Search results for: Distributed generation Optimization technique Reliability improvement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7790

Search results for: Distributed generation Optimization technique Reliability improvement

7520 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm

Authors: Badr M. Alshammari, T. Guesmi

Abstract:

In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.

Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
7519 Optimal Preventive Maintenance of the Reserve Source in the Industrial Electric Network

Authors: M. Bouguerra, H. Meglouli, I. Habi

Abstract:

The great majority of the electric installations belong to the first and second category. In order to ensure a high level of reliability of their electric system feeder, two power supply sources are envisaged, one principal, the other of reserve, generally a cold reserve (electric diesel group). The principal source being under operation, its control can be ideal and sure, however for the reserve source being in stop, a preventive maintenance-s which proceeds on time intervals (periodicity) and for well defined lengths of time are envisaged, so that this source will always available in case of the principal source failure. The choice of the periodicity of preventive maintenance of the source of reserve influences directly the reliability of the electric feeder system. On the basis of the semi-markovians processes, the influence of the periodicity of the preventive maintenance of the source of reserve is studied and is given the optimal periodicity.

Keywords: Semi Markovians processes, reliability, optimization, electric network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
7518 Reliability of Chute-Feeders in Automatic Machines of High Production Capacity

Authors: R. Usubamatov, A. Usubamatova, S. Hussain

Abstract:

Modern highly automated production systems faces problems of reliability. Machine function reliability results in changes of productivity rate and efficiency use of expensive industrial facilities. Predicting of reliability has become an important research and involves complex mathematical methods and calculation. The reliability of high productivity technological automatic machines that consists of complex mechanical, electrical and electronic components is important. The failure of these units results in major economic losses of production systems. The reliability of transport and feeding systems for automatic technological machines is also important, because failure of transport leads to stops of technological machines. This paper presents reliability engineering on the feeding system and its components for transporting a complex shape parts to automatic machines. It also discusses about the calculation of the reliability parameters of the feeding unit by applying the probability theory. Equations produced for calculating the limits of the geometrical sizes of feeders and the probability of sticking the transported parts into the chute represents the reliability of feeders as a function of its geometrical parameters.

Keywords: Chute-feeder, parts, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
7517 MONARC: A Case Study on Simulation Analysis for LHC Activities

Authors: Ciprian Dobre

Abstract:

The scale, complexity and worldwide geographical spread of the LHC computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially by the size and global span of the major experiments, combined with the limited wide area network bandwidth available. We present the latest generation of the MONARC (MOdels of Networked Analysis at Regional Centers) simulation framework, as a design and modeling tool for large scale distributed systems applied to HEP experiments. We present simulation experiments designed to evaluate the capabilities of the current real-world distributed infrastructure to support existing physics analysis processes and the means by which the experiments bands together to meet the technical challenges posed by the storage, access and computing requirements of LHC data analysis within the CMS experiment.

Keywords: Modeling and simulation, evaluation, large scale distributed systems, LHC experiments, CMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
7516 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is a subset of the Deep Reinforcement Learning (DRL) combines Deep Neural Networks (DNN) with Reinforcement Learning (RL). This approach finds the optimal policy of robot movement, based on the experience it gains from interaction with its environment. Unlike previous policy gradient algorithms, which were unable to handle the two types of error variance and bias introduced by the DNN model due to over- or underestimation, this algorithm is capable of handling both types of error variance and bias. This article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: Deep neural networks, deep reinforcement learning, Proximal Policy Optimization, state-of-the-art, trust region policy optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183
7515 Power Flow Tracing Based Reactive Power Ancillary Service (AS) in Restructured Power Market

Authors: M. Susithra, R. Gnanadass

Abstract:

Ancillary services are support services which are essential for humanizing and enhancing the reliability and security of the electric power system. Reactive power ancillary service is one of the important ancillary services in a restructured electricity market which determines the cost of supplying ancillary services and finding of how this cost would change with respect to operating decisions. This paper presents a new formation that can be used to minimize the Independent System Operator (ISO)’s total payment for reactive power ancillary service. The modified power flow tracing algorithm estimates the availability of reserve reactive power for ancillary service. In order to find optimum reactive power dispatch, Biogeography based optimization method (BPO) is proposed. Market Reactive Clearing Price (MRCP) is then estimated and it encourages generator companies (GENCOs) to participate in an ancillary service. Finally, optimal weighting factor and real time utilization factor of reactive power give the minimum ISO’s total payment. The effectiveness of proposed design is verified using IEEE 30 bus system.

Keywords: Biogeography based optimization method, Power flow tracing method, Reactive generation capability curve and Reactive power ancillary service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3235
7514 Measuring the Efficiency of Medical Equipment

Authors: Panagiotis H. Tsarouhas

Abstract:

the reliability analysis of the medical equipments can help to increase the availability and the efficiency of the systems. In this manuscript we present a simple method of decomposition that could be easily applied on the complex medical systems. Using this method we can easily calculate the effect of the subsystems or components on the reliability of the overall system. Furthermore, to investigate the effect of subsystems or components on system performance, we perform a numerical study varying every time the worst reliability of subsystem or component with another which has higher reliability. It can also be useful to engineers and designers of medical equipment, who wishes to optimize the complex systems.

Keywords: Reliability, Availability, Series-parallel System, medical equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
7513 Mean-Variance Optimization of Portfolios with Return of Premium Clauses in a DC Pension Plan with Multiple Contributors under Constant Elasticity of Variance Model

Authors: Bright O. Osu, Edikan E. Akpanibah, Chidinma Olunkwa

Abstract:

In this paper, mean-variance optimization of portfolios with the return of premium clauses in a defined contribution (DC) pension plan with multiple contributors under constant elasticity of variance (CEV) model is studied. The return clauses which permit death members to claim their accumulated wealth are considered, the remaining wealth is not equally distributed by the remaining members as in literature. We assume that before investment, the surplus which includes funds of members who died after retirement adds to the total wealth. Next, we consider investments in a risk-free asset and a risky asset to meet up the expected returns of the remaining members and obtain an optimized problem with the help of extended Hamilton Jacobi Bellman equation. We obtained the optimal investment strategies for the two assets and the efficient frontier of the members by using a stochastic optimal control technique. Furthermore, we studied the effect of the various parameters of the optimal investment strategies and the effect of the risk-averse level on the efficient frontier. We observed that the optimal investment strategy is the same as in literature, secondly, we observed that the surplus decreases the proportion of the wealth invested in the risky asset.

Keywords: DC pension fund, Hamilton Jacobi Bellman equation, optimal investment strategies, stochastic optimal control technique, return of premiums clauses, mean-variance utility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
7512 Particle Swarm Optimization with Reduction for Global Optimization Problems

Authors: Michiharu Maeda, Shinya Tsuda

Abstract:

This paper presents an algorithm of particle swarm optimization with reduction for global optimization problems. Particle swarm optimization is an algorithm which refers to the collective motion such as birds or fishes, and a multi-point search algorithm which finds a best solution using multiple particles. Particle swarm optimization is so flexible that it can adapt to a number of optimization problems. When an objective function has a lot of local minimums complicatedly, the particle may fall into a local minimum. For avoiding the local minimum, a number of particles are initially prepared and their positions are updated by particle swarm optimization. Particles sequentially reduce to reach a predetermined number of them grounded in evaluation value and particle swarm optimization continues until the termination condition is met. In order to show the effectiveness of the proposed algorithm, we examine the minimum by using test functions compared to existing algorithms. Furthermore the influence of best value on the initial number of particles for our algorithm is discussed.

Keywords: Particle swarm optimization, Global optimization, Metaheuristics, Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
7511 Transportation Under the Threat of Influenza

Authors: Yujun Zheng, Qin Song, Haihe Shi, and Jinyun Xue

Abstract:

There are a number of different cars for transferring hundreds of close contacts of swine influenza patients to hospital, and we need to carefully assign the passengers to those cars in order to minimize the risk of influenza spreading during transportation. The paper presents an approach to straightforward obtain the optimal solution of the relaxed problems, and develops two iterative improvement algorithms to effectively tackle the general problem.

Keywords: Influenza spread, discrete optimization, stationary point, iterative improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
7510 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.

Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
7509 Impovement of a Label Extraction Method for a Risk Search System

Authors: Shigeaki Sakurai, Ryohei Orihara

Abstract:

This paper proposes an improvement method of classification efficiency in a classification model. The model is used in a risk search system and extracts specific labels from articles posted at bulletin board sites. The system can analyze the important discussions composed of the articles. The improvement method introduces ensemble learning methods that use multiple classification models. Also, it introduces expressions related to the specific labels into generation of word vectors. The paper applies the improvement method to articles collected from three bulletin board sites selected by users and verifies the effectiveness of the improvement method.

Keywords: Text mining, Risk search system, Corporate reputation, Bulletin board site, Ensemble learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
7508 Pruning Algorithm for the Minimum Rule Reduct Generation

Authors: Şahin Emrah Amrahov, Fatih Aybar, Serhat Doğan

Abstract:

In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG.

Keywords: Rough sets, Decision rules, Rule induction, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
7507 The Significance of the Radiography Technique in the Non-Destructive Evaluation of the Integrity and Reliability of Cast Interconnects

Authors: Keshav Pujeri, Pranesh Jain, Krutibas Panda

Abstract:

Significant changes in oil and gas drilling have emphasized the need to verify the integrity and reliability of drill stem components. Defects are inevitable in cast components, regardless of application; but if these defects go undetected, any severe defect could cause down-hole failure. One such defect is shrinkage porosity. Castings with lower level shrinkage porosity (CB levels 1 and 2) have scattered pores and do not occupy large volumes; so pressure testing and helium leak testing (HLT) are sufficient for qualifying the castings. However, castings with shrinkage porosity of CB level 3 and higher, behave erratically under pressure testing and HLT making these techniques insufficient for evaluating the castings- integrity. This paper presents a case study to highlight how the radiography technique is much more effective than pressure testing and HLT.

Keywords: Casting Defects, Interconnects, Leak Check, Pressure Test, Radiography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3514
7506 A New Reliability Allocation Method Based On Fuzzy Numbers

Authors: Peng Li, Chuanri Li, Tao Li

Abstract:

Reliability allocation is quite important during early design and development stages for a system to apportion its specified reliability goal to subsystems. This paper improves the reliability fuzzy allocation method, and gives concrete processes on determining the factor and sub-factor sets, weight sets, judgment set, and multi-stage fuzzy evaluation. To determine the weight of factor and sub-factor sets, the modified trapezoidal numbers are proposed to reduce errors caused by subjective factors. To decrease the fuzziness in fuzzy division, an approximation method based on linear programming is employed. To compute the explicit values of fuzzy numbers, centroid method of defuzzification is considered. An example is provided to illustrate the application of the proposed reliability allocation method based on fuzzy arithmetic.

Keywords: Reliability allocation, fuzzy arithmetic, allocation weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3329
7505 Performance Analysis of Software Reliability Models using Matrix Method

Authors: RajPal Garg, Kapil Sharma, Rajive Kumar, R. K. Garg

Abstract:

This paper presents a computational methodology based on matrix operations for a computer based solution to the problem of performance analysis of software reliability models (SRMs). A set of seven comparison criteria have been formulated to rank various non-homogenous Poisson process software reliability models proposed during the past 30 years to estimate software reliability measures such as the number of remaining faults, software failure rate, and software reliability. Selection of optimal SRM for use in a particular case has been an area of interest for researchers in the field of software reliability. Tools and techniques for software reliability model selection found in the literature cannot be used with high level of confidence as they use a limited number of model selection criteria. A real data set of middle size software project from published papers has been used for demonstration of matrix method. The result of this study will be a ranking of SRMs based on the Permanent value of the criteria matrix formed for each model based on the comparison criteria. The software reliability model with highest value of the Permanent is ranked at number – 1 and so on.

Keywords: Matrix method, Model ranking, Model selection, Model selection criteria, Software reliability models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
7504 Limitations of the Analytic Hierarchy Process Technique with Respect to Geographically Distributed Stakeholders

Authors: Azeem Ahmad, Magnus Goransson, Aamir Shahzad

Abstract:

The selection of appropriate requirements for product releases can make a big difference in a product success. The selection of requirements is done by different requirements prioritization techniques. These techniques are based on pre-defined and systematic steps to calculate the requirements relative weight. Prioritization is complicated by new development settings, shifting from traditional co-located development to geographically distributed development. Stakeholders, connected to a project, are distributed all over the world. These geographically distributions of stakeholders make it hard to prioritize requirements as each stakeholder have their own perception and expectations of the requirements in a software project. This paper discusses limitations of the Analytical Hierarchy Process with respect to geographically distributed stakeholders- (GDS) prioritization of requirements. This paper also provides a solution, in the form of a modified AHP, in order to prioritize requirements for GDS. We will conduct two experiments in this paper and will analyze the results in order to discuss AHP limitations with respect to GDS. The modified AHP variant is also validated in this paper.

Keywords: Requirements Prioritization, GeographicallyDistributed Stakeholders, AHP, Modified AHP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2863
7503 Optimization of Communication Protocols by stochastic Delay Mechanisms

Authors: J. Levendovszky, I. Koncz, P. Boros

Abstract:

The paper is concerned with developing stochastic delay mechanisms for efficient multicast protocols and for smooth mobile handover processes which are capable of preserving a given Quality of Service (QoS). In both applications the participating entities (receiver nodes or subscribers) sample a stochastic timer and generate load after a random delay. In this way, the load on the networking resources is evenly distributed which helps to maintain QoS communication. The optimal timer distributions have been sought in different p.d.f. families (e.g. exponential, power law and radial basis function) and the optimal parameter have been found in a recursive manner. Detailed simulations have demonstrated the improvement in performance both in the case of multicast and mobile handover applications.

Keywords: Multicast communication, stochactic delay mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
7502 Assessment of Performance Measures of Large-Scale Power Systems

Authors: Mohamed A. El-Kady, Badr M. Alshammari

Abstract:

In a recent major industry-supported research and development study, a novel framework was developed and applied for assessment of reliability and quality performance levels in reallife power systems with practical large-scale sizes. The new assessment methodology is based on three metaphors (dimensions) representing the relationship between available generation capacities and required demand levels. The paper shares the results of the successfully completed stud and describes the implementation of the new methodology on practical zones in the Saudi electricity system.

Keywords: Power systems; large-scale analysis, reliability; performance assessment, linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
7501 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic generation, primal-dual interior point method, three-phase optimal power flow, unbalanced system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
7500 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs

Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh

Abstract:

The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.

Keywords: Block layout problem, building-block layout design, CAD, optimization, search techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
7499 Simulated Annealing Application for Structural Optimization

Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh

Abstract:

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
7498 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization

Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler

Abstract:

In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as representative example of a fiber polymer composite. Such high-performance lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.

Keywords: Digital Linked Process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163
7497 Comparison of Particle Swarm Optimization and Genetic Algorithm for TCSC-based Controller Design

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of PSO and GA optimization techniques, for Thyristor Controlled Series Compensator (TCSC)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques in terms of computational time and convergence rate is compared. Further, the optimized controllers are tested on a weakly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a TCSC-based controller, to enhance power system stability.

Keywords: Thyristor Controlled Series Compensator, geneticalgorithm; particle swarm optimization; Phillips-Heffron model;power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3152
7496 Model Reduction of Linear Systems by Conventional and Evolutionary Techniques

Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil

Abstract:

Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.

Keywords: Reduced Order Modeling, Stability, Continued Fraction Expansions, Mihailov Stability Criterion, Particle Swarm Optimization, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
7495 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: Evolutionary algorithms, portfolio optimization, skewness, stock selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
7494 Generating Frequent Patterns through Intersection between Transactions

Authors: M. Jamali, F. Taghiyareh

Abstract:

The problem of frequent itemset mining is considered in this paper. One new technique proposed to generate frequent patterns in large databases without time-consuming candidate generation. This technique is based on focusing on transaction instead of concentrating on itemset. This algorithm based on take intersection between one transaction and others transaction and the maximum shared items between transactions computed instead of creating itemset and computing their frequency. With applying real life transactions and some consumption is taken from real life data, the significant efficiency acquire from databases in generation association rules mining.

Keywords: Association rules, data mining, frequent patterns, shared itemset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
7493 A Real-Time Signal Processing Technique for MIDI Generation

Authors: Farshad Arvin, Shyamala Doraisamy

Abstract:

This paper presents a new hardware interface using a microcontroller which processes audio music signals to standard MIDI data. A technique for processing music signals by extracting note parameters from music signals is described. An algorithm to convert the voice samples for real-time processing without complex calculations is proposed. A high frequency microcontroller as the main processor is deployed to execute the outlined algorithm. The MIDI data generated is transmitted using the EIA-232 protocol. The analyses of data generated show the feasibility of using microcontrollers for real-time MIDI generation hardware interface.

Keywords: Signal processing, MIDI, Microcontroller, EIA-232.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
7492 Characterization of Adhesive Layers in Sandwich Composites by Nondestructive Technique

Authors: E. Barkanov, E. Skukis, M. Wesolowski, A. Chate

Abstract:

New nondestructive technique, namely an inverse technique based on vibration tests, to characterize nonlinear mechanical properties of adhesive layers in sandwich composites is developed. An adhesive layer is described as a viscoelastic isotropic material with storage and loss moduli which are both frequency dependent values in wide frequency range. An optimization based on the planning of experiments and response surface technique to minimize the error functional is applied to decrease considerably the computational expenses. The developed identification technique has been tested on aluminum panels and successfully applied to characterize viscoelastic material properties of 3M damping polymer ISD-112 used as a core material in sandwich panels.

Keywords: Adhesive layer, finite element method, inverse technique, sandwich panel, vibration test, viscoelastic material properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
7491 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber

Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi

Abstract:

This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.

Keywords: Bending and deflection, Bridge beam, Compression, Nigerian Opepe, Shear, Structural reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257