Search results for: non-linear regression.
1527 Output Regulation of Perturbed Nonlinear Systems by Nested Sliding Mode Control
Authors: Aras Adhami Mirhoseini, Mohammad J. Yazdanpanah
Abstract:
In this paper, we consider nested sliding mode control of SISO nonlinear systems, perturbed by bounded matched and unmatched uncertainties. The systems are assumed to be in strict-feedback form. A step wise procedure is introduced to obtain the controller. In each step, a continuous sliding mode controller is designed as virtual control law. Then the next step sliding surface is defined by using this virtual controller. These sliding surfaces are selected as nonlinear static functions of the system states. Finally in the last step, smooth static state feedback control law is determined such that the output reaches the desired set-point while the system is forced arbitrary close to the intersection of sliding surfaces and the states remain bounded.
Keywords: Sliding mode control, Strict-feedback form, Unmatched uncertainty, output regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21511526 A New Composition Method of Admissible Support Vector Kernel Based on Reproducing Kernel
Authors: Wei Zhang, Xin Zhao, Yi-Fan Zhu, Xin-Jian Zhang
Abstract:
Kernel function, which allows the formulation of nonlinear variants of any algorithm that can be cast in terms of dot products, makes the Support Vector Machines (SVM) have been successfully applied in many fields, e.g. classification and regression. The importance of kernel has motivated many studies on its composition. It-s well-known that reproducing kernel (R.K) is a useful kernel function which possesses many properties, e.g. positive definiteness, reproducing property and composing complex R.K by simple operation. There are two popular ways to compute the R.K with explicit form. One is to construct and solve a specific differential equation with boundary value whose handicap is incapable of obtaining a unified form of R.K. The other is using a piecewise integral of the Green function associated with a differential operator L. The latter benefits the computation of a R.K with a unified explicit form and theoretical analysis, whereas there are relatively later studies and fewer practical computations. In this paper, a new algorithm for computing a R.K is presented. It can obtain the unified explicit form of R.K in general reproducing kernel Hilbert space. It avoids constructing and solving the complex differential equations manually and benefits an automatic, flexible and rigorous computation for more general RKHS. In order to validate that the R.K computed by the algorithm can be used in SVM well, some illustrative examples and a comparison between R.K and Gaussian kernel (RBF) in support vector regression are presented. The result shows that the performance of R.K is close or slightly superior to that of RBF.
Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, Green function, support vectorregression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15441525 An Investigation on the Accuracy of Nonlinear Static Procedures for Seismic Evaluation of Buckling-restrained Braced Frames
Authors: An Hong Nguyen, Chatpan Chintanapakdee, Toshiro Hayashikawa
Abstract:
Presented herein is an assessment of current nonlinear static procedures (NSPs) for seismic evaluation of bucklingrestrained braced frames (BRBFs) which have become a favorable lateral-force resisting system for earthquake resistant buildings. The bias and accuracy of modal, improved modal pushover analysis (MPA, IMPA) and mass proportional pushover (MPP) procedures are comparatively investigated when they are applied to BRBF buildings subjected to two sets of strong ground motions. The assessment is based on a comparison of seismic displacement demands such as target roof displacements, peak floor/roof displacements and inter-story drifts. The NSP estimates are compared to 'exact' results from nonlinear response history analysis (NLRHA). The response statistics presented show that the MPP procedure tends to significantly overestimate seismic demands of lower stories of tall buildings considered in this study while MPA and IMPA procedures provide reasonably accurate results in estimating maximum inter-story drift over all stories of studied BRBF systems.Keywords: Buckling-restrained braced frames, nonlinearresponse history analysis, nonlinear static procedure, seismicdemands.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19591524 Analysis of an Electrical Transformer: A Bond Graph Approach
Authors: Gilberto Gonzalez-A
Abstract:
Bond graph models of an electrical transformer including the nonlinear saturation are presented. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two and three windings using the properties of a bond graph. The modelling and analysis using this methodology to three phase power transformers or transformers with internal incipient faults can be extended.Keywords: Bond graph, electrical transformer, nonlinear saturation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401523 Development of Regression Equation for Surface Finish and Analysis of Surface Integrity in EDM
Authors: Md. Ashikur Rahman Khan, M. M. Rahman
Abstract:
Electrical discharge machining (EDM) is a relatively modern machining process having distinct advantages over other machining processes and can machine Ti-alloys effectively. The present study emphasizes the features of the development of regression equation based on response surface methodology (RSM) for correlating the interactive and higher-order influences of machining parameters on surface finish of Titanium alloy Ti-6Al-4V. The process parameters selected in this study are discharge current, pulse on time, pulse off time and servo voltage. Machining has been accomplished using negative polarity of Graphite electrode. Analysis of variance is employed to ascertain the adequacy of the developed regression model. Experiments based on central composite of response surface method are carried out. Scanning electron microscopy (SEM) analysis was performed to investigate the surface topography of the EDMed job. The results evidence that the proposed regression equation can predict the surface roughness effectively. The lower ampere and short pulse on time yield better surface finish.
Keywords: Graphite electrode, regression model, response surface methodology, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25461522 Nonlinear Analysis of a Building Surmounted by a RC Water Tank under Hydrodynamic Load
Authors: Hocine Hammoum, Karima Bouzelha, Lounis Ziani, Lounis Hamitouche
Abstract:
In this paper, we study a complex structure which is an apartment building surmounted by a reinforced concrete water tank. The tank located on the top floor of the building is a container with capacity of 1000 m3. The building is complex in its design, its calculation and by its behavior under earthquake effect. This structure located in Algiers and aged of 53 years has been subjected to several earthquakes, but the earthquake of May 21st, 2003 with a magnitude of 6.7 on the Richter scale that struck Boumerdes region at 40 Kms East of Algiers was fatal for it. It was downgraded after an investigation study because the central core sustained serious damage. In this paper, to estimate the degree of its damages, the seismic performance of the structure will be evaluated taking into account the hydrodynamic effect, using a static equivalent nonlinear analysis called pushover.
Keywords: Performance analysis, building, reinforced concrete tank, seismic analysis, nonlinear analysis, hydrodynamic, pushover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12551521 Dichotomous Logistic Regression with Leave-One-Out Validation
Authors: Sin Yin Teh, Abdul Rahman Othman, Michael Boon Chong Khoo
Abstract:
In this paper, the concepts of dichotomous logistic regression (DLR) with leave-one-out (L-O-O) were discussed. To illustrate this, the L-O-O was run to determine the importance of the simulation conditions for robust test of spread procedures with good Type I error rates. The resultant model was then evaluated. The discussions included 1) assessment of the accuracy of the model, and 2) parameter estimates. These were presented and illustrated by modeling the relationship between the dichotomous dependent variable (Type I error rates) with a set of independent variables (the simulation conditions). The base SAS software containing PROC LOGISTIC and DATA step functions can be making used to do the DLR analysis.Keywords: Dichotomous logistic regression, leave-one-out, testof spread.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20701520 A General Regression Test Selection Technique
Authors: Walid S. Abd El-hamid, Sherif S. El-etriby, Mohiy M. Hadhoud
Abstract:
This paper presents a new methodology to select test cases from regression test suites. The selection strategy is based on analyzing the dynamic behavior of the applications that written in any programming language. Methods based on dynamic analysis are more safe and efficient. We design a technique that combine the code based technique and model based technique, to allow comparing the object oriented of an application that written in any programming language. We have developed a prototype tool that detect changes and select test cases from test suite.Keywords: Regression testing, Model based testing, Dynamicbehavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19791519 Efficient Dimensionality Reduction of Directional Overcurrent Relays Optimal Coordination Problem
Authors: Fouad Salha , X. Guillaud
Abstract:
Directional over current relays (DOCR) are commonly used in power system protection as a primary protection in distribution and sub-transmission electrical systems and as a secondary protection in transmission systems. Coordination of protective relays is necessary to obtain selective tripping. In this paper, an approach for efficiency reduction of DOCRs nonlinear optimum coordination (OC) is proposed. This was achieved by modifying the objective function and relaxing several constraints depending on the four constraints classification, non-valid, redundant, pre-obtained and valid constraints. According to this classification, the far end fault effect on the objective function and constraints, and in consequently on relay operating time, was studied. The study was carried out, firstly by taking into account the near-end and far-end faults in DOCRs coordination problem formulation; and then faults very close to the primary relays (nearend faults). The optimal coordination (OC) was achieved by simultaneously optimizing all variables (TDS and Ip) in nonlinear environment by using of Genetic algorithm nonlinear programming techniques. The results application of the above two approaches on 6-bus and 26-bus system verify that the far-end faults consideration on OC problem formulation don-t lose the optimality.
Keywords: Backup/Primary relay, Coordination time interval (CTI), directional over current relays, Genetic algorithm, time dial setting (TDS), pickup current setting (Ip), nonlinear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841518 Attitude Stabilization of Satellites Using Random Dither Quantization
Authors: Attitude Stabilization of Satellites Using Random Dither Quantization
Abstract:
Recently, the effectiveness of random dither quantization method for linear feedback control systems has been shown in several papers. However, the random dither quantization method has not yet been applied to nonlinear feedback control systems. The objective of this paper is to verify the effectiveness of random dither quantization method for nonlinear feedback control systems. For this purpose, we consider the attitude stabilization problem of satellites using discrete-level actuators. Namely, this paper provides a control method based on the random dither quantization method for stabilizing the attitude of satellites using discrete-level actuators.Keywords: Quantized control, nonlinear systems, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9591517 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties
Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd
Abstract:
Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well known formulas.Keywords: Conjugate gradient method, conjugate gradient coefficient, global convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22931516 Electron-Impact Excitation of Kr 5s, 5p Levels
Authors: Alla A. Mityureva
Abstract:
The available data on the cross sections of electronimpact excitation of krypton 5s and 5p configuration levels out of the ground state are represented in convenient and compact form. The results are obtained by regression through all known published data related to this process.Keywords: Cross section, electron excitation, krypton, regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10871515 Existence and Uniqueness of Periodic Solution for a Discrete-time SIR Epidemic Model with Time Delays and Impulses
Abstract:
In this paper, a discrete-time SIR epidemic model with nonlinear incidence rate, time delays and impulses is investigated. Sufficient conditions for the existence and uniqueness of periodic solutions are obtained by using contraction theorem and inequality techniques. An example is employed to illustrate our results.
Keywords: Discrete-time SIR epidemic model, time delay, nonlinear incidence rate, impulse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16471514 Zero Inflated Strict Arcsine Regression Model
Authors: Y. N. Phang, E. F. Loh
Abstract:
Zero inflated strict arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, we extend zero inflated strict arcsine model to zero inflated strict arcsine regression model by taking into consideration the extra variability caused by extra zeros and covariates in count data. Maximum likelihood estimation method is used in estimating the parameters for this zero inflated strict arcsine regression model.Keywords: Overdispersed count data, maximum likelihood estimation, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17551513 Time-Derivative Estimation of Noisy Movie Data using Adaptive Control Theory
Authors: Soon-Hyun Park, Takami Matsuo
Abstract:
This paper presents an adaptive differentiator of sequential data based on the adaptive control theory. The algorithm is applied to detect moving objects by estimating a temporal gradient of sequential data at a specified pixel. We adopt two nonlinear intensity functions to reduce the influence of noises. The derivatives of the nonlinear intensity functions are estimated by an adaptive observer with σ-modification update law.Keywords: Adaptive estimation, parameter adjustmentlaw, motion detection, temporal gradient, differential filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18731512 Controlled Synchronization of an Array of Nonlinear System with Time Delays
Authors: S.M. Lee, J.H. Koo, J.H. Park, S.C. Won
Abstract:
In this paper, we propose synchronization of an array of nonlinear systems with time delays. The array of systems is decomposed into isolated systems to establish appropriate Lyapunov¬Krasovskii functional. Using the Lyapunov-Krasovskii functional, a sufficient condition for the synchronization is derived in terms of LMIs(Linear Matrix Inequalities). Delayed feedback control gains are obtained by solving the sufficient condition. Numerical examples are given to show the validity the proposed method.
Keywords: Synchronization, Delay, Lyapunov method, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14441511 Considering the Effect of Semi-Rigid Connection in Steel Frame Structures for Progressive Collapse
Authors: Fooad Karimi Ghaleh Jough, Mohsen Soori
Abstract:
Today, the occurrence of progressive failure in structures has become a challenging issue, requiring the presentation of suitable solutions for structural resistance to this phenomenon. It is also necessary to evaluate the vulnerability of existing and under-construction buildings to progressive failure. The kind of lateral load-resisting system the building and its connections have is one of the most significant and influential variables in structural resistance to the risk of progressing failure. Using the "Alternative Path" approach suggested by the GSA2003 and UFC2013 recommendations, different configurations of semi-rigid connections against progressive failure are offered in this study. In order to do this, the Opensees program was used to model nine distinct semi-rigid connection configurations on a three-story Special Area of Conservation (SAC) structure, accounting for the impact of connection stiffness. Then, using nonlinear dynamic analysis, the effects of column removal were explored in two scenarios: corner column removal and middle column removal on the first level. Nonlinear static analysis results showed that when a column is removed, structures with semi-rigid connections experience larger displacements, which result in the construction of a plastic hinge. Furthermore, it was clear from the findings of the nonlinear static analysis that the possibility of progressive failure increased with the number of semi-rigid connections in the structure.
Keywords: Semi-rigid, nonlinear static analysis, progressive collapse, alternative path.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961510 Clustering Protein Sequences with Tailored General Regression Model Technique
Authors: G. Lavanya Devi, Allam Appa Rao, A. Damodaram, GR Sridhar, G. Jaya Suma
Abstract:
Cluster analysis divides data into groups that are meaningful, useful, or both. Analysis of biological data is creating a new generation of epidemiologic, prognostic, diagnostic and treatment modalities. Clustering of protein sequences is one of the current research topics in the field of computer science. Linear relation is valuable in rule discovery for a given data, such as if value X goes up 1, value Y will go down 3", etc. The classical linear regression models the linear relation of two sequences perfectly. However, if we need to cluster a large repository of protein sequences into groups where sequences have strong linear relationship with each other, it is prohibitively expensive to compare sequences one by one. In this paper, we propose a new technique named General Regression Model Technique Clustering Algorithm (GRMTCA) to benignly handle the problem of linear sequences clustering. GRMT gives a measure, GR*, to tell the degree of linearity of multiple sequences without having to compare each pair of them.Keywords: Clustering, General Regression Model, Protein Sequences, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15671509 Comparison of Polynomial and Radial Basis Kernel Functions based SVR and MLR in Modeling Mass Transfer by Vertical and Inclined Multiple Plunging Jets
Abstract:
Presently various computational techniques are used in modeling and analyzing environmental engineering data. In the present study, an intra-comparison of polynomial and radial basis kernel functions based on Support Vector Regression and, in turn, an inter-comparison with Multi Linear Regression has been attempted in modeling mass transfer capacity of vertical (θ = 90O) and inclined (θ multiple plunging jets (varying from 1 to 16 numbers). The data set used in this study consists of four input parameters with a total of eighty eight cases, forty four each for vertical and inclined multiple plunging jets. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 along with corresponding root mean square error values of 0.0025 and 0.0020 were achieved by using polynomial and radial basis kernel functions based Support Vector Regression respectively. An intra-comparison suggests improved performance by radial basis function in comparison to polynomial kernel based Support Vector Regression. Further, an inter-comparison with Multi Linear Regression (correlation coefficient = 0.973 and root mean square error = 0.0024) reveals that radial basis kernel functions based Support Vector Regression performs better in modeling and estimating mass transfer by multiple plunging jets.Keywords: Mass transfer, multiple plunging jets, polynomial and radial basis kernel functions, Support Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14331508 An Adverse Model for Price Discrimination in the Case of Monopoly
Authors: Daniela Elena Marinescu, Ioana Manafi, Dumitru Marin
Abstract:
We consider a Principal-Agent model with the Principal being a seller who does not know perfectly how much the buyer (the Agent) is willing to pay for the good. The buyer-s preferences are hence his private information. The model corresponds to the nonlinear pricing problem of Maskin and Riley. We assume there are three types of Agents. The model is solved using “informational rents" as variables. In the last section we present the main characteristics of the optimal contracts in asymmetric information and some possible extensions of the model.Keywords: Adverse selection, asymmetric information, informational rent, nonlinear pricing, optimal contract
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13491507 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression
Authors: Wanatchapong Kongkaew
Abstract:
This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.
Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22351506 Neuro-fuzzy Model and Regression Model a Comparison Study of MRR in Electrical Discharge Machining of D2 Tool Steel
Authors: M. K. Pradhan, C. K. Biswas,
Abstract:
In the current research, neuro-fuzzy model and regression model was developed to predict Material Removal Rate in Electrical Discharge Machining process for AISI D2 tool steel with copper electrode. Extensive experiments were conducted with various levels of discharge current, pulse duration and duty cycle. The experimental data are split into two sets, one for training and the other for validation of the model. The training data were used to develop the above models and the test data, which was not used earlier to develop these models were used for validation the models. Subsequently, the models are compared. It was found that the predicted and experimental results were in good agreement and the coefficients of correlation were found to be 0.999 and 0.974 for neuro fuzzy and regression model respectively
Keywords: Electrical discharge machining, material removal rate, neuro-fuzzy model, regression model, mountain clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13891505 A Simplified Distribution for Nonlinear Seas
Authors: M. A. Tayfun, M. A. Alkhalidi
Abstract:
The exact theoretical expression describing the probability distribution of nonlinear sea-surface elevations derived from the second-order narrowband model has a cumbersome form that requires numerical computations, not well-disposed to theoretical or practical applications. Here, the same narrowband model is reexamined to develop a simpler closed-form approximation suitable for theoretical and practical applications. The salient features of the approximate form are explored, and its relative validity is verified with comparisons to other readily available approximations, and oceanic data.
Keywords: Ocean waves, probability distributions, second-order nonlinearities, skewness coefficient, wave steepness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20961504 Modeling of a Small Unmanned Aerial Vehicle
Authors: A. Elsayed Ahmed, A. Hafez, A. N. Ouda, H. Eldin Hussein Ahmed, H. Mohamed Abd-Elkader
Abstract:
Unmanned aircraft systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. . In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized, and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end the model is checked by matching between the behavior of the states of the nonlinear UAV and the resulted linear model with doublet at the control surfaces.
Keywords: Equations of motion, linearization, modeling, nonlinear model, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56111503 Stabilization of a Three-Pole Active Magnetic Bearing by Hybrid Control Method in Static Mode
Authors: Mahdi Kiani, Hassan Salarieh, Aria Alasty, S. Mahdi Darbandi
Abstract:
The design and implementation of the hybrid control method for a three-pole active magnetic bearing (AMB) is proposed in this paper. The system is inherently nonlinear and conventional nonlinear controllers are a little complicated, while the proposed hybrid controller has a piecewise linear form, i.e. linear in each sub-region. A state-feedback hybrid controller is designed in this study, and the unmeasurable states are estimated by an observer. The gains of the hybrid controller are obtained by the Linear Quadratic Regulator (LQR) method in each sub-region. To evaluate the performance, the designed controller is implemented on an experimental setup in static mode. The experimental results show that the proposed method can efficiently stabilize the three-pole AMB system. The simplicity of design, domain of attraction, uncomplicated control law, and computational time are advantages of this method over other nonlinear control strategies in AMB systems.Keywords: Active magnetic bearing, three pole AMB, hybrid control, Lyapunov function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751502 Nonlinear Sensitive Control of Centrifugal Compressor
Authors: F. Laaouad, M. Bouguerra, A. Hafaifa, A. Iratni
Abstract:
In this work, we treat the problems related to chemical and petrochemical plants of a certain complex process taking the centrifugal compressor as an example, a system being very complex by its physical structure as well as its behaviour (surge phenomenon). We propose to study the application possibilities of the recent control approaches to the compressor behaviour, and consequently evaluate their contribution in the practical and theoretical fields. Facing the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these techniques constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, etc..) offering suitable tools to characterise them. In the particular case of the centrifugal compressor, these imperfections are interpreted by modelling errors, the neglected dynamics, no modelisable dynamics and the parametric variations. The purpose of this paper is to produce a total robust nonlinear controller design method to stabilize the compression process at its optimum steady state by manipulating the gas rate flow. In order to cope with both the parameter uncertainty and the structured non linearity of the plant, the proposed method consists of a linear steady state regulation that ensures robust optimal control and of a nonlinear compensation that achieves the exact input/output linearization.
Keywords: Compressor, Fuzzy logic, Surge control, Bilinearcontroller, Stability analysis, Nonlinear plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21441501 Comparative Studies of Support Vector Regression between Reproducing Kernel and Gaussian Kernel
Authors: Wei Zhang, Su-Yan Tang, Yi-Fan Zhu, Wei-Ping Wang
Abstract:
Support vector regression (SVR) has been regarded as a state-of-the-art method for approximation and regression. The importance of kernel function, which is so-called admissible support vector kernel (SV kernel) in SVR, has motivated many studies on its composition. The Gaussian kernel (RBF) is regarded as a “best" choice of SV kernel used by non-expert in SVR, whereas there is no evidence, except for its superior performance on some practical applications, to prove the statement. Its well-known that reproducing kernel (R.K) is also a SV kernel which possesses many important properties, e.g. positive definiteness, reproducing property and composing complex R.K by simpler ones. However, there are a limited number of R.Ks with explicit forms and consequently few quantitative comparison studies in practice. In this paper, two R.Ks, i.e. SV kernels, composed by the sum and product of a translation invariant kernel in a Sobolev space are proposed. An exploratory study on the performance of SVR based general R.K is presented through a systematic comparison to that of RBF using multiple criteria and synthetic problems. The results show that the R.K is an equivalent or even better SV kernel than RBF for the problems with more input variables (more than 5, especially more than 10) and higher nonlinearity.Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951500 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches
Authors: Fereydoon Sarmadian, Ali Keshavarzi
Abstract:
Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.
Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18191499 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of singleparameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.
Keywords: Hybrid fault diagnosis, Dynamic neural networks, Nonlinear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22211498 Time Series Regression with Meta-Clusters
Authors: Monika Chuchro
Abstract:
This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain subgroups of time series data with normal distribution from the inflow into wastewater treatment plant data, composed of several groups differing by mean value. Two simple algorithms, K-mean and EM, were chosen as a clustering method. The Rand index was used to measure the similarity. After simple meta-clustering, a regression model was performed for each subgroups. The final model was a sum of the subgroups models. The quality of the obtained model was compared with the regression model made using the same explanatory variables, but with no clustering of data. Results were compared using determination coefficient (R2), measure of prediction accuracy- mean absolute percentage error (MAPE) and comparison on a linear chart. Preliminary results allow us to foresee the potential of the presented technique.
Keywords: Clustering, Data analysis, Data mining, Predictive models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951