Search results for: plastic viscosity.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 594

Search results for: plastic viscosity.

324 Preparation of Homogeneous Dense Composite of Zirconia and Alumina (ZTA)using Colloidal Filtration

Authors: H. Wakily, M. Mehrali, H. S. C. Metselaar

Abstract:

Homogeneous composites of alumina and zirconia with a small amount of MgO (<1 wt %) were prepared by colloidal filtration. The object of using ZrO2 (15wt %) was to provide zirconia toughened alumina (ZTA). Suspensions of alumina and Zirconia with various solid loadings and various concentrations of Dolapix CE64 as surfactant were studied. The stability of these suspensions was investigated using rheological measurements. The optimum amount of using Dolapix was 0.8wt% for ZTA containing MgO suspension which gave low apparent viscosity in basic area (100 mPa s at shear rate of 50 s-1). The satisfactory mixtures were made into sample pallets using colloidal filtration. The process was completed with pressureless sintering in suitable temperature. Phase, grain size and qualitative compositional analysis were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM) images. ZTA containing 0.05 wt% MgO shows the lowest grain size for alumina around 0.5 μm. Densification studies show that near full densities (>99%) were obtained for ZTA ceramic containing 0.05 wt% MgO in 1500 °C.

Keywords: Colloidal filtration, Dolapix, MgO, Zirconiatoughened alumina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
323 Mechanical, Thermal and Biodegradable Properties of Bioplast-Spruce Green Wood Polymer Composites

Authors: A. Atli, K. Candelier, J. Alteyrac

Abstract:

Environmental and sustainability concerns push the industries to manufacture alternative materials having less environmental impact. The Wood Plastic Composites (WPCs) produced by blending the biopolymers and natural fillers permit not only to tailor the desired properties of materials but also are the solution to meet the environmental and sustainability requirements. This work presents the elaboration and characterization of the fully green WPCs prepared by blending a biopolymer, BIOPLAST® GS 2189 and spruce sawdust used as filler with different amounts. Since both components are bio-based, the resulting material is entirely environmentally friendly. The mechanical, thermal, structural properties of these WPCs were characterized by different analytical methods like tensile, flexural and impact tests, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). Their water absorption properties and resistance to the termite and fungal attacks were determined in relation with different wood filler content. The tensile and flexural moduli of WPCs increased with increasing amount of wood fillers into the biopolymer, but WPCs became more brittle compared to the neat polymer. Incorporation of spruce sawdust modified the thermal properties of polymer: The degradation, cold crystallization, and melting temperatures shifted to higher temperatures when spruce sawdust was added into polymer. The termite, fungal and water absorption resistance of WPCs decreased with increasing wood amount in WPCs, but remained in durability class 1 (durable) concerning fungal resistance and quoted 1 (attempted attack) in visual rating regarding to the termites resistance except that the WPC with the highest wood content (30 wt%) rated 2 (slight attack) indicating a long term durability. All the results showed the possibility to elaborate the easy injectable composite materials with adjustable properties by incorporation of BIOPLAST® GS 2189 and spruce sawdust. Therefore, lightweight WPCs allow both to recycle wood industry byproducts and to produce a full ecologic material.

Keywords: Biodegradability, durability, mechanical properties, melt flow index, spectrophotometry, structural properties, thermal properties, wood-plastic composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
322 Morphology Feature of Nanostructure Bainitic Steel after Tempering Treatment

Authors: C. Y. Chen, C. C. Chen, J. S. Lin

Abstract:

The microstructure characterization of tempered nanocrystalline bainitic steel is investigated in the present study. It is found that two types of plastic relaxation, dislocation debris and nanotwin, occurs in the displacive transformation due to relatively low transformation temperature and high carbon content. Because most carbon atoms trap in the dislocation, high dislocation density can be sustained during the tempering process. More carbides only can be found in the high tempered temperature due to intense recovery progression.

Keywords: Nanostructure Bainitic Steel, Tempered, TEM, Nano-Twin, Dislocation Debris, Accommodation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521
321 Prediction of Oxygen Transfer and Gas Hold-Up in Pneumatic Bioreactors Containing Viscous Newtonian Fluids

Authors: Caroline E. Mendes, Alberto C. Badino

Abstract:

Pneumatic reactors have been widely employed in various sectors of the chemical industry, especially where are required high heat and mass transfer rates. This study aimed to obtain correlations that allow the prediction of gas hold-up (Ԑ) and volumetric oxygen transfer coefficient (kLa), and compare these values, for three models of pneumatic reactors on two scales utilizing Newtonian fluids. Values of kLa ​​were obtained using the dynamic pressure-step method, while e was used for a new proposed measure. Comparing the three models of reactors studied, it was observed that the mass transfer was superior to draft-tube airlift, reaching e of 0.173 and kLa of 0.00904s-1. All correlations showed good fit to the experimental data (R2≥94%), and comparisons with correlations from the literature demonstrate the need for further similar studies due to shortage of data available, mainly for airlift reactors and high viscosity fluids.

Keywords: Bubble column, internal loop airlift, gas hold-up, kLa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
320 Numerical Evaluation of Nusselt Number on the Hot Wall in Square Enclosure Filled with Nanofluid

Authors: A. Ghafouri, A. Falavand Jozaei, M. Salari

Abstract:

In this paper, effects of using Alumina-water nanofluid on the rate of heat transfer have been investigated numerically. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the Richardson number 0.1 to 10 and the solid volume fraction 0 to 0.04. Results are presented by isotherms lines, average Nusselt number and normalized Nusselt number in different range of φ and Ri for forced, combined and natural convection dominated regime. It is found that higher heat transfer rate is predicted when the effects of nanoparticle is taken into account.

Keywords: Nanofluid, Heat Transfer Enhancement, Square Enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
319 The Effects of Peristalsis on Dispersion of a Micropolar Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a micropolar fluid in the presence of magnetic field and both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition under long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient increases with amplitude ratio, cross viscosity coefficient and heterogeneous chemical reaction rate parameter. But it decreases with magnetic field parameter and homogeneous chemical reaction rate parameter. It can be noted that the presence of peristalsis enhances dispersion of a solute.

Keywords: Peristalsis, Dispersion, Chemical reaction, Magneticfield, Micropolar fluid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
318 Application of a Fracture-Mechanics Approach to Gas Pipelines

Authors: Ľubomír Gajdoš, Martin Šperl

Abstract:

This study offers a new simple method for assessing an axial part-through crack in a pipe wall. The method utilizes simple approximate expressions for determining the fracture parameters K, J, and employs these parameters to determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results of the prediction of the fracture condition are verified by burst tests on test pipes.

Keywords: Axial crack, Fracture-mechanics, J integral, Pipeline wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
317 Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid

Authors: S. Levitsky, R. Bergman

Abstract:

Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system.

Keywords: Elastic tube, sound propagation, temperature effect, viscoelastic liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
316 Modeling of Cross Flow Classifier with Water Injection

Authors: E. Pikushchak, J. Dueck, L. Minkov

Abstract:

In hydrocyclones, the particle separation efficiency is limited by the suspended fine particles, which are discharged with the coarse product in the underflow. It is well known that injecting water in the conical part of the cyclone reduces the fine particle fraction in the underflow. This paper presents a mathematical model that simulates the water injection in the conical component. The model accounts for the fluid flow and the particle motion. Particle interaction, due to hindered settling caused by increased density and viscosity of the suspension, and fine particle entrainment by settling coarse particles are included in the model. Water injection in the conical part of the hydrocyclone is performed to reduce fine particle discharge in the underflow. The model demonstrates the impact of the injection rate, injection velocity, and injection location on the shape of the partition curve. The simulations are compared with experimental data of a 50-mm cyclone.

Keywords: Classification, fine particle processing, hydrocyclone, water injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
315 Analysis of Histogram Asymmetry for Waste Recognition

Authors: Janusz Bobulski, Kamila Pasternak

Abstract:

Despite many years of effort and research, the problem of waste management is still current. There is a lack of fast and effective algorithms for classifying individual waste fractions. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.

Keywords: Computer vision, environmental protection, image processing, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 314
314 Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

Authors: Kyoungjin Kim

Abstract:

Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while the temperature dependent viscosity of liquid coating resin plays an important role in the resin flow. It is found that the severe viscous heating near the coating die wall profoundly alters the radial velocity profiles and that the increase of final coating thickness by die pressurization is amplified if viscous heating is present.

Keywords: Optical fiber manufacturing, Optical fiber coating, Capillary flow, Viscous heating, Flow simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3133
313 Fuzzy Controlled Hydraulic Excavator with Model Parameter Uncertainty

Authors: Ganesh Kothapalli, Mohammed Y. Hassan

Abstract:

The hydraulic actuated excavator, being a non-linear mobile machine, encounters many uncertainties. There are uncertainties in the hydraulic system in addition to the uncertain nature of the load. The simulation results obtained in this study show that there is a need for intelligent control of such machines and in particular interval type-2 fuzzy controller is most suitable for minimizing the position error of a typical excavator-s bucket under load variations. We consider the model parameter uncertainties such as hydraulic fluid leakage and friction. These are uncertainties which also depend up on the temperature and alter bulk modulus and viscosity of the hydraulic fluid. Such uncertainties together with the load variations cause chattering of the bucket position. The interval type-2 fuzzy controller effectively eliminates the chattering and manages to control the end-effecter (bucket) position with positional error in the order of few millimeters.

Keywords: excavator, fuzzy control, hydraulics, mining, type-2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
312 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication

Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi

Abstract:

Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.

Keywords: Hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
311 Numerical Investigation on Damage Evolution of Piles inside Liquefied Soil Foundation - Dynamic-Loading Experiments -

Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa

Abstract:

The large and small-scale shaking table tests, which was conducted for investigating damage evolution of piles inside liquefied soil, are numerically simulated and experimental verified by the3D nonlinear finite element analysis. Damage evolution of elasto-plastic circular steel piles and reinforced concrete (RC) one with cracking and yield of reinforcement are focused on, and the failure patterns and residual damages are captured by the proposed constitutive models. The superstructure excitation behind quay wall is reproduced as well.

Keywords: Soil-Structure Interaction, Piles, Soil Liquefaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
310 Excitation Experiments of a Cone Loudspeaker and Vibration-Acoustic Analysis Using FEM

Authors: Y. Hu, X. Zhao, T. Yamaguchi, M. Sasajima, Y. Koike

Abstract:

To focus on the vibration mode of a cone loudspeaker, which acts as an electroacoustic transducer, excitation experiments were performed using two types of loudspeaker units: one employing an impulse hammer and the other a sweep signal. The on-axis sound pressure frequency properties of the loudspeaker were evaluated, and the characteristic properties of the loudspeakers were successfully determined in both excitation experiments. Moreover, under conditions identical to the experiment conditions, a coupled analysis of the vibration-acoustics of the cone loudspeaker was performed using an acoustic analysis software program that considers the impact of damping caused by air viscosity. The result of sound pressure frequency properties with the numerical analysis are the most closely match that measured in the excitation experiments over a wide range of frequency bands.

Keywords: Anechoic room, finite element method, impulse hammer, loudspeaker, reverberation room, sweep signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
309 Experimental Studies on Multiphase Flow in Porous Media and Pore Wettability

Authors: Xingxun Li, Xianfeng Fan

Abstract:

Multiphase flow transport in porous medium is very common and significant in science and engineering applications. For example, in CO2 Storage and Enhanced Oil Recovery processes, CO2 has to be delivered to the pore spaces in reservoirs and aquifers. CO2 storage and enhance oil recovery are actually displacement processes, in which oil or water is displaced by CO2. This displacement is controlled by pore size, chemical and physical properties of pore surfaces and fluids, and also pore wettability. In this study, a technique was developed to measure the pressure profile for driving gas/liquid to displace water in pores. Through this pressure profile, the impact of pore size on the multiphase flow transport and displacement can be analyzed. The other rig developed can be used to measure the static and dynamic pore wettability and investigate the effects of pore size, surface tension, viscosity and chemical structure of liquids on pore wettability.

Keywords: Enhanced oil recovery, Multiphase flow, Pore size, Pore wettability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
308 Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles

Authors: Amir Mahmoudi

Abstract:

In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength.

Keywords: Portland cement, Composite, Nanoparticles, Compressive Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
307 Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber

Authors: A. Ghafouri, N. Pourmahmoud, I. Mirzaee

Abstract:

In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60 and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in different range of φ and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account.

Keywords: Nano-fluid, nanoparticle diameter, heat transfer enhancement, square enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
306 Effects of Sodium Bicarbonate Content and Vulcanization Method on Properties of NBR/PVC Thermal Insulator Foam

Authors: P. Suriyachai, N. Thavarungkul, P. Sae-oui

Abstract:

In this research sodium bicarbonate (NaHCO3) was introduced to generate carbon dioxide gas (CO2) to the existing nitrogen gas (N2) of elastomeric foam, to lower thermal conductivity (K). Various loadings of NaHCO3 (0 to 60 phr) were added into the azodicarbonamide (AZC)-containing compound and its properties were then determined. Two vulcanization methods, i.e., hot air and infrared (IR), were employed and compared in this study. Results revealed that compound viscosity tended to increase slightly with increasing NaHCO3 content but cure time was delayed. The effect of NaHCO3 content on thermal conductivity depended on the vulcanization method. For hot air method, the thermal conductivity was insignificantly changed with increasing NaHCO3 up to 40 phr whereas it tended to decrease gradually for IR method. At higher NaHCO3 content (60 phr), unexpected increase of thermal conductivity was observed. The water absorption was also determined and foam structures were then used to explain the results.

Keywords: sodium bicarbonate, thermal conductivity, hot airmethod, infrared method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3762
305 A Study on the Heading of Spur Gears: Numerical Analysis and Experiments

Authors: M.Zadshakouyan, E.Abdi Sobbouhi, H.Jafarzadeh

Abstract:

In this study, the precision heading process of spur gears has been investigated by means of numerical analysis. The effect of some parameters such as teeth number and module on the forming force and material flow were presented. The simulation works were performed rigid-plastic finite element method using DEFORM 3D software. In order to validate the estimated numerical results, they were compared with those obtained experimentally during heading of spur gear using lead as a model material. Results showed that the optimum number of gear teeth is between 10 to 20, that is because of being the specific pressure in its minimum value.

Keywords: Heading, spur gear, numerical analysis, experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
304 Plaque Formation of Toxoplasma gondii in Vero Cells using Carboxymethylcellulose

Authors: L. Fonseca-Géigel, M. Alvarez, G. García, R. Cox, L. Morier, L. Fonte, M. G. Guzmán

Abstract:

Toxoplasma gondii is an intracellular parasite capable of infecting all nucleated cells in a diverse array of species. Toxoplasma plaque assay have been described using Bacto Agar. Because of its experimental advantages carboxymethyl cellulose overlay, medium viscosity was choosing and the aim of this work was to develop alternative method for formation of T. gondii plaques. Tachyzoites were inoculated onto monolayers of Vero cells and cultured at 37° C under 5 % CO2. The cultures were followed up by microscopy inspection. Small plaques were visible by naphtol blue stain 4 days after infection. Larger plaques could be observed by day 10 of culture. The carboxymethyl cellulose is a cheap reagent and the methodology is easier, faster than assays under agar overlay. This is the first description of the carboxymethyl cellulose overlay use for obtaining the formation of T. gondii plaques and may be useful in consequent obtaining tachyzoites for detailed studies.

Keywords: Carboxymethyl cellulose, Cell culture, Plaque assay, Toxoplasma gondii.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746
303 Graft Copolymerization of Methyl Methacrylate onto Cellulose in Homogeneous Medium – Effect of Solvent and Initiator

Authors: B. Tosh, C. R. Routray

Abstract:

Homogeneous graft copolymerization of methyl methacrylate (MMA) onto cellulose was carried out in N, N – dimethyl acetamide/LiCl (DMAc/LiCl) and dimethyl sulfoxide/ paraformaldehyde (DMSO/PF) solvent system taking ceric ammonium nitrate (CAN), benzoyl peroxide (BPO) and tin (II)-2-ethyl hexanoate [Sn(Oct)2] as initiators. Different grafting parameters like graft yield (GY), grafting efficiency (GE) and total conversion of monomer to polymer (TC) were evaluated at different reaction conditions of temperature, time, and variation of the amount of monomer and initiator. The viscosity average molecular weight of grafted PMMA and number of grafts per cellulose chain were also calculated. The products were characterized by FT-IR and 1H-NMR analyses and possible reaction mechanisms were deduced. Thermal degradation of the grafted products was also studied by thermo-gravimetric analysis (TG) and differential thermo-gravimetry (DTG).

Keywords: Grafting, grafting efficiency, homogeneous medium, methyl methacrylate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184
302 A Wall Law for Two-Phase Turbulent Boundary Layers

Authors: Dhahri Maher, Aouinet Hana

Abstract:

The presence of bubbles in the boundary layer introduces corrections into the log law, which must be taken into account. In this work, a logarithmic wall law was presented for bubbly two phase flows. The wall law presented in this work was based on the postulation of additional turbulent viscosity associated with bubble wakes in the boundary layer. The presented wall law contained empirical constant accounting both for shear induced turbulence interaction and for non-linearity of bubble. This constant was deduced from experimental data. The wall friction prediction achieved with the wall law was compared to the experimental data, in the case of a turbulent boundary layer developing on a vertical flat plate in the presence of millimetric bubbles. A very good agreement between experimental and numerical wall friction prediction was verified. The agreement was especially noticeable for the low void fraction when bubble induced turbulence plays a significant role.

Keywords: Bubbly flows, log law, boundary layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
301 Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine

Authors: Feng-Tsai Weng, Dong- Syuan Cai, Tsochu-Lin

Abstract:

A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance.

Keywords: Multi-level gear oil, engine oil, viscosity, abrasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1068
300 Rheological Behaviors of Crude Oil in the Presence of Water

Authors: Madjid Meriem-Benziane, Hamou Zahloul

Abstract:

The rheological properties of light crude oil and its mixture with water were investigated experimentally. These rheological properties include steady flow behavior, yield stress, transient flow behavior, and viscoelastic behavior. A RheoStress RS600 rheometer was employed in all of the rheological examination tests. The light crude oil exhibits a Newtonian and for emulsion exhibits a non-Newtonian shear thinning behavior over the examined shear rate range of 0.1–120 s-1. In first time, a series of samples of crude oil from the Algerian Sahara has been tested and the results expressed in terms of τ=f(γ) have demonstrated their Newtonian character for the temperature included in [20°C, 70°C]. In second time and at T=20°C, the oil-water emulsions (30%, 50% and 70%) by volume of water), thermodynamically stable, have demonstrated a non-Newtonian rheological behavior that is to say, Herschel-Bulkley and Bingham types. For each type of crude oil-water emulsion, the rheological parameters are calculated by numerical treatment of results.

Keywords: Crude oil Algerian, Emulsion, Newtonian, Non- Newtonian, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3419
299 Numerical Analysis on Rapid Decompression in Conventional Dry Gases using One- Dimensional Mathematical Modeling

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of compressible thermal multi-component gas mixture flows in pipes. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales-Eakin (LGE) correlation. Numerical analysis on rapid decompression in conventional dry gases is performed by using the proposed mathematical model. The model is validated on measured values of the decompression wave speed in dry natural gas mixtures. All predictions show excellent agreement with the experimental data at high and low pressure. The presented model predicts the decompression in dry natural gas mixtures much better than GASDECOM and OLGA codes, which are the most frequently-used codes in oil and gas pipeline transport service.

Keywords: Mathematical model, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010
298 Mechanical Properties and Microstructural Properties of CrSiN Coating

Authors: Dhiflaoui Hafedh, Khlifi Kaouthar, Ben Cheikh Larbi Ahmed

Abstract:

The present study deals with the characterization of CrSiN coatings obtained by PVD magnetron sputtering systems. CrSiN films were deposited with different Si contents, in order to check the effect of at.% variation on the different properties of the Cr–N system. Coatings were characterized by scanning electron microscopy (SEM) for thickness measurements, X-ray diffraction. Surface morphology and the roughness characteristics were explored using AFM, Mechanicals properties, elastic and plastic deformation resistance of thin films were investigated using nanoindentation test. We observed that the Si addition improved the hardness and the Young’s modulus of the Cr–N system. Indeed, the hardness value is 18,56 GPa for CrSiN coatings. Besides, the Young’s modulus value is 224,22 GPa for CrSiN coatings for Si content of 1.2 at.%.

Keywords: Thin film, mechanicals properties, PVD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
297 Performances Analysis of the Pressure and Production of an Oil Zone by Simulation of the Flow of a Fluid through the Porous Media

Authors: Makhlouf Mourad, Medkour Mihoub, Bouchher Omar, Messabih Sidi Mohamed, Benrachedi Khaled

Abstract:

This work is the modeling and simulation of fluid flow (liquid) through porous media. This type of flow occurs in many situations of interest in applied sciences and engineering, fluid (oil) consists of several individual substances in pure, single-phase flow is incompressible and isothermal. The porous medium is isotropic, homogeneous optionally, with the rectangular format and the flow is two-dimensional. Modeling of hydrodynamic phenomena incorporates Darcy's law and the equation of mass conservation. Correlations are used to model the density and viscosity of the fluid. A finite volume code is used in the discretization of differential equations. The nonlinearity is treated by Newton's method with relaxation coefficient. The results of the simulation of the pressure and the mobility of liquid flowing through porous media are presented, analyzed, and illustrated.

Keywords: Darcy equation, middle porous, continuity equation, Peng Robinson equation, mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
296 Effects of Slip Condition and Peripheral Layer on Couple Stress Fluid Flow through a Channel with Mild Stenosis

Authors: Gurju Awgichew, G. Radhakrishnamacharya

Abstract:

Steady incompressible couple stress fluid flow through two dimensional symmetric channel with stenosis is investigated. The flow consisting of a core region to be a couple stress fluid and a peripheral layer of plasma (Newtonian fluid). Assuming the stenosis to be mild, the equations governing the flow of the proposed model are solved using the slip boundary condition and closed form expressions for the flow characteristics (the dimensionless resistance to flow and wall shear stress at the maximum height of stenosis) are derived. The effects of various parameters on these flow variables have been studied. It is observed that the resistance to flow as well as the wall shear stress increase with the height of stenosis, viscosity ratio and Darcy number. However, the trend is reversed as the slip and the couple stress parameter increase.

Keywords: Stenosis, Couple stress fluid, Slip condition, Peripheral layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
295 Mathematical Modeling of an Avalanche Release and Estimation of Flow Parameters by Numerical Method

Authors: Mahmoud Zarrini

Abstract:

Avalanche release of snow has been modeled in the present studies. Snow is assumed to be represented by semi-solid and the governing equations have been studied from the concept of continuum approach. The dynamical equations have been solved for two different zones [starting zone and track zone] by using appropriate initial and boundary conditions. Effect of density (ρ), Eddy viscosity (η), Slope angle (θ), Slab depth (R) on the flow parameters have been observed in the present studies. Numerical methods have been employed for computing the non linear differential equations. One of the most interesting and fundamental innovation in the present studies is getting initial condition for the computation of velocity by numerical approach. This information of the velocity has obtained through the concept of fracture mechanics applicable to snow. The results on the flow parameters have found to be in qualitative agreement with the published results.

Keywords: Snow avalanche, fracture mechanics, avalanche velocity, avalanche zones.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772