Search results for: Adaptive Weighted Averaging
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1088

Search results for: Adaptive Weighted Averaging

788 Shot Detection Using Modified Dugad Model

Authors: Lenka Krulikovská, Jaroslav Polec

Abstract:

In this paper we present a modification to existed model of threshold for shot cut detection, which is able to adapt itself to the sequence statistics and operate in real time, because it use for calculation only previously evaluated frames. The efficiency of proposed modified adaptive threshold scheme was verified through extensive test experiment with several similarity metrics and achieved results were compared to the results reached by the original model. According to results proposed threshold scheme reached higher accuracy than existed original model.

Keywords: Abrupt cut, shot cut detection, adaptive threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
787 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System

Authors: Jason Chien-Hsun Tseng

Abstract:

This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.

Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
786 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems

Authors: Ali Reza Mehrabian, Caro Lucas

Abstract:

In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.

Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
785 Application of RS and GIS Technique for Identifying Groundwater Potential Zone in Gomukhi Nadhi Sub Basin, South India

Authors: Punitha Periyasamy, Mahalingam Sudalaimuthu, Sachikanta Nanda, Arasu Sundaram

Abstract:

India holds 17.5% of the world’s population but has only 2% of the total geographical area of the world where 27.35% of the area is categorized as wasteland due to lack of or less groundwater. So there is a demand for excessive groundwater for agricultural and non agricultural activities to balance its growth rate. With this in mind, an attempt is made to find the groundwater potential zone in Gomukhi Nadhi sub basin of Vellar River basin, TamilNadu, India covering an area of 1146.6 Sq.Km consists of 9 blocks from Peddanaickanpalayam to Virudhachalam in the sub basin. The thematic maps such as Geology, Geomorphology, Lineament, Landuse and Landcover and Drainage are prepared for the study area using IRS P6 data. The collateral data includes rainfall, water level, soil map are collected for analysis and inference. The digital elevation model (DEM) is generated using Shuttle Radar Topographic Mission (SRTM) and the slope of the study area is obtained. ArcGIS 10.1 acts as a powerful spatial analysis tool to find out the ground water potential zones in the study area by means of weighted overlay analysis. Each individual parameter of the thematic maps are ranked and weighted in accordance with their influence to increase the water level in the ground. The potential zones in the study area are classified viz., Very Good, Good, Moderate, Poor with its aerial extent of 15.67, 381.06, 575.38, 174.49 Sq.Km respectively.

Keywords: ArcGIS, DEM, Groundwater, Recharge, Weighted Overlay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2965
784 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach

Authors: Uttam Vijay, Nitin Gupta

Abstract:

Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.

Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2438
783 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart

Authors: Y. Areepong

Abstract:

The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).

Keywords: Average Run Length1, Optimal parameters, Exponentially Weighted Moving Average (EWMA) control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
782 Adaptive Kernel Principal Analysis for Online Feature Extraction

Authors: Mingtao Ding, Zheng Tian, Haixia Xu

Abstract:

The batch nature limits the standard kernel principal component analysis (KPCA) methods in numerous applications, especially for dynamic or large-scale data. In this paper, an efficient adaptive approach is presented for online extraction of the kernel principal components (KPC). The contribution of this paper may be divided into two parts. First, kernel covariance matrix is correctly updated to adapt to the changing characteristics of data. Second, KPC are recursively formulated to overcome the batch nature of standard KPCA.This formulation is derived from the recursive eigen-decomposition of kernel covariance matrix and indicates the KPC variation caused by the new data. The proposed method not only alleviates sub-optimality of the KPCA method for non-stationary data, but also maintains constant update speed and memory usage as the data-size increases. Experiments for simulation data and real applications demonstrate that our approach yields improvements in terms of both computational speed and approximation accuracy.

Keywords: adaptive method, kernel principal component analysis, online extraction, recursive algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
781 Detection Efficient Enterprises via Data Envelopment Analysis

Authors: S. Turkan

Abstract:

In this paper, the Turkey’s Top 500 Industrial Enterprises data in 2014 were analyzed by data envelopment analysis. Data envelopment analysis is used to detect efficient decision-making units such as universities, hospitals, schools etc. by using inputs and outputs. The decision-making units in this study are enterprises. To detect efficient enterprises, some financial ratios are determined as inputs and outputs. For this reason, financial indicators related to productivity of enterprises are considered. The efficient foreign weighted owned capital enterprises are detected via super efficiency model. According to the results, it is said that Mercedes-Benz is the most efficient foreign weighted owned capital enterprise in Turkey.

Keywords: Data envelopment analysis, super efficiency, financial ratios, BCC model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852
780 Image Segmentation Based on Graph Theoretical Approach to Improve the Quality of Image Segmentation

Authors: Deepthi Narayan, Srikanta Murthy K., G. Hemantha Kumar

Abstract:

Graph based image segmentation techniques are considered to be one of the most efficient segmentation techniques which are mainly used as time & space efficient methods for real time applications. How ever, there is need to focus on improving the quality of segmented images obtained from the earlier graph based methods. This paper proposes an improvement to the graph based image segmentation methods already described in the literature. We contribute to the existing method by proposing the use of a weighted Euclidean distance to calculate the edge weight which is the key element in building the graph. We also propose a slight modification of the segmentation method already described in the literature, which results in selection of more prominent edges in the graph. The experimental results show the improvement in the segmentation quality as compared to the methods that already exist, with a slight compromise in efficiency.

Keywords: Graph based image segmentation, threshold, Weighted Euclidean distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
779 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer

Abstract:

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.

Keywords: Power system, stability, oscillations, power system stabilizer, model reference adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591
778 Continuous Adaptive Robust Control for Nonlinear Uncertain Systems

Authors: Dong Sang Yoo

Abstract:

We consider nonlinear uncertain systems such that a  priori information of the uncertainties is not available. For such  systems, we assume that the upper bound of the uncertainties is  represented as a Fredholm integral equation of the first kind and we  propose an adaptation law that is capable of estimating the upper  bound and design a continuous robust control which renders nonlinear  uncertain systems ultimately bounded.

 

Keywords: Adaptive Control, Estimation, Fredholm Integral, Uncertain System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
777 A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification

Authors: J. Hossen, A. Rahman, K. Samsudin, F. Rokhani, S. Sayeed, R. Hasan

Abstract:

The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.

Keywords: Apriori algorithm, Fuzzy C-means, MAFIE, TSK

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
776 The Application of Hadamard Matrixes in the SNR Enhancement of Optical Time-Domain Reflectometry(OTDR)

Authors: Mingyu Zhong, Yi Xie

Abstract:

Results in one field necessarily give insight into the others, and all have much potential for scientific and technological application. The Hadamard-transform technique once been applied to the spectrometry also has its use in the SNR Enhancement of OTDR. In this report, a new set of code (Simplex-codes) is discussed and where the addition gain of SNR come from is implied.

Keywords: Hadamard-transform, matrixes, averaging, opticaltime-domain reflectometry (OTDR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
775 Design of Two-Channel Quadrature Mirror Filter Banks Using Digital All-Pass Filters

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

The paper deals with the minimax design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using infinite impulse response (IIR) digital all-pass filters (DAFs). Based on the theory of two-channel QMF banks using two IIR DAFs, the design problem is appropriately formulated to result in an appropriate Chebyshev approximation for the desired group delay responses of the IIR DAFs and the magnitude response of the low-pass analysis filter. Through a frequency sampling and iterative approximation method, the design problem can be solved by utilizing a weighted least squares approach. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison.

Keywords: Chebyshev approximation, Digital All-Pass Filter, Quadrature Mirror Filter, Weighted Least Squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711
774 Contrast Enhancement of Color Images with Color Morphing Approach

Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi

Abstract:

Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.

Keywords: Contrast enhancement, normalized RGB, adaptive histogram equalization, cumulative variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
773 Adaptive Discharge Time Control for Battery Operation Time Enhancement

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

This paper proposes an adaptive discharge time control method to balance cell voltages in alternating battery cell discharging method. In the alternating battery cell discharging method, battery cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of target system increases. However, voltage mismatch between cells leads two problems. First, voltage difference between cells induces inter-cell current with wasted power. Second, it degrades battery operation time, since system stops when any cell reaches to the minimum system operation voltage. To solve this problem, the proposed method adaptively controls cell discharge time to equalize both cell voltages. In the proposed method, battery operation time increases about 19%, while alternating battery cell discharging method shows about 7% improvement.

Keywords: Battery, Recovery Effect, Low-Power, Alternating Battery Cell Discharging, Adaptive Discharge Time Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
772 Matrix Completion with Heterogeneous Observation Cost Using Sparsity-Number of Column-Space

Authors: Ilqar Ramazanli

Abstract:

The matrix completion problem has been studied broadly under many underlying conditions. In many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but, within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.

Keywords: Matrix completion, adaptive learning, heterogeneous cost, Matroid optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449
771 Distributed Estimation Using an Improved Incremental Distributed LMS Algorithm

Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili

Abstract:

In this paper we consider the problem of distributed adaptive estimation in wireless sensor networks for two different observation noise conditions. In the first case, we assume that there are some sensors with high observation noise variance (noisy sensors) in the network. In the second case, different variance for observation noise is assumed among the sensors which is more close to real scenario. In both cases, an initial estimate of each sensor-s observation noise is obtained. For the first case, we show that when there are such sensors in the network, the performance of conventional distributed adaptive estimation algorithms such as incremental distributed least mean square (IDLMS) algorithm drastically decreases. In addition, detecting and ignoring these sensors leads to a better performance in a sense of estimation. In the next step, we propose a simple algorithm to detect theses noisy sensors and modify the IDLMS algorithm to deal with noisy sensors. For the second case, we propose a new algorithm in which the step-size parameter is adjusted for each sensor according to its observation noise variance. As the simulation results show, the proposed methods outperforms the IDLMS algorithm in the same condition.

Keywords: Distributes estimation, sensor networks, adaptive filter, IDLMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
770 A New Weighted LDA Method in Comparison to Some Versions of LDA

Authors: Delaram Jarchi, Reza Boostani

Abstract:

Linear Discrimination Analysis (LDA) is a linear solution for classification of two classes. In this paper, we propose a variant LDA method for multi-class problem which redefines the between class and within class scatter matrices by incorporating a weight function into each of them. The aim is to separate classes as much as possible in a situation that one class is well separated from other classes, incidentally, that class must have a little influence on classification. It has been suggested to alleviate influence of classes that are well separated by adding a weight into between class scatter matrix and within class scatter matrix. To obtain a simple and effective weight function, ordinary LDA between every two classes has been used in order to find Fisher discrimination value and passed it as an input into two weight functions and redefined between class and within class scatter matrices. Experimental results showed that our new LDA method improved classification rate, on glass, iris and wine datasets, in comparison to different versions of LDA.

Keywords: Discriminant vectors, weighted LDA, uncorrelation, principle components, Fisher-face method, Bootstarp method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
769 Standard Fuzzy Sets for Aircraft Selection using Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This study uses two-dimensional standard fuzzy sets to enhance multiple criteria decision-making analysis for passenger aircraft selection, allowing decision-makers to express judgments with uncertain and vague information. Using two-dimensional fuzzy numbers, three decision makers evaluated three aircraft alternatives according to seven decision criteria. A validity analysis based on two-dimensional standard fuzzy weighted geometric (SFWG) and two-dimensional standard fuzzy weighted average (SFGA) operators is conducted to test the proposed approach's robustness and effectiveness in the fuzzy multiple criteria decision making (MCDM) evaluation process. 

Keywords: Standard fuzzy sets (SFSs), aircraft selection, multiple criteria decision making, intuitionistic fuzzy sets (IFSs), SFWG, SFGA, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 329
768 Sensorless Backstepping Control Using an Adaptive Luenberger Observer with Three Levels NPC Inverter

Authors: A. Bennassar, A. Abbou, M. Akherraz, M. Barara

Abstract:

In this paper, we propose a sensorless backstepping control of induction motor (IM) associated with three levels neutral clamped (NPC) inverter. First, the backstepping approach is designed to steer the flux and speed variables to theirs references and to compensate the uncertainties. A Lyapunov theory is used and it demonstrates that the dynamic trajectories tracking are asymptotically stable. Second, we estimate the rotor flux and speed by using the adaptive Luenberger observer (ALO). Simulation results are provided to illustrate the performance of the proposed approach in high and low speeds and load torque disturbance.

Keywords: Sensorless backstepping, IM, Three levels NPC inverter, Lyapunov theory, ALO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
767 Implementing Adaptive Steganography by Exploring the Ycbcr Color Model Characteristics

Authors: Surbhi Gupta, Alka Handa, Parvinder S.Sandhu

Abstract:

Stegnography is a new way of secret communication the most widely used mechanism on account of its simplicity is the use of the least significant bit. We have used the least significant bit (2 LSB and 4 LSB) substitution method. Depending upon the characteristics of the individual portions of cover image we decide whether to use 2 LSB or 4 LSB thus it is an adaptive stegnography technique. We used one of the three channels to behave as indicator to indicate the presence of hidden data in other two channels. The module showed impressive results in terms of capacity to hide the data. In proposed method, instead of using RGB color space directly, YCbCr color space is used to make use of human visual system characteristic.

Keywords: Stegoimage, steganography, Pixel indicator, segmentation, YCbCr..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
766 Adaptive Motion Estimator Based on Variable Block Size Scheme

Authors: S. Dhahri, A. Zitouni, H. Chaouch, R. Tourki

Abstract:

This paper presents an adaptive motion estimator that can be dynamically reconfigured by the best algorithm depending on the variation of the video nature during the lifetime of an application under running. The 4 Step Search (4SS) and the Gradient Search (GS) algorithms are integrated in the estimator in order to be used in the case of rapid and slow video sequences respectively. The Full Search Block Matching (FSBM) algorithm has been also integrated in order to be used in the case of the video sequences which are not real time oriented. In order to efficiently reduce the computational cost while achieving better visual quality with low cost power, the proposed motion estimator is based on a Variable Block Size (VBS) scheme that uses only the 16x16, 16x8, 8x16 and 8x8 modes. Experimental results show that the adaptive motion estimator allows better results in term of Peak Signal to Noise Ratio (PSNR), computational cost, FPGA occupied area, and dissipated power relatively to the most popular variable block size schemes presented in the literature.

Keywords: H264, Configurable Motion Estimator, VariableBlock Size, PSNR, Dissipated power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
765 MIMO Broadcast Scheduling for Weighted Sum-rate Maximization

Authors: Swadhin Kumar Mishra, Sidhartha Panda, C. Ardil

Abstract:

Multiple-Input-Multiple-Output (MIMO) is one of the most important communication techniques that allow wireless systems to achieve higher data rate. To overcome the practical difficulties in implementing Dirty Paper Coding (DPC), various suboptimal MIMO Broadcast (MIMO-BC) scheduling algorithms are employed which choose the best set of users among all the users. In this paper we discuss such a sub-optimal MIMO-BC scheduling algorithm which employs antenna selection at the receiver side. The channels for the users considered here are not Identical and Independent Distributed (IID) so that users at the receiver side do not get equal opportunity for communication. So we introduce a method of applying weights to channels of the users which are not IID in such a way that each of the users gets equal opportunity for communication. The effect of weights on overall sum-rate achieved by the system has been investigated and presented.

Keywords: Antenna selection, Identical and Independent Distributed (IID), Sum-rate capacity, Weighted sum rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
764 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations

Authors: A. Javed, K. Djidjeli, J. T. Xing

Abstract:

The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.

Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799
763 Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.

Keywords: Wind energy conversion systems, reinforcementlearning; Actor-Critic learning; adaptive PID control; RBF network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4882
762 Towards a Computational Model of Consciousness: Global Abstraction Workspace

Authors: Halim Djerroud, Arab Ali Cherif

Abstract:

We assume that conscious functions are implemented automatically. In other words that consciousness as well as the non-consciousness aspect of human thought, planning and perception, are produced by biologically adaptive algorithms. We propose that the mechanisms of consciousness can be produced using similar adaptive algorithms to those executed by the mechanism. In this paper, we present a computational model of consciousness, the ”Global Abstraction Workspace” which is an internal environmental modelling perceived as a multi-agent system. This system is able to evolve and generate new data and processes as well as actions in the environment.

Keywords: Artificial consciousness, cognitive architecture, global abstraction workspace, mutli-agents system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
761 Effective Context Lossless Image Coding Approach Based on Adaptive Prediction

Authors: Grzegorz Ulacha, Ryszard Stasiński

Abstract:

In the paper an effective context based lossless coding technique is presented. Three principal and few auxiliary contexts are defined. The predictor adaptation technique is an improved CoBALP algorithm, denoted CoBALP+. Cumulated predictor error combining 8 bias estimators is calculated. It is shown experimentally that indeed, the new technique is time-effective while it outperforms the well known methods having reasonable time complexity, and is inferior only to extremely computationally complex ones.

Keywords: Adaptive prediction, context coding, image losslesscoding, prediction error bias correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
760 Adaptive WiFi Fingerprinting for Location Approximation

Authors: Mohd Fikri Azli bin Abdullah, Khairul Anwar bin Kamarul Hatta, Esther Jeganathan

Abstract:

WiFi has become an essential technology that is widely used nowadays. It is famous due to its convenience to be used with mobile devices. This is especially true for Internet users worldwide that use WiFi connections. There are many location based services that are available nowadays which uses Wireless Fidelity (WiFi) signal fingerprinting. A common example that is gaining popularity in this era would be Foursquare. In this work, the WiFi signal would be used to estimate the user or client’s location. Similar to GPS, fingerprinting method needs a floor plan to increase the accuracy of location estimation. Still, the factor of inconsistent WiFi signal makes the estimation defer at different time intervals. Given so, an adaptive method is needed to obtain the most accurate signal at all times. WiFi signals are heavily distorted by external factors such as physical objects, radio frequency interference, electrical interference, and environmental factors to name a few. Due to these factors, this work uses a method of reducing the signal noise and estimation using the Nearest Neighbour based on past activities of the signal to increase the signal accuracy up to more than 80%. The repository yet increases the accuracy by using Artificial Neural Network (ANN) pattern matching. The repository acts as the server cum support of the client side application decision. Numerous previous works has adapted the methods of collecting signal strengths in the repository over the years, but mostly were just static. In this work, proposed solutions on how the adaptive method is done to match the signal received to the data in the repository are highlighted. With the said approach, location estimation can be done more accurately. Adaptive update allows the latest location fingerprint to be stored in the repository. Furthermore, any redundant location fingerprints are removed and only the updated version of the fingerprint is stored in the repository. How the location estimation of the user can be predicted would be highlighted more in the proposed solution section. After some studies on previous works, it is found that the Artificial Neural Network is the most feasible method to deploy in updating the repository and making it adaptive. The Artificial Neural Network functions are to do the pattern matching of the WiFi signal to the existing data available in the repository.

Keywords: Adaptive Repository, Artificial Neural Network, Location Estimation, Nearest Neighbour Euclidean Distance, WiFi RSSI Fingerprinting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3435
759 Understanding Workplace Behavior through Organizational Culture and Complex Adaptive Systems Theory

Authors: Péter Restás, Andrea Czibor, Zsolt Péter Szabó

Abstract:

Purpose: This article aims to rethink the phenomena of employee behavior as a product of a system. Both organizational culture and Complex Adaptive Systems (CAS) theory emphasize that individual behavior depends on the specific system and the unique organizational culture. These two major theories are both represented in the field of organizational studies; however, they are rarely used together for the comprehensive understanding of workplace behavior. Methodology: By reviewing the literature we use key concepts stemming from organizational culture and CAS theory in order to show the similarities between these theories and create an enriched understanding of employee behavior. Findings: a) Workplace behavior is defined here as social cognition issue. b) Organizations are discussed here as complex systems, and cultures which drive and dictate the cognitive processes of agents in the system. c) Culture gives CAS theory a context which lets us see organizations not just as ever-changing and unpredictable, but as such systems that aim to create and maintain stability by recurring behavior. Conclusion: Applying the knowledge from culture and CAS theory sheds light on our present understanding of employee behavior, also emphasizes the importance of novel ways in organizational research and management.

Keywords: Complex adaptive systems theory, employee behavior, organizational culture, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327