Search results for: knowledge database discovery (KDD)
2392 Development of the Structure of the Knowledgebase for Countermeasures in the Knowledge Acquisition Process for Trouble Prediction in Healthcare Processes
Authors: Shogo Kato, Daisuke Okamoto, Satoko Tsuru, Yoshinori Iizuka, Ryoko Shimono
Abstract:
Healthcare safety has been perceived important. It is essential to prevent troubles in healthcare processes for healthcare safety. Trouble prevention is based on trouble prediction using accumulated knowledge on processes, troubles, and countermeasures. However, information on troubles has not been accumulated in hospitals in the appropriate structure, and it has not been utilized effectively to prevent troubles. In the previous study, however a detailed knowledge acquisition process for trouble prediction was proposed, the knowledgebase for countermeasures was not involved. In this paper, we aim to propose the structure of the knowledgebase for countermeasures, in the knowledge acquisition process for trouble prediction in healthcare process. We first design the structure of countermeasures and propose the knowledge representation form on countermeasures. Then, we evaluate the validity of the proposal, by applying it into an actual hospital.Keywords: Trouble prevention, knowledge structure, structured knowledge, reusable knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16722391 Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules
Authors: Suraiya Jabin, Kamal K. Bharadwaj
Abstract:
In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. All LCSs models more or less, comprise four main components; a finite population of condition–action rules, called classifiers; the performance component, which governs the interaction with the environment; the credit assignment component, which distributes the reward received from the environment to the classifiers accountable for the rewards obtained; the discovery component, which is responsible for discovering better rules and improving existing ones through a genetic algorithm. The concatenate of the production rules in the LCS form the genotype, and therefore the GA should operate on a population of classifier systems. This approach is known as the 'Pittsburgh' Classifier Systems. Other LCS that perform their GA at the rule level within a population are known as 'Mitchigan' Classifier Systems. The most predominant representation of the discovered knowledge is the standard production rules (PRs) in the form of IF P THEN D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski and Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: IF P THEN D UNLESS C, where Censor C is an exception to the rule. Such rules are employed in situations, in which conditional statement IF P THEN D holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the IF P THEN D part of CPR expresses important information, while the UNLESS C part acts only as a switch and changes the polarity of D to ~D. In this paper Pittsburgh style LCSs approach is used for automated discovery of CPRs. An appropriate encoding scheme is suggested to represent a chromosome consisting of fixed size set of CPRs. Suitable genetic operators are designed for the set of CPRs and individual CPRs and also appropriate fitness function is proposed that incorporates basic constraints on CPR. Experimental results are presented to demonstrate the performance of the proposed learning classifier system.Keywords: Censored Production Rule, Data Mining, GeneticAlgorithm, Learning Classifier System, Machine Learning, PittsburgApproach, , Reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15282390 An Investigation of the Determinants of Knowledge Management Systems Success in Banking Industry
Authors: Nantapanuwat Nattapol, Ractham Peter, Kaewkittipong Laddawan
Abstract:
The efficient knowledge management system (KMS) is one of the important strategies to help firms to achieve sustainable competitive advantages, but little research has been conducted to understand what contributes to the KMS success. This study thus set to investigate the determinants of KMS success in the context of Thai banking industry. A questionnaire survey was conducted in four major Thai Banks to test the proposed KMS Success model. The result of this study shows that KMS use and user satisfaction relate significantly to the success of KMS, and knowledge quality, service quality and trust lead to system use, and knowledge quality, system quality and trust lead to user satisfaction. However, this research focuses only on system and user-related factors. Future research thus can extend to study factors such as management support and organization readiness.Keywords: Knowledge, Knowledge Management, Knowledge Management system, Knowledge Management System Success, Banking Industry, Thailand
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22232389 The Conceptual and Procedural Knowledge of Rational Numbers in Primary School Teachers
Authors: R. M. Kashim
Abstract:
The study investigates the conceptual and procedural knowledge of rational number in primary school teachers, specifically, the primary school teachers level of conceptual knowledge about rational number and the primary school teachers level of procedural knowledge about rational numbers. The study was carried out in Bauchi metropolis in Bauchi state of Nigeria. A Conceptual and Procedural Knowledge Test was used as the instrument for data collection, 54 mathematics teachers in Bauchi primary schools were involved in the study. The collections were analyzed using mean and standard deviation. The findings revealed that the primary school mathematics teachers in Bauchi metropolis posses a low level of conceptual knowledge of rational number and also possess a high level of Procedural knowledge of rational number. It is therefore recommended that to be effective, teachers teaching mathematics most posses a deep understanding of both conceptual and procedural knowledge. That way the most knowledgeable teachers in mathematics deliver highly effective rational number instructions. Teachers should not ignore the mathematical concept aspect of rational number teaching. This is because only the procedural aspect of Rational number is highlighted during instructions; this often leads to rote - learning of procedures without understanding the meanings. It is necessary for teachers to learn rational numbers teaching method that focus on both conceptual knowledge and procedural knowledge teaching.
Keywords: Conceptual knowledge, primary school teachers, procedural knowledge, rational numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16772388 Knowledge Based Model for Power Transformer Life Cycle Management Using Knowledge Engineering
Authors: S. S. Bhandari, N. Chakpitak, K. Meksamoot, T. Chandarasupsang
Abstract:
Under the limitation of investment budget, a utility company is required to maximize the utilization of their existing assets during their life cycle satisfying both engineering and financial requirements. However, utility does not have knowledge about the status of each asset in the portfolio neither in terms of technical nor financial values. This paper presents a knowledge based model for the utility companies in order to make an optimal decision on power transformer with their utilization. CommonKADS methodology, a structured development for knowledge and expertise representation, is utilized for designing and developing knowledge based model. A case study of One MVA power transformer of Nepal Electricity Authority is presented. The results show that the reusable knowledge can be categorized, modeled and utilized within the utility company using the proposed methodologies. Moreover, the results depict that utility company can achieve both engineering and financial benefits from its utilization.Keywords: CommonKADS, Knowledge Engineering, LifeCycle Management, Power Transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23042387 Developing Intellectual Capital to Advance Innovation and Entrepreneurial Capacity and Sustain Knowledge Economy
Authors: Hamid Alalwany, Nabeel A. Koshak, Mohammad K. Ibrahim
Abstract:
Both knowledge economy and sustainable development are considered key dimensions in the policy action lines of many developed and developing countries. In this context, universities and other higher education institutes have a vital role in developing and sustaining wellbeing communities.
In this paper, the authors’ aim is to address the links between the concepts of innovation and entrepreneurial capacity and knowledge economy, and to utilize the approach of intellectual capital development in building a sustainable knowledge economy.
The paper will contribute to two discourses:
- Developing a common understanding of the intersection aspects between the three concepts: Knowledge economy, Innovation and entrepreneurial system, and sustainable development.
- Paving the road towards developing an integrated multidimensional framework for sustainable knowledge economy.
Keywords: Innovation and Entrepreneurial Capacity, Intellectual Capital Development, Sustainable Development, Sustainable Knowledge Economy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22692386 New Approach for Constructing a Secure Biometric Database
Authors: A. Kebbeb, M. Mostefai, F. Benmerzoug, Y. Chahir
Abstract:
The multimodal biometric identification is the combination of several biometric systems; the challenge of this combination is to reduce some limitations of systems based on a single modality while significantly improving performance. In this paper, we propose a new approach to the construction and the protection of a multimodal biometric database dedicated to an identification system. We use a topological watermarking to hide the relation between face image and the registered descriptors extracted from other modalities of the same person for more secure user identification.
Keywords: Biometric databases, Multimodal biometrics, security authentication, Digital watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20902385 Individual Learning and Collaborative Knowledge Building with Shared Digital Artifacts
Authors: Joachim Kimmerle, Johannes Moskaliuk, Ulrike Cress
Abstract:
The development of Internet technology in recent years has led to a more active role of users in creating Web content. This has significant effects both on individual learning and collaborative knowledge building. This paper will present an integrative framework model to describe and explain learning and knowledge building with shared digital artifacts on the basis of Luhmann-s systems theory and Piaget-s model of equilibration. In this model, knowledge progress is based on cognitive conflicts resulting from incongruities between an individual-s prior knowledge and the information which is contained in a digital artifact. Empirical support for the model will be provided by 1) applying it descriptively to texts from Wikipedia, 2) examining knowledge-building processes using a social network analysis, and 3) presenting a survey of a series of experimental laboratory studies.
Keywords: Individual learning, collaborative knowledge building, systems theory, equilibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16292384 Stereotype Student Model for an Adaptive e-Learning System
Authors: Ani Grubišić, Slavomir Stankov, Branko Žitko
Abstract:
This paper describes a concept of stereotype student model in adaptive knowledge acquisition e-learning system. Defined knowledge stereotypes are based on student's proficiency level and on Bloom's knowledge taxonomy. The teacher module is responsible for the whole adaptivity process: the automatic generation of courseware elements, their dynamic selection and sorting, as well as their adaptive presentation using templates for statements and questions. The adaptation of courseware is realized according to student-s knowledge stereotype.Keywords: Adaptive e-learning systems, adaptive courseware, stereotypes, Bloom's knowledge taxonomy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29002383 Implementing an Intuitive Reasoner with a Large Weather Database
Authors: Yung-Chien Sun, O. Grant Clark
Abstract:
In this paper, the implementation of a rule-based intuitive reasoner is presented. The implementation included two parts: the rule induction module and the intuitive reasoner. A large weather database was acquired as the data source. Twelve weather variables from those data were chosen as the “target variables" whose values were predicted by the intuitive reasoner. A “complex" situation was simulated by making only subsets of the data available to the rule induction module. As a result, the rules induced were based on incomplete information with variable levels of certainty. The certainty level was modeled by a metric called "Strength of Belief", which was assigned to each rule or datum as ancillary information about the confidence in its accuracy. Two techniques were employed to induce rules from the data subsets: decision tree and multi-polynomial regression, respectively for the discrete and the continuous type of target variables. The intuitive reasoner was tested for its ability to use the induced rules to predict the classes of the discrete target variables and the values of the continuous target variables. The intuitive reasoner implemented two types of reasoning: fast and broad where, by analogy to human thought, the former corresponds to fast decision making and the latter to deeper contemplation. . For reference, a weather data analysis approach which had been applied on similar tasks was adopted to analyze the complete database and create predictive models for the same 12 target variables. The values predicted by the intuitive reasoner and the reference approach were compared with actual data. The intuitive reasoner reached near-100% accuracy for two continuous target variables. For the discrete target variables, the intuitive reasoner predicted at least 70% as accurately as the reference reasoner. Since the intuitive reasoner operated on rules derived from only about 10% of the total data, it demonstrated the potential advantages in dealing with sparse data sets as compared with conventional methods.Keywords: Artificial intelligence, intuition, knowledge acquisition, limited certainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13822382 Assessing Local Knowledge Dynamics: Regional Knowledge Economy Indicators
Authors: Francesca Affortunato, Edgardo Bucciarelli, Mariateresa Ciommi, Gianfranco Giulioni
Abstract:
The paper represents a reflection on how to select proper indicators to assess the progress of regional contexts towards a knowledge-based society. Taking the first research methodologies elaborated at an international level (World Bank, OECD, etc.) as a reference point, this work intends to identify a set of indicators of the knowledge economy suitable to adequately understand in which manner and to which extent the territorial development dynamics are correlated with the knowledge-base of the considered local society. After a critical survey of the variables utilized within other approaches adopted by international or national organizations, this paper seeks to elaborate a framework of variables, named Regional Knowledge Economy Indicators (ReKEI), necessary to describe the knowledge-based relations of subnational socio-economic contexts. The realization of this framework has a double purpose: an analytical one consisting in highlighting the regional differences in the governance of knowledge based processes, and an operative one consisting in providing some reference parameters for contributing to increasing the effectiveness of those economic policies aiming at enlarging the knowledge bases of local societies.
Keywords: Knowledge economy, knowledge society, information society, regional innovation system, territorial competitiveness, local development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17372381 Automation of Web-Portal Construction Processes with SQL Server for the Black Sea Ecosystem Monitoring
Authors: Gia Surguladze, Nino Topuria, Ana Gavardashvili, Tsatsa Namchevadze
Abstract:
The present article discusses design and development of Information System for monitoring ecology within the Black Sea basin of Georgia. Sea parameters, river, estuary, vulnerable district, water sample, etc. were considered as the major parameters of the sea ecosystem. A conceptual schema has been developed for the Black Sea ecosystem based on object-role model. The experimental database for the Black Sea ecosystem has been constructed using Ms SQL Server, while the object-role model NORMA has been developed using graphical instrument Ms Visual Studio within the integrated environment of .NET Framework 4.5. Web portal has been designed based on Ms SharePoint Server. The server database connection with web-portal has been carried out by means of External List of Ms SharePoint Server Designer.
Keywords: Web-application, service-oriented architecture, database, object-role modelling, SharePoint, Black sea, river, estuary, ecology, monitoring system, automation of data processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13092380 A Norm-based Approach for Profiling Business Knowledge
Authors: Nazmona Mat Ali, Kecheng Liu
Abstract:
Knowledge is a key asset for any organisation to sustain competitive advantages, but it is difficult to identify and represent knowledge which is needed to perform activities in business processes. The effective knowledge management and support for relevant business activities definitely gives a huge impact to the performance of the organisation as a whole. This is because that knowledge have the functions of directing, coordinating and controlling actions within business processes. The study has introduced organisational morphology, a norm-based approach by applying semiotic theories which emphasise on the representation of knowledge in norms. This approach is concerned with the identification of activities into three categories: substantive, communication and control activities. All activities are directed by norms; hence three types of norms exist; each is associated to a category of activities. The paper describes the approach briefly and illustrates the application of this approach through a case study of academic activities in higher education institutions. The result of the study shows that the approach provides an effective way to profile business knowledge and the profile enables the understanding and specification of business requirements of an organisation.Keywords: Business knowledge, Business process, Norms, Semiotics, Organisational morphology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15682379 The Impact of Knowledge Sharing on Innovation Capability in United Arab Emirates Organizations
Authors: S. Abdallah, A. Khalil, A. Divine
Abstract:
The purpose of this study was to explore the relationship between knowledge sharing and innovation capability, by examining the influence of individual, organizational and technological factors on knowledge sharing. The research is based on a survey of 103 employees from different organizations in the United Arab Emirates. The study is based on a model and a questionnaire that was previously tested by Lin [1]. Thus, the study aims at examining the validity of that model in UAE context. The results of the research show varying degrees of correlation between the different variables, with ICT use having the strongest relationship with the innovation capabilities of organizations. The study also revealed little evidence of knowledge collecting and knowledge sharing among UAE employees.Keywords: Knowledge sharing, Organization Innovation, Technology Use, Innovation Capabilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25072378 Development of Subjective Measures of Interestingness: From Unexpectedness to Shocking
Authors: Eiad Yafi, M. A. Alam, Ranjit Biswas
Abstract:
Knowledge Discovery of Databases (KDD) is the process of extracting previously unknown but useful and significant information from large massive volume of databases. Data Mining is a stage in the entire process of KDD which applies an algorithm to extract interesting patterns. Usually, such algorithms generate huge volume of patterns. These patterns have to be evaluated by using interestingness measures to reflect the user requirements. Interestingness is defined in different ways, (i) Objective measures (ii) Subjective measures. Objective measures such as support and confidence extract meaningful patterns based on the structure of the patterns, while subjective measures such as unexpectedness and novelty reflect the user perspective. In this report, we try to brief the more widely spread and successful subjective measures and propose a new subjective measure of interestingness, i.e. shocking.Keywords: Shocking rules (SHR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15352377 Knowledge Management (KM) Practices - A Study of KM Adoption among Doctors in Kuwait
Authors: B. Alajmi, L. Marouf, A. S. Chaudhry
Abstract:
Knowledge management is considered as an important factor in improving health care services. KM facilitates the transfer of existing knowledge and the development of new knowledge in hospitals. This paper reviews practices adopted by doctors in Kuwait for capturing, sharing, and generating knowledge. It also discusses the perceived impact of KM practices on performance of hospitals. Based on a survey of 277 doctors, the study found that KM practices among doctors in the sampled hospitals were not very effective. Little attention was paid to the main activities that support the transfer of expertise among doctors in hospitals. However, as predicted by previous studies, good km practices were perceived by doctors to have a positive impact on performance of hospitals. It was concluded that through effective KM practices hospitals could improve the services they provide. Documentation of best practices and capturing of lessons learnt for re-use of knowledge could help transform the hospitals into learning organizations.
Keywords: Health Sector, Hospitals, Knowledge Management, Kuwait, Tools and Practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35252376 Weight-Based Query Optimization System Using Buffer
Authors: Kashif Irfan, Fahad Shahbaz Khan, Tehseen Zia, M. A. Anwar
Abstract:
Fast retrieval of data has been a need of user in any database application. This paper introduces a buffer based query optimization technique in which queries are assigned weights according to their number of execution in a query bank. These queries and their optimized executed plans are loaded into the buffer at the start of the database application. For every query the system searches for a match in the buffer and executes the plan without creating new plans.Keywords: Query Bank, Query Matcher, Weight Manager.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12602375 Knowledge Sharing Behavior in E-Communities: from the Perspective of Transaction Cost Theory
Authors: Teresa L. Ju, Szu-Yuan Sun, Pei-Ju Chao, Chang-Yao Wu
Abstract:
This study aims to examine the factors affecting knowledge sharing behavior in knowledge-based electronic communities (e-communities) because quantity and quality of knowledge shared among the members play a critical role in the community-s sustainability. Past research has suggested three perspectives that may affect the quantity and quality of knowledge shared: economics, social psychology, and social ecology. In this study, we strongly believe that an economic perspective may be suitable to validate factors influencing newly registered members- knowledge contribution at the beginning of relationship development. Accordingly, this study proposes a model to validate the factors influencing members- knowledge sharing based on Transaction Cost Theory. By doing so, we may empirically test our hypotheses in various types of e-communities to determine the generalizability of our research models.Keywords: Electronic community, individual behavior, knowledge sharing, transaction cost theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14682374 A Fitted Random Sampling Scheme for Load Distribution in Grid Networks
Authors: O. A. Rahmeh, P. Johnson, S. Lehmann
Abstract:
Grid networks provide the ability to perform higher throughput computing by taking advantage of many networked computer-s resources to solve large-scale computation problems. As the popularity of the Grid networks has increased, there is a need to efficiently distribute the load among the resources accessible on the network. In this paper, we present a stochastic network system that gives a distributed load-balancing scheme by generating almost regular networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node is refers to its free resources, and job assignment and resource discovery processes required for load balancing is accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources accessible on Grid networks.
Keywords: Complex networks, grid networks, load-balancing, random sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17842373 A Web Designer Agent, Based On Usage Mining Online Behavior of Visitors
Authors: Babak Abedin, Babak Sohrabi
Abstract:
Website plays a significant role in success of an e-business. It is the main start point of any organization and corporation for its customers, so it's important to customize and design it according to the visitors' preferences. Also, websites are a place to introduce services of an organization and highlight new service to the visitors and audiences. In this paper, we will use web usage mining techniques, as a new field of research in data mining and knowledge discovery, in an Iranian government website. Using the results, a framework for web content layour is proposed. An agent is designed to dynamically update and improve web links locations and layout. Then, we will explain how it is used to directly enable top managers of the organization to influence on the arrangement of web contents and also to enhance customization of web site navigation due to online users' behaviors.
Keywords: Web usage mining, website design, agent, website customization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19292372 SySRA: A System of a Continuous Speech Recognition in Arab Language
Authors: Samir Abdelhamid, Noureddine Bouguechal
Abstract:
We report in this paper the model adopted by our system of continuous speech recognition in Arab language SySRA and the results obtained until now. This system uses the database Arabdic-10 which is a corpus of word for the Arab language and which was manually segmented. Phonetic decoding is represented by an expert system where the knowledge base is translated in the form of production rules. This expert system transforms a vocal signal into a phonetic lattice. The higher level of the system takes care of the recognition of the lattice thus obtained by deferring it in the form of written sentences (orthographical Form). This level contains initially the lexical analyzer which is not other than the module of recognition. We subjected this analyzer to a set of spectrograms obtained by dictating a score of sentences in Arab language. The rate of recognition of these sentences is about 70% which is, to our knowledge, the best result for the recognition of the Arab language. The test set consists of twenty sentences from four speakers not having taken part in the training.Keywords: Continuous speech recognition, lexical analyzer, phonetic decoding, phonetic lattice, vocal signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13882371 Knowledge and Attitude of Palliative Care Towards Work Performance of Nurses in Indonesia Private Hospital
Authors: Novita Verayanti Manalu, Alvin Salim, Esti Yunitasari
Abstract:
Background: Palliative care is caring holistically for patients and families to improve their quality of life. The approach by a multidisciplinary team requires integrated collaboration based on sufficient knowledge of the principles of palliative care as a whole, especially for nurses. Therefore, this study wants to find out the level of knowledge about palliative care of the nurses along the relationship with attitude and performance. Method: This study applies cross-sectional survey design and allows the respondents to fill two questionnaires to determine the level of knowledge and attitude toward palliative care, while one questionnaire is filled by the head nurse to evaluate nurses’ performance. The relationship was analyzed by Spearman rho’s correlation in alpha < 0.05 by SPSS. Results: The majority of respondents were females, age above 25 years old, and married. Most of the nurses are staff nurses and the ratio of education level is not significantly different. The knowledge level is poor, while the attitude and performance are in adequate level. Knowledge may affect attitude, but it does not happen toward performance. Conclusion: There is a need for increased knowledge about palliative care to improve attitude and work performance. Future researchers might use this finding as reference to conduct further study in improving knowledge of palliative care.
Keywords: Knowledge, attitude, work performance, palliative care.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4522370 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System
Authors: A. Mohamed Mydeen, Pallapa Venkataram
Abstract:
The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.Keywords: Generic knowledge representation, toolkit, toolroom, pervasive computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20292369 Improved FP-growth Algorithm with Multiple Minimum Supports Using Maximum Constraints
Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam
Abstract:
Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FPgrowth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy.
Keywords: Association Rules, FP-growth, Multiple minimum supports, Weka Tool
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33182368 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran
Authors: Hamed Zolfaghari, Mojtaba Kord
Abstract:
Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that Microsoft project does not store the data in database, so the data cannot automatically be imported from Microsoft Project into Microsoft Excel. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI (Business Intelligence) for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, Human Resource (HR) reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.
Keywords: Primavera P6, SQL, Power BI, Earned Value Management, Integration Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4322367 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans
Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke
Abstract:
Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.
Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16722366 Network Anomaly Detection using Soft Computing
Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee
Abstract:
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19542365 Developing a Town Based Soil Database to Assess the Sensitive Zones in Nutrient Management
Authors: Sefa Aksu, Ünal Kızıl
Abstract:
For this study, a town based soil database created in Gümüsçay District of Biga Town, Çanakkale, Turkey. Crop and livestock production are major activities in the district. Nutrient management is mainly based on commercial fertilizer application ignoring the livestock manure. Within the boundaries of district, 122 soil sampling points determined over the satellite image. Soil samples collected from the determined points with the help of handheld Global Positioning System. Labeled samples were sent to a commercial laboratory to determine 11 soil parameters including salinity, pH, lime, organic matter, nitrogen, phosphorus, potassium, iron, manganese, copper and zinc. Based on the test results soil maps for mentioned parameters were developed using remote sensing, GIS, and geostatistical analysis. In this study we developed a GIS database that will be used for soil nutrient management. Methods were explained and soil maps and their interpretations were summarized in the study.Keywords: Geostatistics, GIS, Nutrient Management, Soil Mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23442364 Rheological Characteristics of Ice Slurries Based on Propylene- and Ethylene-Glycol at High Ice Fractions
Authors: Senda Trabelsi, Sébastien Poncet, Michel Poirier
Abstract:
Ice slurries are considered as a promising phase-changing secondary fluids for air-conditioning, packaging or cooling industrial processes. An experimental study has been here carried out to measure the rheological characteristics of ice slurries. Ice slurries consist in a solid phase (flake ice crystals) and a liquid phase. The later is composed of a mixture of liquid water and an additive being here either (1) Propylene-Glycol (PG) or (2) Ethylene-Glycol (EG) used to lower the freezing point of water. Concentrations of 5%, 14% and 24% of both additives are investigated with ice mass fractions ranging from 5% to 85%. The rheological measurements are carried out using a Discovery HR-2 vane-concentric cylinder with four full-length blades. The experimental results show that the behavior of ice slurries is generally non-Newtonian with shear-thinning or shear-thickening behaviors depending on the experimental conditions. In order to determine the consistency and the flow index, the Herschel-Bulkley model is used to describe the behavior of ice slurries. The present results are finally validated against an experimental database found in the literature and the predictions of an Artificial Neural Network model.
Keywords: Ice slurry, propylene-glycol, ethylene-glycol, rheology, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11272363 3D Objects Indexing Using Spherical Harmonic for Optimum Measurement Similarity
Authors: S. Hellam, Y. Oulahrir, F. El Mounchid, A. Sadiq, S. Mbarki
Abstract:
In this paper, we propose a method for three-dimensional (3-D)-model indexing based on defining a new descriptor, which we call new descriptor using spherical harmonics. The purpose of the method is to minimize, the processing time on the database of objects models and the searching time of similar objects to request object. Firstly we start by defining the new descriptor using a new division of 3-D object in a sphere. Then we define a new distance which will be used in the search for similar objects in the database.
Keywords: 3D indexation, spherical harmonic, similarity of 3D objects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231