Search results for: component model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8129

Search results for: component model

7859 A Hydro-Mechanical Model for Unsaturated Soils

Authors: A. Uchaipichat

Abstract:

The hydro-mechanical model for unsaturated soils has been presented based on the effective stress principle taking into account effects of drying-wetting process. The elasto-plastic constitutive equations for stress-strain relations of the soil skeleton have been established. A plasticity model is modified from modified Cam-Clay model. The hardening rule has been established by considering the isotropic consolidation paths. The effect of dryingwetting process is introduced through the ¤ç parameter. All model coefficients are identified in terms of measurable parameters. The simulations from the proposed model are compared with the experimental results. The model calibration was performed to extract the model parameter from the experimental results. Good agreement between the results predicted using proposed model and the experimental results was obtained.

Keywords: Drying-wetting process, Effective stress, Elastoplasticmodel, Unsaturated soils

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
7858 Development of a RAM Simulation Model for Acid Gas Removal System

Authors: Ainul Akmar Mokhtar, Masdi Muhammad, Hilmi Hussin, Mohd Amin Abdul Majid

Abstract:

A reliability, availability and maintainability (RAM) model has been built for acid gas removal plant for system analysis that will play an important role in any process modifications, if required, for achieving its optimum performance. Due to the complexity of the plant, the model was based on a Reliability Block Diagram (RBD) with a Monte Carlo simulation engine. The model has been validated against actual plant data as well as local expert opinions, resulting in an acceptable simulation model. The results from the model showed that the operation and maintenance can be further improved, resulting in reduction of the annual production loss.

Keywords: Acid gas removal plant, RAM model, Reliabilityblock diagram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
7857 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain

Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper

Abstract:

Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.

Keywords: Additive manufacturing, lean production, reproducibility, work safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
7856 A Generator from Cascade Markov Model for Packet Loss and Subsequent Bit Error Description

Authors: Jaroslav Polec, Viliam Hirner, Michal Martinovič, Kvetoslava Kotuliaková

Abstract:

In this paper we present a novel error model for packet loss and subsequent error description. The proposed model simulates the error performance of wireless communication link. The model is designed as two independent Markov chains, where the first one is used for packet generation and the second one generates correctly and incorrectly transmitted bits for received packets from the first chain. The statistical analyses of real communication on the wireless link are used for determination of model-s parameters. Using the obtained parameters and the implementation of the generator, we collected generated traffic. The obtained results generated by proposed model are compared with the real data collection.

Keywords: Wireless channel, error model, Markov chain, Elliot model, Gilbert model, generator, IEEE 802.11.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
7855 Application of Pearson Parametric Distribution Model in Fatigue Life Reliability Evaluation

Authors: E. A. Azrulhisham, Y. M. Asri, A. W. Dzuraidah, A. H. Hairul Fahmi

Abstract:

The aim of this paper is to introduce a parametric distribution model in fatigue life reliability analysis dealing with variation in material properties. Service loads in terms of responsetime history signal of Belgian pave were replicated on a multi-axial spindle coupled road simulator and stress-life method was used to estimate the fatigue life of automotive stub axle. A PSN curve was obtained by monotonic tension test and two-parameter Weibull distribution function was used to acquire the mean life of the component. A Pearson system was developed to evaluate the fatigue life reliability by considering stress range intercept and slope of the PSN curve as random variables. Considering normal distribution of fatigue strength, it is found that the fatigue life of the stub axle to have the highest reliability between 10000 – 15000 cycles. Taking into account the variation of material properties associated with the size effect, machining and manufacturing conditions, the method described in this study can be effectively applied in determination of probability of failure of mass-produced parts.

Keywords: Stub axle, Fatigue life reliability, Stress-life, PSN curve, Weibull distribution, Pearson system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
7854 A Formulation of the Latent Class Vector Model for Pairwise Data

Authors: Tomoya Okubo, Kuninori Nakamura, Shin-ichi Mayekawa

Abstract:

In this research, a latent class vector model for pairwise data is formulated. As compared to the basic vector model, this model yields consistent estimates of the parameters since the number of parameters to be estimated does not increase with the number of subjects. The result of the analysis reveals that the model was stable and could classify each subject to the latent classes representing the typical scales used by these subjects.

Keywords: finite mixture models, latent class analysis, Thrustone's paired comparison method, vector model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
7853 A Constitutive Model for Time-Dependent Behavior of Clay

Authors: T. N. Mac, B. Shahbodaghkhan, N. Khalili

Abstract:

A new elastic-viscoplastic (EVP) constitutive model is proposed for the analysis of time-dependent behavior of clay. The proposed model is based on the bounding surface plasticity and the concept of viscoplastic consistency framework to establish continuous transition from plasticity to rate dependent viscoplasticity. Unlike the overstress based models, this model will meet the consistency condition in formulating the constitutive equation for EVP model. The procedure of deriving the constitutive relationship is also presented. Simulation results and comparisons with experimental data are then presented to demonstrate the performance of the model.

Keywords: Bounding surface, consistency theory, constitutive model, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744
7852 Neuromarketing: Discovering the Somathyc Marker in the Consumer´s Brain

Authors: Mikel Alonso López, María Francisca Blasco López, Víctor Molero Ayala

Abstract:

The present study explains the somatic marker theory of Antonio Damasio, which indicates that when making a decision, the stored or possible future scenarios (future memory) images allow people to feel for a moment what would happen when they make a choice, and how this is emotionally marked. This process can be conscious or unconscious. The development of new Neuromarketing techniques such as functional magnetic resonance imaging (fMRI), carries a greater understanding of how the brain functions and consumer behavior. In the results observed in different studies using fMRI, the evidence suggests that the somatic marker and future memories influence the decision-making process, adding a positive or negative emotional component to the options. This would mean that all decisions would involve a present emotional component, with a rational cost-benefit analysis that can be performed later.

Keywords: Emotions, decision making, somatic marker, consumer´s brain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
7851 Modeling the Transport of Charge Carriers in the Active Devices MESFET, Based of GaInP by the Monte Carlo Method

Authors: N. Massoum, A. Guen. Bouazza, B. Bouazza, A. El Ouchdi

Abstract:

The progress of industry integrated circuits in recent years has been pushed by continuous miniaturization of transistors. With the reduction of dimensions of components at 0.1 micron and below, new physical effects come into play as the standard simulators of two dimensions (2D) do not consider. In fact the third dimension comes into play because the transverse and longitudinal dimensions of the components are of the same order of magnitude. To describe the operation of such components with greater fidelity, we must refine simulation tools and adapted to take into account these phenomena. After an analytical study of the static characteristics of the component, according to the different operating modes, a numerical simulation is performed of field-effect transistor with submicron gate MESFET GaInP. The influence of the dimensions of the gate length is studied. The results are used to determine the optimal geometric and physical parameters of the component for their specific applications and uses.

Keywords: Monte Carlo simulation, transient electron transport, MESFET device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
7850 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: Text mining, topic extraction, independent, incremental, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
7849 Quantitative Estimation of Periodicities in Lyari River Flow Routing

Authors: Rana Khalid Naeem, Asif Mansoor

Abstract:

The hydrologic time series data display periodic structure and periodic autoregressive process receives considerable attention in modeling of such series. In this communication long term record of monthly waste flow of Lyari river is utilized to quantify by using PAR modeling technique. The parameters of model are estimated by using Frances & Paap methodology. This study shows that periodic autoregressive model of order 2 is the most parsimonious model for assessing periodicity in waste flow of the river. A careful statistical analysis of residuals of PAR (2) model is used for establishing goodness of fit. The forecast by using proposed model confirms significance and effectiveness of the model.

Keywords: Diagnostic checks, Lyari river, Model selection, Monthly waste flow, Periodicity, Periodic autoregressive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
7848 Low Dimensional Representation of Dorsal Hand Vein Features Using Principle Component Analysis (PCA)

Authors: M.Heenaye-Mamode Khan, R.K. Subramanian, N. A. Mamode Khan

Abstract:

The quest of providing more secure identification system has led to a rise in developing biometric systems. Dorsal hand vein pattern is an emerging biometric which has attracted the attention of many researchers, of late. Different approaches have been used to extract the vein pattern and match them. In this work, Principle Component Analysis (PCA) which is a method that has been successfully applied on human faces and hand geometry is applied on the dorsal hand vein pattern. PCA has been used to obtain eigenveins which is a low dimensional representation of vein pattern features. Low cost CCD cameras were used to obtain the vein images. The extraction of the vein pattern was obtained by applying morphology. We have applied noise reduction filters to enhance the vein patterns. The system has been successfully tested on a database of 200 images using a threshold value of 0.9. The results obtained are encouraging.

Keywords: Biometric, Dorsal vein pattern, PCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
7847 Unsupervised Texture Classification and Segmentation

Authors: V.P.Subramanyam Rallabandi, S.K.Sett

Abstract:

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.

Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
7846 Redundancy Component Matrix and Structural Robustness

Authors: Xinjian Kou, Linlin Li, Yongju Zhou, Jimian Song

Abstract:

We introduce the redundancy matrix that expresses clearly the geometrical/topological configuration of the structure. With the matrix, the redundancy of the structure is resolved into redundant components and assigned to each member or rigid joint. The values of the diagonal elements in the matrix indicates the importance of the corresponding members or rigid joints, and the geometrically correlations can be shown with the non-diagonal elements. If a member or rigid joint failures, reassignment of the redundant components can be calculated with the recursive method given in the paper. By combining the indexes of reliability and redundancy components, we define an index concerning the structural robustness. To further explain the properties of the redundancy matrix, we cited several examples of statically indeterminate structures, including two trusses and a rigid frame. With the examples, some simple results and the properties of the matrix are discussed. The examples also illustrate that the redundancy matrix and the relevant concepts are valuable in structural safety analysis.

Keywords: Structural robustness, structural reliability, redundancy component, redundancy matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
7845 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
7844 A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients

Authors: Zarita Zainuddin, Ong Pauline, C. Ardil

Abstract:

Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.

Keywords: Diabetes Mellitus, principal component analysis, time-series, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
7843 Identification of Reusable Software Modules in Function Oriented Software Systems using Neural Network Based Technique

Authors: Sonia Manhas, Parvinder S. Sandhu, Vinay Chopra, Nirvair Neeru

Abstract:

The cost of developing the software from scratch can be saved by identifying and extracting the reusable components from already developed and existing software systems or legacy systems [6]. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. We have used metric based approach for characterizing a software module. In this present work, the metrics McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component are used as input attributes to the different types of Neural Network system and reusability of the software component is calculated. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Keywords: Software reusability, Neural Networks, MAE, RMSE, Accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
7842 Allocation of Mobile Units in an Urban Emergency Service System

Authors: Dimitra Alexiou

Abstract:

In an urban area the location allocation of emergency services mobile units, such as ambulances, police patrol cars must be designed so as to achieve a prompt response to demand locations. In this paper the partition of a given urban network into distinct sub-networks is performed such that the vertices in each component are close and simultaneously the sums of the corresponding population in the sub-networks are almost uniform. The objective here is to position appropriately in each sub-network a mobile emergency unit in order to reduce the response time to the demands. A mathematical model in framework of graph theory is developed. In order to clarify the corresponding method a relevant numerical example is presented on a small network.

Keywords: Distances, Emergency Service, Graph Partition, location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
7841 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: Deep learning, indoor quality, metabolism, predictive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
7840 Alternating Current Photovoltaic Module Model

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents modeling of an Alternating Current (AC) Photovoltaic (PV) module using Matlab/Simulink. The proposed AC-PV module model is simple, realistic, and application oriented. The model is derived on module level as compared to cell level directly from the information provided by the manufacturer data sheet. DC-PV module, MPPT control, BC, VSI and LC filter, all were treated as a single unit. The model accounts for changes in variations of both irradiance and temperature. The AC-PV module proposed model is simulated and the results are compared with the datasheet projected numbers to validate model’s accuracy and effectiveness. Implementation and results demonstrate simplicity and accuracy, as well as reliability of the model.

Keywords: AC PV Module, Datasheet, Matlab/Simulink, PV modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923
7839 Architecture Exception Governance

Authors: Ondruska Marek

Abstract:

The article presents the whole model of IS/IT architecture exception governance. As first, the assumptions of presented model are set. As next, there is defined a generic governance model that serves as a basis for the architecture exception governance. The architecture exception definition and its attributes follow. The model respects well known approaches to the area that are described in the text, but it adopts higher granularity in description and expands the process view with all the next necessary governance components as roles, principles and policies, tools to enable the implementation of the model into organizations. The architecture exception process is decomposed into a set of processes related to the architecture exception lifecycle consisting of set of phases and architecture exception states. Finally, there is information about my future research related to this area.

Keywords: Architecture, dispensation, exception, governance, model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
7838 Modelling of Organic Rankine Cycle for Waste Heat Recovery Process in Supercritical Condition

Authors: Jahedul Islam Chowdhury, Bao Kha Nguyen, David Thornhill, Roy Douglas, Stephen Glover

Abstract:

Organic Rankine Cycle (ORC) is the most commonly used method for recovering energy from small sources of heat. The investigation of the ORC in supercritical condition is a new research area as it has a potential to generate high power and thermal efficiency in a waste heat recovery system. This paper presents a steady state ORC model in supercritical condition and its simulations with a real engine’s exhaust data. The key component of ORC, evaporator, is modelled using finite volume method, modelling of all other components of the waste heat recovery system such as pump, expander and condenser are also presented. The aim of this paper is to investigate the effects of mass flow rate and evaporator outlet temperature on the efficiency of the waste heat recovery process. Additionally, the necessity of maintaining an optimum evaporator outlet temperature is also investigated. Simulation results show that modification of mass flow rate is the key to changing the operating temperature at the evaporator outlet.

Keywords: Organic Rankine cycle, supercritical condition, steady state model, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3073
7837 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model

Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You

Abstract:

The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.

Keywords: Clustering algorithm, potential function, speech signal, the UBSS model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
7836 Validation of the Formal Model of Web Services Applications for Digital Reference Service of Library Information System

Authors: Zainab M. Musa, Nordin M. A. Rahman, Julaily A. Jusoh

Abstract:

The web services applications for digital reference service (WSDRS) of LIS model is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ needs in the reference section of libraries. The formal WSDRS model consists of the Z specifications of all the informal specifications of the model. This paper discusses the formal validation of the Z specifications of WSDRS model. The authors formally verify and thus validate the properties of the model using Z/EVES theorem prover.

Keywords: Validation, verification, formal, theorem proving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
7835 Interactive Agents with Artificial Mind

Authors: Hirohide Ushida

Abstract:

This paper discusses an artificial mind model and its applications. The mind model is based on some theories which assert that emotion is an important function in human decision making. An artificial mind model with emotion is built, and the model is applied to action selection of autonomous agents. In three examples, the agents interact with humans and their environments. The examples show the proposed model effectively work in both virtual agents and real robots.

Keywords: Artificial mind, emotion, interactive agent, pet robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
7834 An Exploration on Competency-Based Curricula in Integrated Circuit Design

Authors: Chih Chin Yang, Chung Shan Sun

Abstract:

In this paper the relationships between professional competences and school curriculain IC design industry are explored. The semi-structured questionnaire survey and focus group interview is the research method. Study participants are graduates of microelectronics engineering professional departments who are currently employed in the IC industry. The IC industries are defined as the electronic component manufacturing industry and optical-electronic component manufacturing industry in the semiconductor industry and optical-electronic material devices, respectively. Study participants selected from IC design industry include IC engineering and electronic & semiconductor engineering. The human training with IC design professional competence in microelectronics engineering professional departments is explored in this research. IC professional competences of human resources in the IC design industry include general intelligence and professional intelligence.

Keywords: IC design, curricula, competence, task, duty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
7833 A Face-to-Face Education Support System Capable of Lecture Adaptation and Q&A Assistance Based On Probabilistic Inference

Authors: Yoshitaka Fujiwara, Jun-ichirou Fukushima, Yasunari Maeda

Abstract:

Keys to high-quality face-to-face education are ensuring flexibility in the way lectures are given, and providing care and responsiveness to learners. This paper describes a face-to-face education support system that is designed to raise the satisfaction of learners and reduce the workload on instructors. This system consists of a lecture adaptation assistance part, which assists instructors in adapting teaching content and strategy, and a Q&A assistance part, which provides learners with answers to their questions. The core component of the former part is a “learning achievement map", which is composed of a Bayesian network (BN). From learners- performance in exercises on relevant past lectures, the lecture adaptation assistance part obtains information required to adapt appropriately the presentation of the next lecture. The core component of the Q&A assistance part is a case base, which accumulates cases consisting of questions expected from learners and answers to them. The Q&A assistance part is a case-based search system equipped with a search index which performs probabilistic inference. A prototype face-to-face education support system has been built, which is intended for the teaching of Java programming, and this approach was evaluated using this system. The expected degree of understanding of each learner for a future lecture was derived from his or her performance in exercises on past lectures, and this expected degree of understanding was used to select one of three adaptation levels. A model for determining the adaptation level most suitable for the individual learner has been identified. An experimental case base was built to examine the search performance of the Q&A assistance part, and it was found that the rate of successfully finding an appropriate case was 56%.

Keywords: Bayesian network, face-to-face education, lecture adaptation, Q&A assistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
7832 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture

Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira

Abstract:

This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.

Keywords: Model driven architecture, model-view-controller, bnf syntax, model, transformation, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
7831 Blind Image Deconvolution by Neural Recursive Function Approximation

Authors: Jiann-Ming Wu, Hsiao-Chang Chen, Chun-Chang Wu, Pei-Hsun Hsu

Abstract:

This work explores blind image deconvolution by recursive function approximation based on supervised learning of neural networks, under the assumption that a degraded image is linear convolution of an original source image through a linear shift-invariant (LSI) blurring matrix. Supervised learning of neural networks of radial basis functions (RBF) is employed to construct an embedded recursive function within a blurring image, try to extract non-deterministic component of an original source image, and use them to estimate hyper parameters of a linear image degradation model. Based on the estimated blurring matrix, reconstruction of an original source image from a blurred image is further resolved by an annealed Hopfield neural network. By numerical simulations, the proposed novel method is shown effective for faithful estimation of an unknown blurring matrix and restoration of an original source image.

Keywords: Blind image deconvolution, linear shift-invariant(LSI), linear image degradation model, radial basis functions (rbf), recursive function, annealed Hopfield neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
7830 Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network

Authors: V Krishnaveni, S Jayaraman, A Gunasekaran, K Ramadoss

Abstract:

The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to remove ocular artifacts from the recorded EEG, leaving the underlying background signals due to brain activity. In recent times, Independent Component Analysis (ICA) algorithms have demonstrated superior potential in obtaining the least dependent source components. In this paper, the independent components are obtained by using the JADE algorithm (best separating algorithm) and are classified into either artifact component or neural component. Neural Network is used for the classification of the obtained independent components. Neural Network requires input features that exactly represent the true character of the input signals so that the neural network could classify the signals based on those key characters that differentiate between various signals. In this work, Auto Regressive (AR) coefficients are used as the input features for classification. Two neural network approaches are used to learn classification rules from EEG data. First, a Polynomial Neural Network (PNN) trained by GMDH (Group Method of Data Handling) algorithm is used and secondly, feed-forward neural network classifier trained by a standard back-propagation algorithm is used for classification and the results show that JADE-FNN performs better than JADEPNN.

Keywords: Auto Regressive (AR) Coefficients, Feed Forward Neural Network (FNN), Joint Approximation Diagonalisation of Eigen matrices (JADE) Algorithm, Polynomial Neural Network (PNN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889