Search results for: gas sweetening plant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 966

Search results for: gas sweetening plant

696 Investigation on Fluid Flow Characteristics of the Orifice in Nuclear Power Plant

Authors: Nam-Seok Kim, Sang-Kyu Lee, Byung-Soo Shin, O-Hyun Keum

Abstract:

The present paper represents a methodology for investigating flow characteristics near orifice plate by using a commercial computational fluid dynamics code. The flow characteristics near orifice plate which is located in the auxiliary feedwater system were modeled via three different levels of grid and four different types of Reynolds Averaged Navier-Stokes (RANS) equations with proper near-wall treatment. The results from CFD code were compared with experimental data in terms of differential pressure through the orifice plate. In this preliminary study, the Realizable k-ε and the Reynolds stress models with enhanced wall treatment were suitable to analyze flow characteristics near orifice plate, and the results had a good agreement with experimental data.

Keywords: Auxiliary Feedwater, Computational Fluid Dynamics, Orifice, Nuclear Power Plant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
695 Feasibility Study for a Castor oil Extraction Plant in South Africa

Authors: Mohamed Belaid, Edison Muzenda, Getrude Mitilene, Mansoor Mollagee

Abstract:

A feasibility study for the design and construction of a pilot plant for the extraction of castor oil in South Africa was conducted. The study emphasized the four critical aspects of project feasibility analysis, namely technical, financial, market and managerial aspects. The technical aspect involved research on existing oil extraction technologies, namely: mechanical pressing and solvent extraction, as well as assessment of the proposed production site for both short and long term viability of the project. The site is on the outskirts of Nkomazi village in the Mpumalanga province, where connections for water and electricity are currently underway, potential raw material supply proves to be reliable since the province is known for its commercial farming. The managerial aspect was evaluated based on the fact that the current producer of castor oil will be fully involved in the project while receiving training and technical assistance from Sasol Technology, the TSC and SEDA. Market and financial aspects were evaluated and the project was considered financially viable with a Net Present Value (NPV) of R2 731 687 and an Internal Rate of Return (IRR) of 18% at an annual interest rate of 10.5%. The payback time is 6years for analysis over the first 10 years with a net income of R1 971 000 in the first year. The project was thus found to be feasible with high chance of success while contributing to socio-economic development. It was recommended for lab tests to be conducted to establish process kinetics that would be used in the initial design of the plant.

Keywords: Mechanical pressing, Net Present Value, Oilextraction, Project feasibility, Solvent extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6082
694 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: Electric power consumption, LED color, LED lighting, plant factory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
693 Phytotoxicity of Lead on the Physiological Parameters of Two Varieties of Broad Bean (Vicia faba)

Authors: El H. Bouziani, H. A. Reguieg Yssaad

Abstract:

The phytotoxicity of heavy metals can be expressed on roots and visible part of plants and is characterized by molecular and metabolic answers at various levels of organization of the whole plant. The present study was undertaken on two varieties of broad bean Vicia faba (Sidi Aïch and Super Aguadulce). The device was mounted on a substrate prepared by mixing sand, soil and compost, the substrate was artificially contaminated with three doses of lead nitrate [Pb(NO3)2] 0, 500 and 1000 ppm. Our objective is to follow the behavior of plant opposite the stress by evaluating the physiological parameters. The results reveal a reduction in the parameters of the productivity (chlorophyll and proteins production) with an increase in the osmoregulators (soluble sugars and proline).These results show that the production of broad bean is strongly modified by the disturbance of its internal physiology under lead exposure.

Keywords: Broad bean, lead, stress, physiological parameters, phytotoxicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
692 Oily Sludge Bioremediation Pilot Plant Project, Nigeria

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment / bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance / quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water was observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria.

Keywords: Bioremediation, Contaminated sediment, Land farming, Oily sludge, Oil Terminal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
691 The Effect of Compost Addition on Chemical and Nitrogen Characteristics, Respiration Activity and Biomass Production in Prepared Reclamation Substrates

Authors: L. Plošek, F. Nsanganwimana, B. Pourrut, J. Elbl, J. Hynšt, A. Kintl, D. Kubná, J. Záhora

Abstract:

Land degradation is of concern in many countries. People more and more must address the problems associated with the degradation of soil properties due to man. Increasingly, organic soil amendments, such as compost are being examined for their potential use in soil restoration and for preventing soil erosion. In the Czech Republic, compost is the most used to improve soil structure and increase the content of soil organic matter. Land reclamation / restoration is one of the ways to evaluate industrially produced compost because Czech farmers are not willing to use compost as organic fertilizer. The most common use of reclamation substrates in the Czech Republic is for the rehabilitation of landfills and contaminated sites.

This paper deals with the influence of reclamation substrates (RS) with different proportions of compost and sand on selected soil properties–chemical characteristics, nitrogen bioavailability, leaching of mineral nitrogen, respiration activity and plant biomass production. Chemical properties vary proportionally with addition of compost and sand to the control variant (topsoil). The highest differences between the variants were recorded in leaching of mineral nitrogen (varies from 1.36mg dm-3 in C to 9.09mg dm-3). Addition of compost to soil improves conditions for plant growth in comparison with soil alone. However, too high addition of compost may have adverse effects on plant growth. In addition, high proportion of compost increases leaching of mineral N. Therefore, mixture of 70% of soil with 10% of compost and 20% of sand may be recommended as optimal composition of RS.

Keywords: Biomass, Compost, Reclamation, Respiration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
690 Screening and Evaluation of in vivo and in vitro Generated Insulin Plant (Vernonia divergens) for Antimicrobial and Anticancer Activities

Authors: Santosh Kumar, Anand Prakash, Kanak Sinha, Anita K Verma

Abstract:

Vernonia divergens Benth., commonly known as “Insulin Plant” (Fam: Asteraceae) is a potent sugar killer. Locally the leaves of the plant, boiled in water are successfully administered to a large number of diabetic patients. The present study evaluates the putative anti-diabetic ingredients, isolated from the in vivo and in vitro grown plantlets of V. divergens for their antimicrobial and anticancer activities. Sterilized explants of nodal segments were cultured on MS (Musashige and Skoog, 1962) medium in presence of different combinations of hormones. Multiple shoots along with bunch of roots were regenerated at 1mg l-1 BAP and 0.5 mg l-1 NAA. Micro-plantlets were separated and sub-cultured on the double strength (2X) of the above combination of hormones leading to increased length of roots and shoots. These plantlets were successfully transferred to soil and survived well in nature. The ethanol extract of plantlets from both in vivo & in vitro sources were prepared in soxhlet extractor and then concentrated to dryness under reduced pressure in rotary evaporator. Thus obtainedconcentrated extracts showed significant inhibitory activity against gram negative bacteria like Escherichia coli and Pseudomonas aeruginosa but no inhibition was found against gram positive bacteria. Further, these ethanol extracts were screened for in vitro percentage cytotoxicity at different time periods (24 h, 48 h and 72 h) of different dilutions. The in vivo plant extract inhibited the growth of EAC mouse cell lines in the range of 65, 66, 78, and 88% at 100, 50, 25 & 12.5μg mL-1 but at 72 h of treatment. In case of the extract of in vitro origin, the inhibition was found against EAC cell lines even at 48h. During spectrophotometric scanning, the extracts exhibited different maxima (ʎ) - four peaks in in vitro extracts as against single in in vivo preparation suggesting the possible change in the nature of ingredients during micropropagation through tissue culture techniques.

Keywords: Anti-cancer, Anti-microbial, EAC mouse cell, Tissue culture, Vernonia divergens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
689 Identification of PIP Aquaporin Genes from Wheat

Authors: Sh. A. Yousif, M. Bhave

Abstract:

There is strong evidence that water channel proteins 'aquaporins (AQPs)' are central components in plant-water relations as well as a number of other physiological parameters. We had previously reported the isolation of 24 plasma membrane intrinsic protein (PIP) type AQPs. However, the gene numbers in rice and the polyploid nature of bread wheat indicated a high probability of further genes in the latter. The present work focused on identification of further AQP isoforms in bread wheat. With the use of altered primer design, we identified five genes homologous, designated PIP1;5b, PIP2;9b, TaPIP2;2, TaPIP2;2a, TaPIP2;2b. Sequence alignments indicate PIP1;5b, PIP2;9b are likely to be homeologues of two previously reported genes while the other three are new genes and could be homeologs of each other. The results indicate further AQP diversity in wheat and the sequence data will enable physical mapping of these genes to identify their genomes as well as genetic to determine their association with any quantitative trait loci (QTLs) associated with plant-water relation such as salinity or drought tolerance.

Keywords: Aquaporins, homeologues, PIP, wheat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
688 A Control Model for the Dismantling of Industrial Plants

Authors: Florian Mach, Eric Hund, Malte Stonis

Abstract:

The dismantling of disused industrial facilities such as nuclear power plants or refineries is an enormous challenge for the planning and control of the logistic processes. Existing control models do not meet the requirements for a proper dismantling of industrial plants. Therefore, the paper presents an approach for the control of dismantling and post-processing processes (e.g. decontamination) in plant decommissioning. In contrast to existing approaches, the dismantling sequence and depth are selected depending on the capacity utilization of required post-processing processes by also considering individual characteristics of respective dismantling tasks (e.g. decontamination success rate, uncertainties regarding the process times). The results can be used in the dismantling of industrial plants (e.g. nuclear power plants) to reduce dismantling time and costs by avoiding bottlenecks such as capacity constraints.

Keywords: Dismantling management, logistics planning and control models, nuclear power plant dismantling, reverse logistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
687 The Effect of Fly Ash in Dewatering of Marble Processing Wastewaters

Authors: H. A. Taner, V. Önen

Abstract:

In the thermal power plants established to meet the energy need, lignite with low calorie and high ash content is used. Burning of these coals results in wastes such as fly ash, slag and flue gas. This constitutes a significant economic and environmental problems. However, fly ash can find evaluation opportunities in various sectors. In this study, the effectiveness of fly ash on suspended solid removal from marble processing wastewater containing high concentration of suspended solids was examined. Experiments were carried out for two different suspensions, marble and travertine. In the experiments, FeCl3, Al2(SO4)3 and anionic polymer A130 were used also to compare with fly ash. Coagulant/flocculant type/dosage, mixing time/speed and pH were the experimental parameters. The performances in the experimental studies were assessed with the change in the interface height during sedimentation resultant and turbidity values of treated water. The highest sedimentation efficiency was achieved with anionic flocculant. However, it was determined that fly ash can be used instead of FeCl3 and Al2(SO4)3 in the travertine plant as a coagulant.

Keywords: Dewatering, flocculant, fly ash, marble plant waste water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
686 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

Industries produce millions of cubic meters of effluent every year and the wastewater produced may be released into the surrounding water bodies, treated on-site or at municipal treatment plants. The determination of organic matter in the wastewater generated is very important to avoid any negative effect on the aquatic ecosystem. The scope of the present work is to assess the physicochemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD5 and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physicochemical composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10355
685 Control Configuration System as a Key Element in Distributed Control System

Authors: Goodarz Sabetian, Sajjad Moshfe

Abstract:

Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.

Keywords: Control, configuration, DCS, power plant, bus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
684 Promotion of Growth and Modulation of As- Induced Stress Ethylene in Maize by As- Tolerant ACC Deaminase Producing Bacteria

Authors: Charlotte C. Shagol, Tongmin Sa

Abstract:

One of the major pollutants in the environment is arsenic (As). Due to the toxic effects of As to all organisms, its remediation is necessary. Conventional technologies used in the remediation of As contaminated soils are expensive and may even compromise the structure of the soil. An attractive alternative is phytoremediation, which is the use of plants which can take up the contaminant in their tissues. Plant growth promoting bacteria (PGPB) has been known to enhance growth of plants through several mechanisms such as phytohormone production, phosphate solubilization, siderophore production and 1-aminocyclopropane-1- carboxylate (ACC) deaminase production, which is an essential trait that aids plants especially under stress conditions such as As stress. Twenty one bacteria were isolated from As-contaminated soils in the vicinity of the Janghang Smelter in Chungnam Province, South Korea. These exhibited high tolerance to either arsenite (As III) or arsenate (As V) or both. Most of these isolates possess several plant growth promoting traits which can be potentially exploited to increase phytoremediation efficiency. Among the identified isolates is Pseudomonas sp. JS1215, which produces ACC deaminase, indole acetic acid (IAA), and siderophore. It also has the ability to solubilize phosphate. Inoculation of JS1215 significantly enhanced root and shoot length and biomass accumulation of maize under normal conditions. In the presence of As, particularly in lower As level, inoculation of JS1215 slightly increased root length and biomass. Ethylene increased with increasing As concentration, but was reduced by JS1215 inoculation. JS1215 can be a potential bioinoculant for increasing phytoremediation efficiency.

Keywords: As-tolerant bacteria, plant growth promoting bacteria, As stress, phytoremediation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
683 Polymorphic Marker Designed from Bioinformatics Sequences Related to Cell Wall Strength for Discrimination of Mangosteen (Garcinia mangostana L.) Clones Resistant to Gamboge Disorder

Authors: E. Mansyah, Sobir, E. Santosa, A. Sisharmini, Sulassih

Abstract:

Gamboge disorder (GD) or fruit damage by the yellow sap is a major problem in mangosteen. Mangosteen plants varied in the level of GD, from very low or non GD to low, moderate and high GD. However it was difficult to differentiate between GD and non GD plants because evaluation of the disorder is strongly influenced by environment. In this study we investigated the usefulness of primer designed from bioinformatics related to cell wall strength, termed as MCWS, to predict GD. Plant materials used were 28 mangosteen plants selected based on percentage of GD categorized as high, moderate, low and very low or non GD. The result showed that the specific DNA fragments were absent in the high GD accessions. The MCWS marker suggests as a novel polymorphic marker for GD in mangosteen as well as a marker for detect variability in mangosteen as apomictic plant.

Keywords: Bioinformatics, cell wall strength, gamboge disorder, mangosteen, polymorphic marker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
682 Growth and Yield Assessment of Two Types of Sorghum-Sudangrass Hybrids as Affected by Deficit Irrigation

Authors: A. Abbas Khalaf, L. Issazadeh, Z. Arif Abdullah, J. Hassanpour

Abstract:

In order to evaluate the growth and yield properties of two Sorghum-Sudangrass hybrids under different irrigation levels, an investigation was done in the experiment site of Collage of Agriculture, University of Duhok, Kurdistan region of Iraq (36°5´38 N, 42°52´02 E) in the years 2015-16. The experiment was conducted under Randomized Complete Block Design (RCBD) with three replications, which main factor was irrigation treatments (I100, I75 and I50) according to evaporation pan class A and type of Sorghum-Sudangrass hybrids (KH12SU9001, G1) and (KH12SU9002, G2) were factors of subplots. The parameters studied were: plant height (cm), number of green leaves per plant; leaf area (m2/m2), stem thickness (mm), percent of protein, fresh and dry biomass (ton.ha-1) and also crop water productivity. The results of variance analysis showed that KH12SU9001 variety had more amount of leaf area, percent of protein, fresh and dry biomass yield in comparison to KH12SU9002 variety. By comparing effects of irrigation levels on vegetative growth and yield properties, results showed that amount of plant height, fresh and dry biomass weight was decreased by decreasing irrigation level from full irrigation regime to 5 o% of irrigation level. Also, results of crop water productivity (CWP) indicated that improvement in quantity of irrigation would impact fresh and dry biomass yield significantly. Full irrigation regime was recorded the highest level of CWP (1.28-1.29 kg.m-3).

Keywords: Deficit irrigation, growth, Sorghum-Sudangrass hybrid, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591
681 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
680 Identification of Key Parameters for Benchmarking of Combined Cycle Power Plants Retrofit

Authors: S. Sabzchi Asl, N. Tahouni, M. H. Panjeshahi

Abstract:

Benchmarking of a process with respect to energy consumption, without accomplishing a full retrofit study, can save both engineering time and money. In order to achieve this goal, the first step is to develop a conceptual-mathematical model that can easily be applied to a group of similar processes. In this research, we have aimed to identify a set of key parameters for the model which is supposed to be used for benchmarking of combined cycle power plants. For this purpose, three similar combined cycle power plants were studied. The results showed that ambient temperature, pressure and relative humidity, number of HRSG evaporator pressure levels and relative power in part load operation are the main key parameters. Also, the relationships between these parameters and produced power (by gas/ steam turbine), gas turbine and plant efficiency, temperature and mass flow rate of the stack flue gas were investigated.

Keywords: Combined cycle power plant, energy benchmarking, modelling, Retrofit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
679 The Use of Bituminaria bituminosa (L.) Stirton and Microbial Biotechnologies for Restoration of Degraded Pastoral Lands: The Case of the Middle Atlas of Morocco

Authors: O. Zennouhi, M. El Mderssa, J. Ibijbijen, E. Bouiamrine, L. Nassiri

Abstract:

Rangelands and silvopastoral systems of the middle Atlas are under a heavy pressure, which led to pasture degradation, invasion by non-palatable and toxic species and edaphic aridification due to the regression of the global vegetation cover. In this situation, the introduction of multipurpose leguminous shrubs, such as Bituminaria bituminosa (L.) Stirton, commonly known as bituminous clover, could be a promising socio-ecological alternative for the rehabilitation of these degraded areas. The application of biofertilizers like plant growth promoting rhizobacteria especially phosphate solubilizing bacteria (PSB) can ensure a successful installation of this plant in the selected degraded areas. The main objective of the present work is to produce well-inoculated seedlings using the best efficient PSB strains in the greenhouse to increase their ability to resist to environmental constraints once transplanted to the field in the central Middle Atlas.

Keywords: Biofertilizers, Bituminaria bituminosa, phosphate solubilizing bacteria, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
678 Salinity on Survival and Early Development of Biofuel Feedstock Crops

Authors: Vincent M. Russo

Abstract:

Salinity level may affect early development of biofuel feedstock crops. The biofuel feedstock crops canola (Brassica napus L.), sorghum [Sorghum bicolor (L.) Moench], and sunflower (Helianthus annuus L.); and the potential feedstock crop sweet corn (Zea mays L.) were planted in media in pots and treated with aqueous solutions of 0, 0.1, 0.5 and 1.0 M NaCl once at: 1) planting; 2) 7-10 days after planting or 3) first true leaf expansion. An additional treatment (4) comprised of one-half strength of the 0.1, 0.5 and 1.0 M (concentrations 0.05, 0.25, 0.5 M at each application) was applied at first true leaf expansion and four days later. Survival of most crops decreased below 90% above 0.5 M; survival of canola decreased above 0.1 M. Application timing had little effect on crop survival. For canola root fresh and dry weights improved when application was at plant emergence; for sorghum top and root fresh weights improved when the split application was used. When application was at planting root dry weight was improved over most other applications. Sunflower top fresh weight was among the highest when saline solutions were split and top dry weight was among the highest when application was at plant emergence. Sweet corn root fresh weight was improved when the split application was used or application was at planting. Sweet corn root dry weight was highest when application was at planting or plant emergence. Even at high salinity rates survival rates greater than what might be expected occurred. Plants that survived appear to be able to adjust to saline during the early stages of development.

Keywords: Canola, Development, Sorghum, Sunflower, Sweetcorn, Survival

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
677 Life Cycle Assessment of Seawater Desalinization in Western Australia

Authors: Wahidul K. Biswas

Abstract:

Perth will run out of available sustainable natural water resources by 2015 if nothing is done to slow usage rates, according to a Western Australian study [1]. Alternative water technology options need to be considered for the long-term guaranteed supply of water for agricultural, commercial, domestic and industrial purposes. Seawater is an alternative source of water for human consumption, because seawater can be desalinated and supplied in large quantities to a very high quality. While seawater desalination is a promising option, the technology requires a large amount of energy which is typically generated from fossil fuels. The combustion of fossil fuels emits greenhouse gases (GHG) and, is implicated in climate change. In addition to environmental emissions from electricity generation for desalination, greenhouse gases are emitted in the production of chemicals and membranes for water treatment. Since Australia is a signatory to the Kyoto Protocol, it is important to quantify greenhouse gas emissions from desalinated water production. A life cycle assessment (LCA) has been carried out to determine the greenhouse gas emissions from the production of 1 gigalitre (GL) of water from the new plant. In this LCA analysis, a new desalination plant that will be installed in Bunbury, Western Australia, and known as Southern Seawater Desalinization Plant (SSDP), was taken as a case study. The system boundary of the LCA mainly consists of three stages: seawater extraction, treatment and delivery. The analysis found that the equivalent of 3,890 tonnes of CO2 could be emitted from the production of 1 GL of desalinated water. This LCA analysis has also identified that the reverse osmosis process would cause the most significant greenhouse emissions as a result of the electricity used if this is generated from fossil fuels

Keywords: Desalinization, Greenhouse gas emissions, life cycle assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4115
676 Influence of Hydrocarbons on Plant Cell Ultrastructure and Main Metabolic Enzymes

Authors: T. Sadunishvili, E. Kvesitadze, M. Betsiashvili, N. Kuprava, G. Zaalishvili, G. Kvesitadze

Abstract:

Influence of octane and benzene on plant cell ultrastructure and enzymes of basic metabolism, such as nitrogen assimilation and energy generation have been studied. Different plants: perennial ryegrass (Lolium perenne) and alfalfa (Medicago sativa); crops- maize (Zea mays L.) and bean (Phaseolus vulgaris); shrubs – privet (Ligustrum sempervirens) and trifoliate orange (Poncirus trifoliate); trees - poplar (Populus deltoides) and white mulberry (Morus alba L.) were exposed to hydrocarbons of different concentrations (1, 10 and 100 mM). Destructive changes in bean and maize leaves cells ultrastructure under the influence of benzene vapour were revealed at the level of photosynthetic and energy generation subcellular organells. Different deviations at the level of subcellular organelles structure and distribution were observed in alfalfa and ryegrass root cells under the influence of benzene and octane, absorbed through roots. The level of destructive changes is concentration dependent. Benzene at low 1 and 10 mM concentration caused the increase in glutamate dehydrogenase (GDH) activity in maize roots and leaves and in poplar and mulberry shoots, though to higher extent in case of lower, 1mM concentration. The induction was more intensive in plant roots. The highest tested 100mM concentration of benzene was inhibitory to the enzyme in all plants. Octane caused induction of GDH in all grassy plants at all tested concentrations; however the rate of induction decreased parallel to increase of the hydrocarbon concentration. Octane at concentration 1 mM caused induction of GDH in privet, trifoliate and white mulberry shoots. The highest, 100mM octane was characterized by inhibitory effect to GDH activity in all plants. Octane had inductive effect on malate dehydrogenase in almost all plants and tested concentrations, indicating the intensification of Trycarboxylic Acid Cycle. The data could be suggested for elaboration of criteria for plant selection for phytoremediation of oil hydrocarbons contaminated soils.

Keywords: Higher plants, hydrocarbons, cell ultrastructure, glutamate and malate dehydrogenases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
675 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops

Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha

Abstract:

The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

Keywords: Artificial neural networks, cellular automata, decision support system, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
674 Optimization of Diverter Box Configuration in a V94.2 Gas Turbine Exhaust System using Numerical Simulation

Authors: A. Mohajer, A. Noroozi, S. Norouzi

Abstract:

The bypass exhaust system of a 160 MW combined cycle has been modeled and analyzed using numerical simulation in 2D prospective. Analysis was carried out using the commercial numerical simulation software, FLUENT 6.2. All inputs were based on the technical data gathered from working conditions of a Siemens V94.2 gas turbine, installed in the Yazd power plant. This paper deals with reduction of pressure drop in bypass exhaust system using turning vanes mounted in diverter box in order to alleviate turbulent energy dissipation rate above diverter box. The geometry of such turning vanes has been optimized based on the flow pattern at diverter box inlet. The results show that the use of optimized turning vanes in diverter box can improve the flow pattern and eliminate vortices around sharp edges just before the silencer. Furthermore, this optimization could decrease the pressure drop in bypass exhaust system and leads to higher plant efficiency.

Keywords: Numerical simulation, Diverter box, Turning vanes, Exhaust system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804
673 Improving Water Productivity of Chickpea by the Use of Deficit Irrigation with Treated Domestic Wastewater

Authors: Hirich A., Choukr-allah R., Jacobsen S-E., Hamdy A., El youssfi L., El Omari H.

Abstract:

An experiment was performed in the south of Morocco in order to evaluate the effect of deficit irrigation by treated wastewater on chickpea production. We applied six irrigation treatments on a local variety of chickpea by supplying alternatively 50 or 100% of ETm in a completely randomized design. We found a highly significant difference between treatments in terms of biomass production. Drought stress during the vegetative period showed highest yield with 6.5 t/ha which was more than the yield obtained for the control (4.9 t/ha). The optimal crop stage in which deficit irrigation can be applied is the vegetative growth stage, as the crop has a chance to develop its root system, to be able to cover the plant needs for water and nutrient supply during the rest of cycle, and non stress conditions during the flowering and seed filling stages allow the plant to optimize its photosynthesis and carbon translocation, therefore increase its productivity.

Keywords: chickpea, crop stages, drought stress, water productivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3521
672 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants

Authors: Rahib Hidayat Abiyev

Abstract:

This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
671 Nest Site Selection by Persian Ground Jay (Podoces pleskei) in Bafgh Protected Area, Iran

Authors: S. Rasekhinia, S. Aghanajafizadeh, K. Eslami

Abstract:

We studied the selection of nest sites by Persian ground Jay (Podoces pleskei), in a semi -desert central Iran. Habitat variables such as plant species number, height of plant species, vegetation percent and distance to water sources of nest sites were compared with randomly selected non- used sites. The results showed that the most important factors influencing nesting site selection were total vegetation percent and number of shrubs (Zgophyllum eurypterum and Atraphaxis spinosa). The mean vegetation percent of 20 area selected by Persian Ground Jay was (4.41+ 0.17), which was significantly larger than that of the non – selected area (2.08 + 0.06). The number of Zygophyllum eurypterum (1.13+ 0.01) and Atraphaxis spinosa (1.36+ 0.10) were also significantly higher compared with the control area (0.43+ 0.07) and (0.58+ 0.9) respectively.

Keywords: Persian Ground Jay, Habitat variables, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
670 Vibration Analysis of an Alstom Typhoon Gas Turbine Power Plant Related to Iran Oil Industry

Authors: Omid A. Zargar

Abstract:

Vibration analysis is the most important factor in preventive maintenance. Gas turbine vibration analysis is also one of the most challenging categories in most critical equipment monitoring systems. Utilities are heart of the process in big industrial plants like petrochemical zones. Vibration analysis methods and condition monitoring systems of this kind of equipment developed too much in recent years. On the other hand, too much operation condition consideration in this kind of equipment should be adjusted properly like inlet and outlet pressure and temperature for both turbine and compressor. In this paper the most important tools and hypothesis used for analyzing of gas turbine power plants discussed in details through a real case history related to an Alstom Typhoon gas turbine power plant in Iran oil industries. In addition, the basic principal of vibration behavior caused by mechanical unbalance in gas turbine rotor discussed in details.

Keywords: Vibration analysis, gas turbine, time wave form (TWF), fast Fourier transform (FFT), phase angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4911
669 Investigation of Heavy Metals Uptake by Vegetable Crops from Metal-Contaminated Soil

Authors: Azita Behbahaninia, Seid Ahmad Mirbagheri

Abstract:

The use of sewage sludge and effluents from wastewater treatment plants for irrigation of agricultural lands is on the rise particularly in peri-urban areas of developing countries. The reuse of nutrients and organic matter in treated wastewater and sewage sludge via land application is a desirable goal. However, trace or heavy metals present in sludge pose the risk of human or phytotoxicity from land application. Long-term use of sewage sludge, heavy metals can accumulate to phytotoxic levels and results in reduced plants growth and/or enhanced metal concentrations in plants, which consumed by animals then enter the food chain. In this research, the amount of heavy metals was measured in plants irrigated with wastewater and sludge application. For this purpose, three pilots were made in a Shush treatment plant in south of Tehran. Three plants species, spinach, lettuce and radish were selected and planted in the pilots.First pilot was irrigated just with wastewater of treatment plant and second pilot was irrigated with wastewater and sludge application .Third pilot was irrigated with simulated heavy metals solution equal 50 years of irrigation. The results indicate that the average of amount of heavy metals Pb, Cd in three plant species in first pilot were lower than permissible limits .In second pilot, Cadmium accumulations are high in three species plants and more than the standard limits. Concentration of Cd , Pb have exceed their permitted limits in plants in third pilot . It was concluded that the use of wastewater and sludge application in agricultural lands enriched soils with heavy metals to concentrations that may pose potential environmental and health risks in the long-term.

Keywords: Soil, contaminate, heavy metals, wastewater, sludge, plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
668 Performance of Phytogreen Zone for BOD5 and SS Removal for Refurbishment Conventional Oxidation Pond in an Integrated Phytogreen System

Authors: A. R. Abdul Syukor, A. W. Zularisam, Z. Ideris, M. S. Mohd Ismid, H. M. Nakmal, S. Sulaiman, A. H. Hasmanie, M. R. Siti Norsita, M. Nasrullah

Abstract:

In this study, the effectiveness of an integrated aquatic plants in phytogreen zone was studied and statistical analysis for the promotional integrated phytogreen system approached was discussed. It was found that's the effectiveness of using aquatic plant such as Typha angustifolia sp., Lepironia articulata sp., Limnocharis flava sp., Monochoria vaginalis sp., Pistia stratiotes sp., and Eichhornia crassipes sp., in the conventional oxidation pond process in order to comply the standard A according to Malaysia Environmental Quality Act 1974 (Act 127); Environmental Quality (Sewage) Regulation 2009 for effluent discharge into inland water near the residential area was successfully shown. It was concluded that the integrated phtogreen system developed in this study has great potential for refurbishment wastewater in conventional oxidation pond.

Keywords: Phytoremediation, integrated phytogreen system, sewage treatment plant, oxidation pond, aquatic plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
667 Automated Buffer Box Assembly Cell Concept for the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu, Alan Murchison

Abstract:

The Canadian Used Fuel Container (UFC) is a mid-size hemispherical headed copper coated steel container measuring 2.5 meters in length and 0.5 meters in diameter containing 48 used fuel bundles. The contained used fuel produces significant gamma radiation requiring automated assembly processes to complete the assembly. The design throughput of 2,500 UFCs per year places constraints on equipment and hot cell design for repeatability, speed of processing, robustness and recovery from upset conditions. After UFC assembly, the UFC is inserted into a Buffer Box (BB). The BB is made from adequately pre-shaped blocks (lower and upper block) and Highly Compacted Bentonite (HCB) material. The blocks are practically ‘sandwiching’ the UFC between them after assembly. This paper identifies one possible approach for the BB automatic assembly cell and processes. Automation of the BB assembly will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: Used fuel packing plant, automatic assembly cell, used fuel container, buffer box, deep geological repository.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055