Search results for: cost optimization
471 Bipolar Square Wave Pulses for Liquid Food Sterilization using Cascaded H-Bridge Multilevel Inverter
Authors: Hanifah Jambari, Naziha A. Azli, M. Afendi M. Piah
Abstract:
This paper presents the generation of bipolar square wave pulses with characteristics that are suitable for liquid food sterilization using a Cascaded H-bridge Multilevel Inverter (CHMI). Bipolar square waves pulses have been reported as stable for a longer time during the sterilization process with minimum heat emission and increased efficiency. The CHMI allows the system to produce bipolar square wave pulses and yielding high output voltage without using a transformer while fulfilling the pulse requirements for effective liquid food sterilization. This in turn can reduce power consumption and cost of the overall liquid food sterilization system. The simulation results have shown that pulses with peak output voltage of 2.4 kV, pulse width of between 1 2s and 1 ms at frequencies of 50 Hz and 100 Hz can be generated by a 7-level CHMI. Results from the experimental set-up based on a 5-level CHMI has indicated the potential of the proposed circuit in producing bipolar square wave output pulses with peak values that depends on the DC source level supplied to the CHMI modules, pulse width of between 12.5 2s and 1 ms at frequencies of 50 Hz and 100 Hz.Keywords: pulsed electric field, multilevel inverter, bipolarsquare wave, food sterilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546470 Robotic End-Effector Impedance Control without Expensive Torque/Force Sensor
Authors: Shiuh-Jer Huang, Yu-Chi Liu, Su-Hai Hsiang
Abstract:
A novel low-cost impedance control structure is proposed for monitoring the contact force between end-effector and environment without installing an expensive force/torque sensor. Theoretically, the end-effector contact force can be estimated from the superposition of each joint control torque. There have a nonlinear matrix mapping function between each joint motor control input and end-effector actuating force/torques vector. This new force control structure can be implemented based on this estimated mapping matrix. First, the robot end-effector is manipulated to specified positions, then the force controller is actuated based on the hall sensor current feedback of each joint motor. The model-free fuzzy sliding mode control (FSMC) strategy is employed to design the position and force controllers, respectively. All the hardware circuits and software control programs are designed on an Altera Nios II embedded development kit to constitute an embedded system structure for a retrofitted Mitsubishi 5 DOF robot. Experimental results show that PI and FSMC force control algorithms can achieve reasonable contact force monitoring objective based on this hardware control structure.
Keywords: Robot, impedance control, fuzzy sliding mode control, contact force estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4028469 Malt Bagasse Waste as Biosorbent for Malachite Green: An Ecofriendly Approach for Dye Removal from Aqueous Solution
Authors: H. C. O. Reis, A. S. Cossolin, B. A. P. Santos, K. C. Castro, G. M. Pereira, V. C. Silva, P. T. Sousa Jr, E. L. Dall’Oglio, L. G. Vasconcelos, E. B. Morais
Abstract:
In this study, malt bagasse, a low-cost waste biomass, was tested as a biosorbent to remove the cationic dye Malachite green (MG) from aqueous solution. Batch biosorption experiments were investigated as functions of different experimental parameters such as initial pH, salt (NaCl) concentration, contact time, temperature and initial dye concentration. Higher removal rates of MG were obtained at pH 8 and 10. The equilibrium and kinetic studies suggest that the biosorption follows Langmuir isotherm and the pseudo-second-order model. The maximum monolayer adsorption capacity was estimated at 117.65 mg/g (at 45 °C). According to Dubinin–Radushkevich (D-R) isotherm model, biosorption of MG onto malt bagasse occurs physically. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy indicated that the MG biosorption onto malt bagasse is spontaneous and endothermic. The results of the ionic strength effect indicated that the biosorption process under study had a strong tolerance under high salt concentrations. It can be concluded that malt bagasse waste has potential for application as biosorbent for removal of MG from aqueous solution.
Keywords: Color removal, kinetic and isotherm studies, thermodynamic parameters, FTIR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982468 Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller
Authors: P. Abhishesh, B. S. Ryuh, Y. S. Oh, H. J. Moon, R. Akanksha
Abstract:
This paper discusses about the conceptual design and development of the control system software using Programmable logic controller (PLC) for autonomous driving and agricultural operations of Multipurpose Agricultural Robot Platform (MARP). Based on given initial conditions by field analysis and desired agricultural operations, the structural design development of MARP is done using modelling and analysis tool. PLC, being robust and easy to use, has been used to design the autonomous control system of robot platform for desired parameters. The robot is capable of performing autonomous driving and three automatic agricultural operations, viz. hilling, mulching, and sowing of seeds in the respective order. The input received from various sensors on the field is later transmitted to the controller via ZigBee network to make the changes in the control program to get desired field output. The research is conducted to provide assistance to farmers by reducing labor hours for agricultural activities by implementing automation. This study will provide an alternative to the existing systems with machineries attached behind tractors and rigorous manual operations on agricultural field at effective cost.
Keywords: Agricultural operations, autonomous driving, MARP, PLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199467 Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell
Authors: Nawang Chhunid, Gagnesh Kumar
Abstract:
On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively.Keywords: DRAM cell, read access time, tanner EDA tool write access time and retention time, average power dissipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346466 Turbine Follower Control Strategy Design Based on Developed FFPP Model
Authors: Ali Ghaffari, Mansour Nikkhah Bahrami, Hesam Parsa
Abstract:
In this paper a comprehensive model of a fossil fueled power plant (FFPP) is developed in order to evaluate the performance of a newly designed turbine follower controller. Considering the drawbacks of previous works, an overall model is developed to minimize the error between each subsystem model output and the experimental data obtained at the actual power plant. The developed model is organized in two main subsystems namely; Boiler and Turbine. Considering each FFPP subsystem characteristics, different modeling approaches are developed. For economizer, evaporator, superheater and reheater, first order models are determined based on principles of mass and energy conservation. Simulations verify the accuracy of the developed models. Due to the nonlinear characteristics of attemperator, a new model, based on a genetic-fuzzy systems utilizing Pittsburgh approach is developed showing a promising performance vis-à-vis those derived with other methods like ANFIS. The optimization constraints are handled utilizing penalty functions. The effect of increasing the number of rules and membership functions on the performance of the proposed model is also studied and evaluated. The turbine model is developed based on the equation of adiabatic expansion. Parameters of all evaluated models are tuned by means of evolutionary algorithms. Based on the developed model a fuzzy PI controller is developed. It is then successfully implemented in the turbine follower control strategy of the plant. In this control strategy instead of keeping control parameters constant, they are adjusted on-line with regard to the error and the error rate. It is shown that the response of the system improves significantly. It is also shown that fuel consumption decreases considerably.Keywords: Attemperator, Evolutionary algorithms, Fossil fuelled power plant (FFPP), Fuzzy set theory, Gain scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795465 An Efficient Technique for EMI Mitigation in Fluorescent Lamps using Frequency Modulation and Evolutionary Programming
Authors: V.Sekar, T.G.Palanivelu, B.Revathi
Abstract:
Electromagnetic interference (EMI) is one of the serious problems in most electrical and electronic appliances including fluorescent lamps. The electronic ballast used to regulate the power flow through the lamp is the major cause for EMI. The interference is because of the high frequency switching operation of the ballast. Formerly, some EMI mitigation techniques were in practice, but they were not satisfactory because of the hardware complexity in the circuit design, increased parasitic components and power consumption and so on. The majority of the researchers have their spotlight only on EMI mitigation without considering the other constraints such as cost, effective operation of the equipment etc. In this paper, we propose a technique for EMI mitigation in fluorescent lamps by integrating Frequency Modulation and Evolutionary Programming. By the Frequency Modulation technique, the switching at a single central frequency is extended to a range of frequencies, and so, the power is distributed throughout the range of frequencies leading to EMI mitigation. But in order to meet the operating frequency of the ballast and the operating power of the fluorescent lamps, an optimal modulation index is necessary for Frequency Modulation. The optimal modulation index is determined using Evolutionary Programming. Thereby, the proposed technique mitigates the EMI to a satisfactory level without disturbing the operation of the fluorescent lamp.Keywords: Ballast, Electromagnetic interference (EMI), EMImitigation, Evolutionary programming (EP), Fluorescent lamp, Frequency Modulation (FM), Modulation index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275464 The Profitability Management Mechanism of Leather Industry-Based on the Activity-Based Benefit Approach
Authors: Mei-Fang Wu, Shu-Li Wang, Tsung-Yueh Lu, Feng-Tsung Cheng
Abstract:
Strengthening core competitiveness is the main goal of enterprises in a fierce competitive environment. Accurate cost information is a great help for managers in dealing with operation strategies. This paper establishes a profitability management mechanism that applies the Activity-Based Benefit approach (ABBA) to solve the profitability for each customer from the market. ABBA provides financial and non-financial information for the operation, but also indicates what resources have expired in the operational process. The customer profit management model shows the level of profitability of each customer for the company. The empirical data were gathered from a case company operating in the leather industry in Taiwan. The research findings indicate that 30% of customers create little profit for the company as a result of asking for over 5% of sales discounts. Those customers ask for sales discount because of color differences of leather products. This paper provides a customer’s profitability evaluation mechanism to help enterprises to greatly improve operating effectiveness and promote operational activity efficiency and overall operation profitability.
Keywords: Activity-based benefit approach, customer profit analysis, leather industry, profitability management mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960463 An Empirical Assessment of Sustainability of an Urban Water Supply Service Delivery
Authors: Olayinka Gafar Okeola, Akinola Muyiwa Moore
Abstract:
Urban population is rapidly increasing in Ilorin, (the capital of Kwara State of Nigeria) along with related increased water demand. The inadequacies of water supply services have forced the populace to depend on dug wells, boreholes, water tankers, street vendors etc. for their water needs. People spend hours daily carrying jerry can all around to collect and queue for water at the public water tap with high opportunity cost both in time and economic wastage. This situation motivated this study to assess the sustainability of an urban water supply services to unravel the factors undermining the effective delivery of services. Contingent Valuation Method was used to place value on water supply services using the Double Bounded Dichotomous Choice format for willingness to pay elicitation. A database was created with Microsoft Excel and Stata 12 Software to model and evaluate the variables that affect household willingness to pay. The results of the study reveal that about 92% of the total households surveyed were connected to the Government water supply out of which 87% reported that they were not satisfied with the existing services. The results furthered revealed that respondents are willing to pay ₦2500 monthly to enjoy sustainable water supply service delivery.
Keywords: Willingness-to-pay, contingent valuation method, Nigeria, service, delivery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 437462 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.
Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917461 Succesful Companies- Immunization to Global Economic Crisis: Understanding Strategic Role of NGOs
Authors: Suleyman Gokhan Gunay, Gulsevim Yumuk Gunay
Abstract:
One of the most important secrets of succesful companies is the fact that cooperation with NGOs will create a good reputation for them so that they can be immunized to economic crisis. The performance of the most admired companies in the world based on the ratings of Forbes and Fortune show us that most of these firms also have close relationships with their NGOs. Today, if companies do something wrong this information spreads very quickly to do the society. If people do not like the activities of a company, it can find itself in public relations nightmare that can threaten its repuation. Since the cost of communication has dropped dramatically due to the vast use of internet, the increase in communication among stakeholders via internet makes companies more visible. These multiple and interdependent interactions among the network of stakeholders is called as the network relationships. NGOs play the role of catalyst among the stakeholders of a firm to enhance the awareness. Succesful firms are aware of this fact that NGOs have a central role in today-s business world. Firms are also aware of the fact that they can enhance their corporate reputation via cooperation with the NGOs. This fact will be illustrated in this paper by examining some of the actions of the most succesful companies in terms of their cooperations with the NGOs.
Keywords: Network relationships, cooperative behaviors, corporate reputation, immunization to crisis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574460 An Analysis of New Service Interchange Designs
Authors: Joseph E. Hummer
Abstract:
An efficient freeway system will be essential to the development of Africa, and interchanges are a key to that efficiency. Around the world, many interchanges between freeways and surface streets, called service interchanges, are of the diamond configuration, and interchanges using roundabouts or loop ramps are also popular. However, many diamond interchanges have serious operational problems, interchanges with roundabouts fail at high demand levels, and loops use lots of expensive land. Newer service interchange designs provide other options. The most popular new interchange design in the US at the moment is the double crossover diamond (DCD), also known as the diverging diamond. The DCD has enormous potential, but also has several significant limitations. The objectives of this paper are to review new service interchange options and to highlight some of the main features of those alternatives. The paper tests four conventional and seven unconventional designs using seven measures related to efficiency, cost, and safety. The results show that there is no superior design in all measures investigated. The DCD is better than most designs tested on most measures examined. However, the DCD was only superior to all other designs for bridge width. The DCD performed relatively poorly for capacity and for serving pedestrians. Based on the results, African freeway designers are encouraged to investigate the full range of alternatives that could work at the spot of interest. Diamonds and DCDs have their niches, but some of the other designs investigated could be optimum at some spots.
Keywords: Alternative, design, diverging diamond, freeway, interchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279459 Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler
Authors: Yehia A. Eldrainy, Mohammad Nazri Mohd. Jaafar, Tholudin Mat Lazim
Abstract:
This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.
Keywords: cold flow, numerical simulation, combustor;turbulence, axial swirler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207458 Evaluating Contractors in Construction Projects by Multi-Criteria Decision Making and Supply Chain Approach
Authors: Sara Najiazarpour, Mahsa Najiazarpour
Abstract:
There are many problems in contracting projects and their performance. At each project stage and due to different reasons, these problems affect cost, time, and quality. Hence, in order to increase the efficiency and performance in all levels of the chain and with supply chain management approach, there will be a coordination from the beginning of a project to the end of project (handover of project). Contractor selection is the foremost part of construction projects which in this multi-criteria decision-making, the best contractor is determined by expert judgment, different variables, and their priorities. In this paper for selecting the best contractor, numerous criteria were collected by asking from adept experts and then among them, 16 criteria with highest frequency were considered for questionnaire. This questionnaire was distributed between experts. Cronbach's alpha coefficient was used and then based on Borda function important criteria were selected which was categorized in four main criteria as follows: Environmental factors and physical equipment, past performance and technical expertise, affordability and standards. Then with PROMTHEE method, the criteria were normalized and monitored, finally the best alternative was selected. A case study had been done, and the best contractor was selected based on all criteria and their priorities.
Keywords: Evaluation and selecting contractors, project development, supply chain management, multi-criteria decision-making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97457 A New Classification of Risk-Reduction Options to Improve the Risk-Reduction Readiness of the Railway Industry
Authors: Eberechi Weli, Michael Todinov
Abstract:
The gap between the selection of risk-reduction options in the railway industry and the task of their effective implementation results in compromised safety and substantial losses. An effective risk management must necessarily integrate the evaluation phases with the implementation phase. This paper proposes an essential categorisation of risk reduction measures that best addresses a standard railway industry portfolio. By categorising the risk reduction options into design, operational, procedural and technical options, it is guaranteed that the efforts of the implementation facilitators (people, processes and supporting systems) are systematically harmonised. The classification is based on an integration of fundamental principles of risk reduction in the railway industry with the systems engineering approach.
This paper argues that the use of a similar classification approach is an attribute of organisations possessing a superior level of risk-reduction readiness. The integration of the proposed rational classification structure provides a solid ground for effective risk reduction.
Keywords: Cost effectiveness, organisational readiness, risk reduction, railway, system engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806456 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297455 Modeling of Session Initiation Protocol Invite Transaction using Colored Petri Nets
Authors: Sabina Baraković, Dragan Jevtić, Jasmina Baraković Husić
Abstract:
Wireless mobile communications have experienced the phenomenal growth through last decades. The advances in wireless mobile technologies have brought about a demand for high quality multimedia applications and services. For such applications and services to work, signaling protocol is required for establishing, maintaining and tearing down multimedia sessions. The Session Initiation Protocol (SIP) is an application layer signaling protocols, based on request/response transaction model. This paper considers SIP INVITE transaction over an unreliable medium, since it has been recently modified in Request for Comments (RFC) 6026. In order to help in assuring that the functional correctness of this modification is achieved, the SIP INVITE transaction is modeled and analyzed using Colored Petri Nets (CPNs). Based on the model analysis, it is concluded that the SIP INVITE transaction is free of livelocks and dead codes, and in the same time it has both desirable and undesirable deadlocks. Therefore, SIP INVITE transaction should be subjected for additional updates in order to eliminate undesirable deadlocks. In order to reduce the cost of implementation and maintenance of SIP, additional remodeling of the SIP INVITE transaction is recommended.Keywords: Colored Petri Nets, SIP INVITE, state space, dead marking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920454 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment
Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg
Abstract:
Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.
Keywords: Building Information Modelling, BIM, Genetic Algorithm, GA, architecture-engineering-construction, AEC, Optimisation, structure, design, population, generation, selection, mutation, crossover, offspring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826453 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils
Authors: A. S. Soğancı
Abstract:
Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipments by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be said that stabilization of expansive soils with polypropylene fiber is an effective method.Keywords: Expansive soils, polypropylene fiber, stabilization, swelling percent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5750452 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach
Authors: Hani Mekdash, Lina Jaber, Yehia Temsah
Abstract:
Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.Keywords: Excavation, inclinometer, prestressing, shoring system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 523451 Basic Research on Applying Temporary Work Engineering at the Design Phase
Authors: Jin Woong Lee, Kyuman Cho, Taehoon Kim
Abstract:
The application of constructability is increasingly required not only in the construction phase but also in the whole project stage. In particular, the proper application of construction experience and knowledge during the design phase enables the minimization of inefficiencies such as design changes and improvements in constructability during the construction phase. In order to apply knowledge effectively, engineering technology efforts should be implemented with design progress. Among many engineering technologies, engineering for temporary works, including facilities, equipment, and other related construction methods, is important to improve constructability. Therefore, as basic research, this study investigates the applicability of temporary work engineering during the design phase in the building construction industry. As a result, application of temporary work engineering has a greater impact on construction cost reduction and constructability improvement. In contrast to the existing design-bid-build method, the turn-key and CM (construct management) procurement methods currently being implemented in Korea are expected to have a significant impact on the direction of temporary work engineering. To introduce temporary work engineering, expert/professional organization training is first required, and a lack of client awareness should be preferentially improved. The results of this study are expected to be useful as reference material for the development of more effective temporary work engineering tasks and work processes in the future.
Keywords: Temporary work engineering, design phase, constructability, building construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977450 Improvising Intrusion Detection for Malware Activities on Dual-Stack Network Environment
Authors: Zulkiflee M., Robiah Y., Nur Azman Abu, Shahrin S.
Abstract:
Malware is software which was invented and meant for doing harms on computers. Malware is becoming a significant threat in computer network nowadays. Malware attack is not just only involving financial lost but it can also cause fatal errors which may cost lives in some cases. As new Internet Protocol version 6 (IPv6) emerged, many people believe this protocol could solve most malware propagation issues due to its broader addressing scheme. As IPv6 is still new compares to native IPv4, some transition mechanisms have been introduced to promote smoother migration. Unfortunately, these transition mechanisms allow some malwares to propagate its attack from IPv4 to IPv6 network environment. In this paper, a proof of concept shall be presented in order to show that some existing IPv4 malware detection technique need to be improvised in order to detect malware attack in dual-stack network more efficiently. A testbed of dual-stack network environment has been deployed and some genuine malware have been released to observe their behaviors. The results between these different scenarios will be analyzed and discussed further in term of their behaviors and propagation methods. The results show that malware behave differently on IPv6 from the IPv4 network protocol on the dual-stack network environment. A new detection technique is called for in order to cater this problem in the near future.
Keywords: Dual-Stack, Malware, Worm, IPv6;IDS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008449 A Maximum Power Point Tracker for PV Panels Using SEPIC Converter
Authors: S. Ganesh, J. Janani, G. Besliya Angel
Abstract:
Photovoltaic (PV) energy is one of the most important renewable energy sources. Maximum Power Point Tracking (MPPT) techniques should be used in photovoltaic systems to maximize the PV panel output power by tracking continuously the maximum power point which depends on panel’s temperature and on irradiance conditions. Incremental conductance control method has been used as MPPT algorithm. The methodology is based on connecting a pulse width modulated dc/dc SEPIC converter, which is controlled by a microprocessor based unit. The SEPIC converter is one of the buck-boost converters which maintain the output voltage as constant irrespective of the solar isolation level. By adjusting the switching frequency of the converter the maximum power point has been achieved. The main difference between the method used in the proposed MPPT systems and other technique used in the past is that PV array output power is used to directly control the dc/dc converter thus reducing the complexity of the system. The resulting system has high efficiency, low cost and can be easily modified. The tracking capability has been verified experimentally with a 10 W solar panel under a controlled experimental setup. The SEPIC converter and their control strategies has been analyzed and simulated using Simulink/Matlab software.
Keywords: Maximum Power Point Tracking, Microprocessor, PV Module, SEPIC Converter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5972448 A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways
Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Tung-Hsien Hsieh
Abstract:
In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway.
The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4μm in the measurement range of
Keywords: 2-D measurement, linear guideway, motion errors, running straightness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233447 Economic Analysis of Domestic Combined Heat and Power System in the UK
Authors: Thamo Sutharssan, Diogo Montalvao, Yong Chen, Wen-Chung Wang, Claudia Pisac
Abstract:
A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in returns it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10 year warranty.
Keywords: Combined Heat and Power, Clean Energy, Hydrogen Fuel Cell, Economic Analysis of CHP, Zero Emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068446 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.Keywords: Incremental conductance Algorithm, Perturb and Observe Algorithm, Photovoltaic System and Simulation Results.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260445 Virtual Container Yard: Assessing the Perceived Impact of Legal Implications to Container Carriers
Authors: L. Edirisinghe, P. Mukherjee, H. Edirisinghe
Abstract:
Virtual Container Yard (VCY) is a modern concept that helps to reduce the empty container repositioning cost of carriers. The concept of VCY is based on container interchange between shipping lines. Although this mechanism has been theoretically accepted by the shipping community as a feasible solution, it has not yet achieved the necessary momentum among container shipping lines (CSL). This paper investigates whether there is any legal influence on this industry myopia about the VCY. It is believed that this is the first publication that focuses on the legal aspects of container exchange between carriers. Not much literature on this subject is available. This study establishes with statistical evidence that there is a phobia prevailing in the shipping industry that exchanging containers with other carriers may lead to various legal implications. The complexity of exchange is two faceted. CSLs assume that offering a container to another carrier (obviously, a competitor in terms of commercial context) or using a container offered by another carrier may lead to undue legal implications. This research reveals that this fear is reflected through four types of perceived components, namely: shipping associate; warehouse associate; network associate; and trading associate. These components carry eighteen subcomponents that comprehensively cover the entire process of a container shipment. The statistical explanation has been supported through regression analysis; INCO terms were used to illustrate the shipping process.
Keywords: Container, legal, shipping, virtual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622444 Dynamic Variational Multiscale LES of Bluff Body Flows on Unstructured Grids
Authors: Carine Moussaed, Stephen Wornom, Bruno Koobus, Maria Vittoria Salvetti, Alain Dervieux,
Abstract:
The effects of dynamic subgrid scale (SGS) models are investigated in variational multiscale (VMS) LES simulations of bluff body flows. The spatial discretization is based on a mixed finite element/finite volume formulation on unstructured grids. In the VMS approach used in this work, the separation between the largest and the smallest resolved scales is obtained through a variational projection operator and a finite volume cell agglomeration. The dynamic version of Smagorinsky and WALE SGS models are used to account for the effects of the unresolved scales. In the VMS approach, these effects are only modeled in the smallest resolved scales. The dynamic VMS-LES approach is applied to the simulation of the flow around a circular cylinder at Reynolds numbers 3900 and 20000 and to the flow around a square cylinder at Reynolds numbers 22000 and 175000. It is observed as in previous studies that the dynamic SGS procedure has a smaller impact on the results within the VMS approach than in LES. But improvements are demonstrated for important feature like recirculating part of the flow. The global prediction is improved for a small computational extra cost.Keywords: variational multiscale LES, dynamic SGS model, unstructured grids, circular cylinder, square cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828443 Design and Fabrication of a Parabolic Trough Collector and Experimental Investigation of Wind Impact on Direct Steam Production in Tehran
Authors: H. Akhbari, M. Bidi, A. Bakhtiari, S. Eslami
Abstract:
The present paper aims to the techno-economic feasibility of enhancing low-cost parabolic trough collectors in the light of developing the use of solar energy in under-developed regions where expensive high-tech solar devices cannot be afforded. Moreover, the collector is aimed to produce steam so that its performance is based on heat which can be discovered. In this regard, the manufacturing process and the detailed design models in Solidworks software are elaborated. Furthermore, the colletor’s material is chosen in a way to minimize the costs. Finally, to assess the performance of the built collector, it is installed in the site of Shahid Beheshti University, Tehran, and the values of the effective peripheral parameters, such as temperature, wind speed, and most importantly, solar irradiance, are recorded simultaneously in June. According to the results obtained, the manufactured collector with the aperture area of 2 m2 (1×2 m) is capable of producing 350 ml.h-1 steam. Also, the wind influence is comprehensively investigated in this paper. As a case in point, it was measured that as the wind speed maximized to 9.77 km/h, the amount of steam outlet is minimized to 580 ml.
Keywords: Direct steam production, design and fabrication parabolic trough collector, solar water heater, wind impact, experimental investigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996442 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.
Keywords: Cyanex 272, emulsion liquid membrane, multiwalled carbon nanotubes, nanofluid, response surface methodology, Samarium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862