-tolerance, adaptive cruise control, safety, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
8515 An Images Monitoring System based on Multi-Format Streaming Grid Architecture

Authors: Yi-Haur Shiau, Sun-In Lin, Shi-Wei Lo, Hsiu-Mei Chou, Yi-Hsuan Chen

Abstract:

This paper proposes a novel multi-format stream grid architecture for real-time image monitoring system. The system, based on a three-tier architecture, includes stream receiving unit, stream processor unit, and presentation unit. It is a distributed computing and a loose coupling architecture. The benefit is the amount of required servers can be adjusted depending on the loading of the image monitoring system. The stream receive unit supports multi capture source devices and multi-format stream compress encoder. Stream processor unit includes three modules; they are stream clipping module, image processing module and image management module. Presentation unit can display image data on several different platforms. We verified the proposed grid architecture with an actual test of image monitoring. We used a fast image matching method with the adjustable parameters for different monitoring situations. Background subtraction method is also implemented in the system. Experimental results showed that the proposed architecture is robust, adaptive, and powerful in the image monitoring system.

Keywords: Motion detection, grid architecture, image monitoring system, and background subtraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
8514 An Improved Quality Adaptive Rate Filtering Technique Based on the Level Crossing Sampling

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

Mostly the systems are dealing with time varying signals. The Power efficiency can be achieved by adapting the system activity according to the input signal variations. In this context an adaptive rate filtering technique, based on the level crossing sampling is devised. It adapts the sampling frequency and the filter order by following the input signal local variations. Thus, it correlates the processing activity with the signal variations. Interpolation is required in the proposed technique. A drastic reduction in the interpolation error is achieved by employing the symmetry during the interpolation process. Processing error of the proposed technique is calculated. The computational complexity of the proposed filtering technique is deduced and compared to the classical one. Results promise a significant gain of the computational efficiency and hence of the power consumption.

Keywords: Level Crossing Sampling, Activity Selection, Rate Filtering, Computational Complexity, Interpolation Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
8513 A New Hybrid RMN Image Segmentation Algorithm

Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen

Abstract:

The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).

Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
8512 An Incomplete Factorization Preconditioner for LMS Adaptive Filter

Authors: Shazia Javed, Noor Atinah Ahmad

Abstract:

In this paper an efficient incomplete factorization preconditioner is proposed for the Least Mean Squares (LMS) adaptive filter. The proposed preconditioner is approximated from a priori knowledge of the factors of input correlation matrix with an incomplete strategy, motivated by the sparsity patter of the upper triangular factor in the QRD-RLS algorithm. The convergence properties of IPLMS algorithm are comparable with those of transform domain LMS(TDLMS) algorithm. Simulation results show efficiency and robustness of the proposed algorithm with reduced computational complexity.

Keywords: Autocorrelation matrix, Cholesky's factor, eigenvalue spread, Markov input.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
8511 Adaptive Multi-Camera Shooting System Based on Dynamic Workflow in a Compact Studio

Authors: Norihiro Nishio, Yuki Deguchi, Takahiro Sugiyama, Yoichi Takebayashi

Abstract:

We developed a multi-camera control system that a (one) cameraman can operate several cameras at a compact studio. we analyzed a workflow of a cameraman of some program shootings with two cameras and clarified their heavy tasks. The system based on a dynamic workflow which adapts a program progressing and recommends of cameraman. we perform the automation of multicamera controls by modeling of studio environment and perform automatic camera adjustment for suitable angle of view with face detection. Our experiment at a real program shooting showed that one cameraman can carry out the task of shooting sufficiently.

Keywords: Camera work, compact studio, dynamic workflow, shooting support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
8510 Adaptive Conjoint Analysis of Professionals’ Job Preferences

Authors: N. Scheidegger, A. Mueller

Abstract:

Job preferences are a well-developed research field. Many studies analyze the preferences using simple ratings with a sample of university graduates. The current study analyzes the preferences with a mixed method approach of a qualitative preliminary study and adaptive conjoint-analysis. Preconditions of accepting job offers are clarified for professionals in the industrial sector. It could be shown that, e.g. wages above the average are critical and that career opportunities must be seen broader than merely a focus on formal personnel development programs. The results suggest that, to be effective with their recruitment efforts, employers must take into account key desirable job attributes of their target group.

Keywords: Conjoint analysis, employer attractiveness, job preferences, personnel marketing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
8509 Design and Implementation of Real-Time Automatic Censoring System on Chip for Radar Detection

Authors: Imron Rosyadi, Ridha A. Djemal, Saleh A. Alshebeili

Abstract:

Design and implementation of a novel B-ACOSD CFAR algorithm is presented in this paper. It is proposed for detecting radar target in log-normal distribution environment. The BACOSD detector is capable to detect automatically the number interference target in the reference cells and detect the real target by an adaptive threshold. The detector is implemented as a System on Chip on FPGA Altera Stratix II using parallelism and pipelining technique. For a reference window of length 16 cells, the experimental results showed that the processor works properly with a processing speed up to 115.13MHz and processing time0.29 ┬Ás, thus meets real-time requirement for a typical radar system.

Keywords: CFAR, FPGA, radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3113
8508 Recognition and Reconstruction of Partially Occluded Objects

Authors: Michela Lecca, Stefano Messelodi

Abstract:

A new automatic system for the recognition and re¬construction of resealed and/or rotated partially occluded objects is presented. The objects to be recognized are described by 2D views and each view is occluded by several half-planes. The whole object views and their visible parts (linear cuts) are then stored in a database. To establish if a region R of an input image represents an object possibly occluded, the system generates a set of linear cuts of R and compare them with the elements in the database. Each linear cut of R is associated to the most similar database linear cut. R is recognized as an instance of the object 0 if the majority of the linear cuts of R are associated to a linear cut of views of 0. In the case of recognition, the system reconstructs the occluded part of R and determines the scale factor and the orientation in the image plane of the recognized object view. The system has been tested on two different datasets of objects, showing good performance both in terms of recognition and reconstruction accuracy.

Keywords: Occluded Object Recognition, Shape Reconstruction, Automatic Self-Adaptive Systems, Linear Cut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
8507 Innovative Design Considerations for Adaptive Spacecraft

Authors: K. Parandhama Gowd

Abstract:

Space technologies have changed the way we live in the present day society and manage many aspects of our daily affairs through Remote sensing, Navigation & Communications. Further, defense and military usage of spacecraft has increased tremendously along with civilian purposes. The number of satellites deployed in space in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and the Geostationary Orbit (GEO) has gone up. The dependency on remote sensing and operational capabilities are most invariably to be exploited more and more in future. Every country is acquiring spacecraft in one way or other for their daily needs, and spacecraft numbers are likely to increase significantly and create spacecraft traffic problems. The aim of this research paper is to propose innovative design concepts for adaptive spacecraft. The main idea here is to improve existing design methods of spacecraft design and development to further improve upon design considerations for futuristic adaptive spacecraft with inbuilt features for automatic adaptability and self-protection. In other words, the innovative design considerations proposed here are to have future spacecraft with self-organizing capabilities for orbital control and protection from anti-satellite weapons (ASAT). Here, an attempt is made to propose design and develop futuristic spacecraft for 2030 and beyond due to tremendous advancements in VVLSI, miniaturization, and nano antenna array technologies, including nano technologies are expected.

Keywords: Satellites, low earth orbit, medium earth orbit, geostationary earth orbit, self-organizing control system, anti-satellite weapons, orbital control, radar warning receiver, missile warning receiver, laser warning receiver, attitude and orbit control systems, command and data handling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
8506 Adaptive Multiple Transforms Hardware Architecture for Versatile Video Coding

Authors: T. Damak, S. Houidi, M. A. Ben Ayed, N. Masmoudi

Abstract:

The Versatile Video Coding standard (VVC) is actually under development by the Joint Video Exploration Team (or JVET). An Adaptive Multiple Transforms (AMT) approach was announced. It is based on different transform modules that provided an efficient coding. However, the AMT solution raises several issues especially regarding the complexity of the selected set of transforms. This can be an important issue, particularly for a future industrial adoption. This paper proposed an efficient hardware implementation of the most used transform in AMT approach: the DCT II. The developed circuit is adapted to different block sizes and can reach a minimum frequency of 192 MHz allowing an optimized execution time.

Keywords: AMT, DCT II, hardware, transform, VVC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
8505 Assamese Numeral Corpus for Speech Recognition using Cooperative ANN Architecture

Authors: Mousmita Sarma, Krishna Dutta, Kandarpa Kumar Sarma

Abstract:

Speech corpus is one of the major components in a Speech Processing System where one of the primary requirements is to recognize an input sample. The quality and details captured in speech corpus directly affects the precision of recognition. The current work proposes a platform for speech corpus generation using an adaptive LMS filter and LPC cepstrum, as a part of an ANN based Speech Recognition System which is exclusively designed to recognize isolated numerals of Assamese language- a major language in the North Eastern part of India. The work focuses on designing an optimal feature extraction block and a few ANN based cooperative architectures so that the performance of the Speech Recognition System can be improved.

Keywords: Filter, Feature, LMS, LPC, Cepstrum, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
8504 Adaptive Filtering of Heart Rate Signals for an Improved Measure of Cardiac Autonomic Control

Authors: Desmond B. Keenan, Paul Grossman

Abstract:

In order to provide accurate heart rate variability indices of sympathetic and parasympathetic activity, the low frequency and high frequency components of an RR heart rate signal must be adequately separated. This is not always possible by just applying spectral analysis, as power from the high and low frequency components often leak into their adjacent bands. Furthermore, without the respiratory spectra it is not obvious that the low frequency component is not another respiratory component, which can appear in the lower band. This paper describes an adaptive filter, which aids the separation of the low frequency sympathetic and high frequency parasympathetic components from an ECG R-R interval signal, enabling the attainment of more accurate heart rate variability measures. The algorithm is applied to simulated signals and heart rate and respiratory signals acquired from an ambulatory monitor incorporating single lead ECG and inductive plethysmography sensors embedded in a garment. The results show an improvement over standard heart rate variability spectral measurements.

Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, spectral analysis, adaptive filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
8503 Shot Detection Using Modified Dugad Model

Authors: Lenka Krulikovská, Jaroslav Polec

Abstract:

In this paper we present a modification to existed model of threshold for shot cut detection, which is able to adapt itself to the sequence statistics and operate in real time, because it use for calculation only previously evaluated frames. The efficiency of proposed modified adaptive threshold scheme was verified through extensive test experiment with several similarity metrics and achieved results were compared to the results reached by the original model. According to results proposed threshold scheme reached higher accuracy than existed original model.

Keywords: Abrupt cut, shot cut detection, adaptive threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
8502 Development of Orbital TIG Welding Robot System for the Pipe

Authors: Dongho Kim, Sung Choi, Kyowoong Pee, Youngsik Cho, Seungwoo Jeong, Soo-Ho Kim

Abstract:

This study is about the orbital TIG welding robot system which travels on the guide rail installed on the pipe, and welds and tracks the pipe seam using the LVS (Laser Vision Sensor) joint profile data. The orbital welding robot system consists of the robot, welder, controller, and LVS. Moreover we can define the relationship between welding travel speed and wire feed speed, and we can make the linear equation using the maximum and minimum amount of weld metal. Using the linear equation we can determine the welding travel speed and the wire feed speed accurately corresponding to the area of weld captured by LVS. We applied this orbital TIG welding robot system to the stainless steel or duplex pipe on DSME (Daewoo Shipbuilding and Marine Engineering Co. Ltd.,) shipyard and the result of radiographic test is almost perfect. (Defect rate: 0.033%).

Keywords: Adaptive welding, automatic welding, Pipe welding, Orbital welding, Laser vision sensor, LVS, welding D/B.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3870
8501 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems

Authors: Ali Reza Mehrabian, Caro Lucas

Abstract:

In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.

Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091