Search results for: sparse graph
130 On Minimum Cycle Bases of the Wreath Product of Wheels with Stars
Authors: M. M. M. Jaradat, M. K. Al-Qeyyam
Abstract:
The length of a cycle basis of a graph is the sum of the lengths of its elements. A minimum cycle basis is a cycle basis with minimum length. In this work, a construction of a minimum cycle basis for the wreath product of wheels with stars is presented. Moreover, the length of minimum cycle basis and the length of its longest cycle are calculated.
Keywords: Cycle space, minimum cycle basis, wreath product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102129 SIPINA Induction Graph Method for Seismic Risk Prediction
Authors: B. Selma
Abstract:
The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.
Keywords: SIPINA method, seism, focal depth, peak ground acceleration, displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211128 Land Use Change Detection Using Remote Sensing and GIS
Authors: Naser Ahmadi Sani, Karim Solaimani, Lida Razaghnia, Jalal Zandi
Abstract:
In recent decades, rapid and incorrect changes in land-use have been associated with consequences such as natural resources degradation and environmental pollution. Detecting changes in land-use is one of the tools for natural resource management and assessment of changes in ecosystems. The target of this research is studying the land-use changes in Haraz basin with an area of 677000 hectares in a 15 years period (1996 to 2011) using LANDSAT data. Therefore, the quality of the images was first evaluated. Various enhancement methods for creating synthetic bonds were used in the analysis. Separate training sites were selected for each image. Then the images of each period were classified in 9 classes using supervised classification method and the maximum likelihood algorithm. Finally, the changes were extracted in GIS environment. The results showed that these changes are an alarm for the HARAZ basin status in future. The reason is that 27% of the area has been changed, which is related to changing the range lands to bare land and dry farming and also changing the dense forest to sparse forest, horticulture, farming land and residential area.
Keywords: HARAZ Basin, Change Detection, Land-use, Satellite Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325127 Induced Acyclic Path Decomposition in Graphs
Authors: Abraham V. M., I. Sahul Hamid
Abstract:
A decomposition of a graph G is a collection ψ of graphs H1,H2, . . . , Hr of G such that every edge of G belongs to exactly one Hi. If each Hi is either an induced path in G, then ψ is called an induced acyclic path decomposition of G and if each Hi is a (induced) cycle in G then ψ is called a (induced) cycle decomposition of G. The minimum cardinality of an induced acyclic path decomposition of G is called the induced acyclic path decomposition number of G and is denoted by ¤Çia(G). Similarly the cyclic decomposition number ¤Çc(G) is defined. In this paper we begin an investigation of these parameters.Keywords: Cycle decomposition, Induced acyclic path decomposition, Induced acyclic path decomposition number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575126 Feature Selection with Kohonen Self Organizing Classification Algorithm
Authors: Francesco Maiorana
Abstract:
In this paper a one-dimension Self Organizing Map algorithm (SOM) to perform feature selection is presented. The algorithm is based on a first classification of the input dataset on a similarity space. From this classification for each class a set of positive and negative features is computed. This set of features is selected as result of the procedure. The procedure is evaluated on an in-house dataset from a Knowledge Discovery from Text (KDT) application and on a set of publicly available datasets used in international feature selection competitions. These datasets come from KDT applications, drug discovery as well as other applications. The knowledge of the correct classification available for the training and validation datasets is used to optimize the parameters for positive and negative feature extractions. The process becomes feasible for large and sparse datasets, as the ones obtained in KDT applications, by using both compression techniques to store the similarity matrix and speed up techniques of the Kohonen algorithm that take advantage of the sparsity of the input matrix. These improvements make it feasible, by using the grid, the application of the methodology to massive datasets.Keywords: Clustering algorithm, Data mining, Feature selection, Grid, Kohonen Self Organizing Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052125 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit
Authors: Ahmed Elrewainy
Abstract:
Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.
Keywords: Basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837124 Using Multi-Thread Technology Realize Most Short-Path Parallel Algorithm
Authors: Chang-le Lu, Yong Chen
Abstract:
The shortest path question is in a graph theory model question, and it is applied in many fields. The most short-path question may divide into two kinds: Single sources most short-path, all apexes to most short-path. This article mainly introduces the problem of all apexes to most short-path, and gives a new parallel algorithm of all apexes to most short-path according to the Dijkstra algorithm. At last this paper realizes the parallel algorithms in the technology of C # multithreading.Keywords: Dijkstra algorithm, parallel algorithms, multi-thread technology, most short-path, ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111123 Using Rao-Blackwellised Particle Filter Track 3D Arm Motion based on Hierarchical Limb Model
Authors: XueSong Yu, JiaFeng Liu, XiangLong Tang, JianHua Huang
Abstract:
For improving the efficiency of human 3D tracking, we present an algorithm to track 3D Arm Motion. First, the Hierarchy Limb Model (HLM) is proposed based on the human 3D skeleton model. Second, via graph decomposition, the arm motion state space, modeled by HLM, can be discomposed into two low dimension subspaces: root nodes and leaf nodes. Finally, Rao-Blackwellised Particle Filter is used to estimate the 3D arm motion. The result of experiment shows that our algorithm can advance the computation efficiency.Keywords: Hierarchy Limb Model; Rao-Blackwellised Particle Filter; 3D tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590122 A Text Clustering System based on k-means Type Subspace Clustering and Ontology
Authors: Liping Jing, Michael K. Ng, Xinhua Yang, Joshua Zhexue Huang
Abstract:
This paper presents a text clustering system developed based on a k-means type subspace clustering algorithm to cluster large, high dimensional and sparse text data. In this algorithm, a new step is added in the k-means clustering process to automatically calculate the weights of keywords in each cluster so that the important words of a cluster can be identified by the weight values. For understanding and interpretation of clustering results, a few keywords that can best represent the semantic topic are extracted from each cluster. Two methods are used to extract the representative words. The candidate words are first selected according to their weights calculated by our new algorithm. Then, the candidates are fed to the WordNet to identify the set of noun words and consolidate the synonymy and hyponymy words. Experimental results have shown that the clustering algorithm is superior to the other subspace clustering algorithms, such as PROCLUS and HARP and kmeans type algorithm, e.g., Bisecting-KMeans. Furthermore, the word extraction method is effective in selection of the words to represent the topics of the clusters.
Keywords: Subspace Clustering, Text Mining, Feature Weighting, Cluster Interpretation, Ontology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462121 Effects of Data Correlation in a Sparse-View Compressive Sensing Based Image Reconstruction
Authors: Sajid Abbas, Joon Pyo Hong, Jung-Ryun Lee, Seungryong Cho
Abstract:
Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.
Keywords: Computed tomography, Computed laminography, Compressive sending, Low-dose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672120 Ontology-Based Systemizing of the Science Information Devoted to Waste Utilizing by Methanogenesis
Authors: Ye. Shapovalov, V. Shapovalov, O. Stryzhak, A. Salyuk
Abstract:
Over the past decades, amount of scientific information has been growing exponentially. It became more complicated to process and systemize this amount of data. The approach to systematization of scientific information on the production of biogas based on the ontological IT platform “T.O.D.O.S.” has been developed. It has been proposed to select semantic characteristics of each work for their further introduction into the IT platform “T.O.D.O.S.”. An ontological graph with a ranking function for previous scientific research and for a system of selection of microorganisms has been worked out. These systems provide high performance of information management of scientific information.
Keywords: Ontology-based analysis, analysis of scientific data, methanogenesys, microorganism hierarchy, T.O.D.O.S.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734119 Implementation of an Associative Memory Using a Restricted Hopfield Network
Authors: Tet H. Yeap
Abstract:
An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.Keywords: Associative memory, Hopfield network, Lyapunov function, Restricted Hopfield network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 491118 On the Development of a Homogenized Earthquake Catalogue for Northern Algeria
Authors: I. Grigoratos, R. Monteiro
Abstract:
Regions with a significant percentage of non-seismically designed buildings and reduced urban planning are particularly vulnerable to natural hazards. In this context, the project ‘Improved Tools for Disaster Risk Mitigation in Algeria’ (ITERATE) aims at seismic risk mitigation in Algeria. Past earthquakes in North Algeria caused extensive damages, e.g. the El Asnam 1980 moment magnitude (Mw) 7.1 and Boumerdes 2003 Mw 6.8 earthquakes. This paper will address a number of proposed developments and considerations made towards a further improvement of the component of seismic hazard. In specific, an updated earthquake catalog (until year 2018) is compiled, and new conversion equations to moment magnitude are introduced. Furthermore, a network-based method for the estimation of the spatial and temporal distribution of the minimum magnitude of completeness is applied. We found relatively large values for Mc, due to the sparse network, and a nonlinear trend between Mw and body wave (mb) or local magnitude (ML), which are the most common scales reported in the region. Lastly, the resulting b-value of the Gutenberg-Richter distribution is sensitive to the declustering method.
Keywords: Conversion equation, magnitude of completeness, seismic events, seismic hazard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816117 Connectivity Characteristic of Transcription Factor
Authors: T. Mahalakshmi, Aswathi B. L., Achuthsankar S. Nair
Abstract:
Transcription factors are a group of proteins that helps for interpreting the genetic information in DNA. Protein-protein interactions play a major role in the execution of key biological functions of a cell. These interactions are represented in the form of a graph with nodes and edges. Studies have showed that some nodes have high degree of connectivity and such nodes, known as hub nodes, are the inevitable parts of the network. In the present paper a method is proposed to identify hub transcription factor proteins using sequence information. On a complete data set of transcription factor proteins available from the APID database, the proposed method showed an accuracy of 77%, sensitivity of 79% and specificity of 76%.Keywords: Transcription Factor Proteins, Hub Proteins, Shannon Index, Transfer Free Energy to Surface (TFES).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394116 A Self Configuring System for Object Recognition in Color Images
Authors: Michela Lecca
Abstract:
System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.
Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408115 End-to-End Pyramid Based Method for MRI Reconstruction
Authors: Omer Cahana, Maya Herman, Ofer Levi
Abstract:
Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.
Keywords: Accelerate MRI scans, image reconstruction, pyramid network, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 336114 Improved Algorithms for Construction of Interface Agent Interaction Model
Authors: Huynh Quyet Thang, Le Hai Quan
Abstract:
Interaction Model plays an important role in Modelbased Intelligent Interface Agent Architecture for developing Intelligent User Interface. In this paper we are presenting some improvements in the algorithms for development interaction model of interface agent including: the action segmentation algorithm, the action pair selection algorithm, the final action pair selection algorithm, the interaction graph construction algorithm and the probability calculation algorithm. The analysis of the algorithms also presented. At the end of this paper, we introduce an experimental program called “Personal Transfer System".Keywords: interface agent, interaction model, user model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196113 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent
Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon
Abstract:
This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.Keywords: Microgrids, secondary control, multiagent, sampling, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450112 An Edit-Distance Algorithm to Detect Correlated Attacks in Distributed Systems
Authors: Sule Simsek
Abstract:
Intrusion detection systems (IDS)are crucial components of the security mechanisms of today-s computer systems. Existing research on intrusion detection has focused on sequential intrusions. However, intrusions can also be formed by concurrent interactions of multiple processes. Some of the intrusions caused by these interactions cannot be detected using sequential intrusion detection methods. Therefore, there is a need for a mechanism that views the distributed system as a whole. L-BIDS (Lattice-Based Intrusion Detection System) is proposed to address this problem. In the L-BIDS framework, a library of intrusions and distributed traces are represented as lattices. Then these lattices are compared in order to detect intrusions in the distributed traces.Keywords: Attack graph, distributed, edit-distance, misuse detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388111 Object Recognition in Color Images by the Self Configuring System MEMORI
Authors: Michela Lecca
Abstract:
System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a self configuring and highly user-friendly tool.Keywords: Automatic Object Recognition, Clustering, Contentbased Image Retrieval System, Image Segmentation, Region Adjacency Graph, Region Grouping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202110 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques
Authors: Faisal Alshuwaier, Ali Areshey
Abstract:
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound (BB) method to simplify the texts.
Keywords: Extraction, Max-Prod, Fuzzy Relations, Text Mining, Memberships, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184109 Dual Band Microstrip Patch Antenna for IEEE802.11b Application
Authors: Biplab Bag
Abstract:
In this paper, the design of a coaxial feed single layer rectangular microstrip patch antenna for IEEE802.11b application is presented. The proposed antenna is designed by using substrate FR4_epoxy having permittivity of about 4.4 and tangent loss of 0.013. The characteristics of the substrate are designed and to evaluate the performance of modeled antenna using HFSS v.11 EM simulator, from Ansoft. The proposed antenna dual resonant frequency has been achieved in the band of 1.57GHz-1.68GHz (with BW 30 MHz) and 2.25 GHz -2.55GHz (with BW 40MHz). The simulation results with frequency response, radiation pattern and return loss, VSWR, Input Impedance are presented with appropriate table and graph.
Keywords: Microstrip, Radiation Pattern, Return Loss, Tangent Loss, VSWR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3046108 Applying Branch-and-Bound and Petri Net Methods in Solving the Two-Sided Assembly Line Balancing Problem
Authors: Nai-Chieh Wei, I-Ming Chao, Chin-Jung Liuand, Hong Long Chen
Abstract:
This paper combines the branch-and-bound method and the petri net to solve the two-sided assembly line balancing problem, thus facilitating effective branching and pruning of tasks. By integrating features of the petri net, such as reachability graph and incidence matrix, the propose method can support the branch-and-bound to effectively reduce poor branches with systematic graphs. Test results suggest that using petri net in the branching process can effectively guide the system trigger process, and thus, lead to consistent results.
Keywords: Branch-and-Bound Method, Petri Net, Two-Sided Assembly Line Balancing Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917107 An Efficient Algorithm for Reliability Lower Bound of Distributed Systems
Authors: Mohamed H. S. Mohamed, Yang Xiao-zong, Liu Hong-wei, Wu Zhi-bo
Abstract:
The reliability of distributed systems and computer networks have been modeled by a probabilistic network or a graph G. Computing the residual connectedness reliability (RCR), denoted by R(G), under the node fault model is very useful, but is an NP-hard problem. Since it may need exponential time of the network size to compute the exact value of R(G), it is important to calculate its tight approximate value, especially its lower bound, at a moderate calculation time. In this paper, we propose an efficient algorithm for reliability lower bound of distributed systems with unreliable nodes. We also applied our algorithm to several typical classes of networks to evaluate the lower bounds and show the effectiveness of our algorithm.Keywords: Distributed systems, probabilistic network, residual connectedness reliability, lower bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683106 Data and Control Flow Analysis of VDMµ Specifications
Authors: Mubina Nazmeen, Iram Rubab
Abstract:
Formal Specification languages are being widely used for system specification and testing. Highly critical systems such as real time systems, avionics, and medical systems are represented using Formal specification languages. Formal specifications based testing is mostly performed using black box testing approaches thus testing only the set of inputs and outputs of the system. The formal specification language such as VDMµ can be used for white box testing as they provide enough constructs as any other high level programming language. In this work, we perform data and control flow analysis of VDMµ class specifications. The proposed work is discussed with an example of SavingAccount.Keywords: VDM-SL, VDMµ, data flow graph, control flowgraph, testing, formal specification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4377105 An HCI Template for Distributed Applications
Authors: Xizhi Li
Abstract:
Both software applications and their development environment are becoming more and more distributed. This trend impacts not only the way software computes, but also how it looks. This article proposes a Human Computer Interface (HCI) template from three representative applications we have developed. These applications include a Multi-Agent System based software, a 3D Internet computer game with distributed game world logic, and a programming language environment used in constructing distributed neural network and its visualizations. HCI concepts that are common to these applications are described in abstract terms in the template. These include off-line presentation of global entities, entities inside a hierarchical namespace, communication and languages, reconfiguration of entity references in a graph, impersonation and access right, etc. We believe the metaphor that underlies an HCI concept as well as the relationships between a bunch of HCI concepts are crucial to the design of software systems and vice versa.
Keywords: HCI, MAS, computer game, programming language
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533104 Instance-Based Ontology Matching Using Different Kinds of Formalism
Authors: Katrin Zaiß, Tim Schlüter, Stefan Conrad
Abstract:
Ontology Matching is a task needed in various applica-tions, for example for comparison or merging purposes. In literature,many algorithms solving the matching problem can be found, butmost of them do not consider instances at all. Mappings are deter-mined by calculating the string-similarity of labels, by recognizinglinguistic word relations (synonyms, subsumptions etc.) or by ana-lyzing the (graph) structure. Due to the facts that instances are oftenmodeled within the ontology and that the set of instances describesthe meaning of the concepts better than their meta information,instances should definitely be incorporated into the matching process.In this paper several novel instance-based matching algorithms arepresented which enhance the quality of matching results obtainedwith common concept-based methods. Different kinds of formalismsare use to classify concepts on account of their instances and finallyto compare the concepts directly.KeywordsInstances, Ontology Matching, Semantic Web
Keywords: Instances, Ontology Matching, Semantic Web
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526103 Surface Flattening based on Linear-Elastic Finite Element Method
Authors: Wen-liang Chen, Peng Wei, Yidong Bao
Abstract:
This paper presents a linear-elastic finite element method based flattening algorithm for three dimensional triangular surfaces. First, an intrinsic characteristic preserving method is used to obtain the initial developing graph, which preserves the angles and length ratios between two adjacent edges. Then, an iterative equation is established based on linear-elastic finite element method and the flattening result with an equilibrium state of internal force is obtained by solving this iterative equation. The results show that complex surfaces can be dealt with this proposed method, which is an efficient tool for the applications in computer aided design, such as mould design.
Keywords: Triangular mesh, surface flattening, finite elementmethod, linear-elastic deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163102 A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan mCaD
Authors: Kjersti Engan, Thor Ole Gulsrud, Karl Fredrik Fretheim, Barbro Furebotten Iversen, Liv Eriksen
Abstract:
Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan μCaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction, VarMet, and adaptive thresholding. This will also give a number of false detections. The goal of the second step, Classifier level 1, is to remove everything but microcalcifications. The last step, Classifier level 2, uses learned dictionaries and sparse representations as a texture classification technique to distinguish single, benign microcalcifications from clustered microcalcifications, in addition to remove some remaining false detections. The system is trained and tested on true digital data from Stavanger University Hospital, and the results are evaluated by radiologists. The overall results are promising, with a sensitivity > 90 % and a low false detection rate (approx 1 unwanted pr. image, or 0.3 false pr. image).Keywords: mammogram, microcalcifications, detection, CAD, MammoScan μCaD, VarMet, dictionary learning, texture, FTCM, classification, adaptive thresholding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807101 Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach
Abstract:
In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain.Keywords: Multi-physical domain, conduction model, port-based modeling, dynamic interaction, physical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301