

Abstract—The shortest path question is in a graph theory model

question, and it is applied in many fields. The most short-path
question may divide into two kinds: Single sources most short-path,
all apexes to most short-path. This article mainly introduces the
problem of all apexes to most short-path, and gives a new parallel
algorithm of all apexes to most short-path according to the Dijkstra
algorithm. At last this paper realizes the parallel algorithms in the

technology of C # multithreading.

Keywords—Dijkstra algorithm, parallel algorithms, multi-thread
technology, most short-path, ratio.

I. INTRODUCTION
ITH the development of computer, the graph theory
research obtains widely takes, and the most short-path

question as a model question of graph theory is already
applied in many fields. Because the efficiency of the existing
most short-path serial algorithm is not very high, and it is
already with difficulty in satisfying the need in modern.
Therefore, this paper proposes a new most short-path parallel
algorithm, and has carried on it using the multi-thread
technology.

II. THE QUESTION OF ALL APEXES TO MOST SHORT-PATH
All apexes to the most short-path are calculating all apexes

to the most short-path in the graph. In the research of the most
short-path question, the Dijkstra algorithm is one of most
classical algorithms [3]. In this introduced first the serial
Dijkstra algorithm, then further introduces its corresponding
parallel algorithm.

A. Serial Dijkstra Algorithm [2]

Supposes an oriented graph),(EVG , W is the weighting

adjacency matrix of
nV =

, and using ()jiw , expresses the

Length of side of ()ji, . If between i and j it does not exist the

oriented side, then ()jiw , is ∞，

Manuscript received September 8, 2006.
Chang-le Lu is with School of Computer Technology and Automation of

Tianjin Polytechnic University, Tianjin, China (corresponding author, e-mail:
luchangle_1815@sina.com).

Yong Chen is with School of Computer Technology and Automation of
Tianjin Polytechnic University, Tianjin, China.

()nSVjinji ,,,,1 ∈≤≤ was the most short-path end point

set array which iV embarked from the apex ()ni ≤≤1 .In the
array each set original state is a null set. The starting value of

from iV embarking to other apexes in the chart
()ijnjV j ≠≤≤ ,1

 is
[] [locatearcsjd = ()[]]jvGVex , ,

VV j ∈ .

B. Based on Dijkstra Algorithm Transformation to a New
Parallel Algorithm

Because in above Dijkstra algorithm, in the chart each apex
sequence of operation is same, therefore it may use the method
of the serial algorithm direct parallelization to transformation
to the parallel algorithm [1]. Namely: Assigns a processor
each apex computation duty to complete separately, it realizes
the Dijkstra algorithm parallelization. It is following the new
parallelization algorithm:

Input: Oriented graph),(EVG weighting adjacency

matrix
{ }ijWW =

, Vji ∈,
Output: All apexes to most short-path

matrix
{ }ijdD =

, Vji ∈,
Begin
D←W
For each k par-do
S (k) =k
 d←D(k)
 For i=1 to n do
 m= (min (d (p)) and p ¢ S (k)) 1≤p≤n
 S (k) =S (k) +m
 For j=1 to n do
 If j ¢ S (k) and m+W(p,j)< d(j)then
 D [j] =m+W(p,j)
 Endfor
 Endfor
 D (k) ←d
 Endfor
End

C. Algorithm Performance Analysis
In the Dijkstra serial algorithm, it has three nestlings cyclic

sentences, therefore its time order of complexity is ()3nO ; In

Using Multi-Thread Technology Realize Most
Short-Path Parallel Algorithm

Chang-le Lu, and Yong Chen

W

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:2, No:3, 2008

307International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
3,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
20

8.
pd

f

the Dijkstra parallel algorithm, the design strategy of serial
algorithm direct parallelization has already carried on the first
cyclic sentence the resolution, and hands over separately them
in the different processor to complete. Therefore, its time

order of complexity was ()2nO , and the performance of
Dijkstra parallel algorithm will be much higher than its serial
algorithm.

III. THE EXAMPLE OF BETWEEN ALL APEXES MOST
SHORT-PATH IN CHART

Using above solution of all apexes to the most short-path
solves in the oriented graph which as shown in Fig. 1 all
apexes to between the most short-path. First according to the
oriented graph apex and the side information which gives, we
write the oriented graph the adjacency matrix. The Dijkstra
algorithm introduced above is used to solving this question.
As space is limited, only aims at the new parallel algorithm
here are making a simple analysis using the multi-thread
knowledge.

A. Using Multi-Thread Technology Realization Parallel
Algorithm Feasibility Analysis

In multi-processor system, because has many CPU
hardware resources, so in each advancement rank the
independent thread may hold the different CPU resources
mutually to achieve in the true sense concurrent execution
separately. Possibly it is more than in the multiprocessing
system in the advancement rank many concurrent execution
threads number the CPU integer, therefore it will create the
partial threads inevitably the movement because of the
hardware resources limit, and then it will be unable to do the
immediate execution. Actually which thread carry out first
supports the multi-duties the operating system to carry on the
management, does not need to carry on the artificial
intervention again, so this greatly reduced the programming
work? Because the thread opening and the management are
finished by operating system, therefore it will consume extra
part of system resources [4]. Might as well the located time

section in i , opens iM thread, these parallel thread
computation load respectively records

is: ijQ),,2,1(iMj ⋅⋅⋅= in remains unresolved question
there is n such time section. The operating system manages
each thread the time expenses is: t . The total time needs

which using the multi-thread computation records is jT
.The

ordinary serial procedure computation needs the time records
is T . The number of CPU the multi-processor system has is
C . Then leaves mutually the independent thread procedure
and between not the ordinary serial procedure movement time
has the following relations, like the formula (1), formula (2)
shows:

∑
∑

=

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

×+=
n

i
i

m

j
ij

j tM
C

Q
T

i

1

1

 (1)

∑ ∑
= =

=
n

i

M

j
ij

i

QT
1 1 (2)

Not difficult to discover by the above equation that, when in
the computer system the processor integer is more than one,
and each parallel thread assignment computation load quite is

big, and then ∑
∑

=

= <×+
i

i

M

j
iji

M

j
ij

QtM
C

Q

1

1 . At This time the

efficiency of using the multi-thread design parallel procedure
compare to carry out the efficiency the corresponding serial

procedure is higher. When the value of C
j
∑
=

iM

1
ijQ

is bigger

than t×iM , t×iM may neglect regarding the formula (1)

influence. At this time jT
T

 ratio tends to C . In the actual, the
parallel question scale which will be resolved generally is all
big, thus theoretically realizing the parallel algorithm using the
multi-thread technology is feasible, and can improve the
efficiency.

B. Realizes the Dijkstra Parallel Algorithm using the
Multi-Thread Technology

In the Dijkstra parallel algorithm, it needs n processors
(n is in chart apex number) can satisfy its algorithm request.
Also it is changing in the actual process number along with the
question. Therefore it is very difficult each time to be able to
satisfy the algorithm completely the request (hardware
request). In order to achieve versatility of the algorithm,
according to the above theoretical analysis again, it simulates
in the reality using the multithreading the processor. Therefore
when carries on this algorithm the design, it does not need
again to consider the concrete hardware equipment, and holds
each thread to the system processor the situation to give the
operating system to complete, and this step to the user is

Fig. 1 Example oriented graph

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:2, No:3, 2008

308International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
3,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
20

8.
pd

f

transparent. Because the example altogether has 8 apexes,
according to above analysis, it should correspondingly assign
8 threads to it to simulate the corresponding processor. Each
thread partial variable simulates each processor independent
memory. Finally carry on each thread and the computed result
compiles, like this then obtain the computed result which
finally needs.

IV. EXPERIMENTAL ENVIRONMENT AND TEST RESULT
In order to confirm the theoretical analysis which the

preamble states, we has performed two experiments for this.
Two experimental backgrounds are the same (by this
guarantee research question nature invariable), only difference
is the environment of the experiments. Its concrete
experimental background and experimental environment as
follows shows:

A. Experimental Background
In order to achieve the ideal realization effect, in the

condition of not changing serial and parallel algorithm design
original intention premise, gave serial and the parallel
algorithm separately the following sentence which consumed
the same CPU idle operation：

For (int tempI = 0; tempI < N; tempI ++)
 temp = temp*2 + tempI;
(Variable N meaning: CPU idle operation weight)

B. Experimental Environment and Test Result
Experimental environment one:
CPU integer: 1; Machine type: X86 Family 6 model 8;

Basic frequency: 800MHZ; Operating system: Windows 2000;
Programming language: C # [7].

Experimental environment two:
CPU integer: 4; Machine type: HP server; Basic frequency:

800MHZ; Operating system: Windows 2000; Programming
language: C # .

Under above two kind of experimental environment, the
algorithm all can discover Fig. 1 the most short-path .Its
algorithm execution time and ratio (when N=10 X), as shown
in Table I:

V. CONCLUSION
Is not rare by above experimental result the following

conclusion: Even if the ordinary serial procedure operating in
the multi-processor system is also unable to use the
corresponding hardware resources fully, with little difference
of on single plane system; But use multithreading technology
development parallel application procedure, when it operates
the multiprocessing system, along with each thread
computation load enlarging (in the above experiment is, its
performance which increases through computation weight
manifests) it has the distinct enhancement, and then the
performance enhances the scope and the processor integer is
proportional. The fact had further proven above theoretical
analysis is correct. The parallel programming environment and
the tool always lack the long vegetal period, and it is unable to
renew through the unceasing edition, form with nowadays PC
machine or the workstation equally easy to use environment
and the tool. When carrying on the parallel programming
using the multi-thread technology, it does not need again to
consider the concrete hardware factor[6]. Now the majority
operating system generally supports the multi-thread
technology, in addition C # language its good cross
platform[7], thus it causes when carrying on the parallel
programming, it only need pay attention with question itself
which remains unresolved. Thus it said the multi-thread
technology for the design and the realization of the parallel
algorithm open one new way.

REFERENCES
[1] Guo-liang Chen. Parallel algorithm design and analysis. Beijing: Higher

education publishing house, 2002, 433~434.
[2] Wei-min Yan, Wei-min Wu. Construction of data. Beijing: Qinghua

University publishing house, 2001.
[3] Yijie Han, V.Y.Pan,J. H. Reif, Efficient Parallel Algorithms for

Computing All Pair Shortest Paths in Directed Graphs, Algorithmica
(1997) 17: 399–415.

[4] Hong,Cheng An, Guo-Liang Chen. Parallel programming model and
language. Journal of Software, 2002.

[5] Jin-long Ji, Jin-li Zhong. Parallel programming model, language and
translation technology. Small microcomputer system, 1995.

[6] Dai-ping Ji, Shou-wen Luo, Xin-yi Zhang. The parallel procedure
develops the platform architecture the formalized research. Computer
applied research, 2004.

[7] H.M.Deitel, Hao-han Ge,Yong-tao Tang. C # university course. Qinghua
University publishing house, 2003.

Changle Lu received Bachelor degree in Computer application technology in
Yantai Normal University in China. Now he is studying towards Master
degree in Computer application technology in Tianjin Polytechnic University
in China. His interest is in the field of algorithm design. Now he is making his
graduation topic of realizing high performance video frequency encoder throw
FPGA.

Yong Chen is a associate professor of Computer Technology and Automation
of Tianjin Polytechnic University. His research direction is parallel
computation and computer architecture (phone: +86-13752679603,
022-24585035; e-mail:luchangle_1815@163.com).

TABLE I
DIJKSTRA ALGORITHM EXECUTION TIME AND RATIO

 X=6 X=7 X=8 X=9
S

(ms)
47 340.3 3142 32254

P
(ms)

84.7 495.6 3307.3 33951.5

SP

R 0.55 0.86 0.95 0.95
S

(ms)
49 391.2 3822.3 37947.6

1
P

(ms)
33.11 106.59 987.67 9582.7

MM

R 1.48 3.67 3.78 3.96
SP= Single processor; MM= Multiprocessing machine;
S= Serial; P= Parallel; R= Ratio; ms= Millisecond.

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:2, No:3, 2008

309International Scholarly and Scientific Research & Innovation 2(3) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s

E
ng

in
ee

ri
ng

 V
ol

:2
, N

o:
3,

 2
00

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/5
20

8.
pd

f

