Search results for: Automatic Cluster Identification
1600 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems
Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi
Abstract:
This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.
Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15741599 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data
Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri
Abstract:
In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.
Keywords: Gaussian process, Nonlinearity distribution, Particle filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17211598 Fuzzy Logic PID Control of Automatic Voltage Regulator System
Authors: Aye Aye Mon
Abstract:
The application of a simple microcontroller to deal with a three variable input and a single output fuzzy logic controller, with Proportional – Integral – Derivative (PID) response control built-in has been tested for an automatic voltage regulator. The fuzzifiers are based on fixed range of the variables of output voltage. The control output is used to control the wiper motor of the auto transformer to adjust the voltage, using fuzzy logic principles, so that the voltage is stabilized. In this report, the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.Keywords: Fuzzy logic system, PID Controller, control systems, controlled A V R
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38931597 Floating-Point Scaling for BSS Gain Control
Authors: Abdelmalek Fermas, Adel Belouchrani, Otmane Ait Mohamed
Abstract:
In Blind Source Separation (BSS) processing, taking advantage of scaling factor indetermination and based on the floatingpoint representation, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an Automatic Gain Control (AGC) in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division free BSS algorithm with two input, two output. This technique is computationally cheaper and efficient for a hardware implementation.Keywords: Automatic Gain Control, Blind Source Separation, Floating-Point Representation, FPGA Implementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15191596 Incremental Algorithm to Cluster the Categorical Data with Frequency Based Similarity Measure
Authors: S.Aranganayagi, K.Thangavel
Abstract:
Clustering categorical data is more complicated than the numerical clustering because of its special properties. Scalability and memory constraint is the challenging problem in clustering large data set. This paper presents an incremental algorithm to cluster the categorical data. Frequencies of attribute values contribute much in clustering similar categorical objects. In this paper we propose new similarity measures based on the frequencies of attribute values and its cardinalities. The proposed measures and the algorithm are experimented with the data sets from UCI data repository. Results prove that the proposed method generates better clusters than the existing one.Keywords: Clustering, Categorical, Incremental, Frequency, Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18201595 A Distributed Algorithm for Intrinsic Cluster Detection over Large Spatial Data
Authors: Sauravjyoti Sarmah, Rosy Das, Dhruba Kr. Bhattacharyya
Abstract:
Clustering algorithms help to understand the hidden information present in datasets. A dataset may contain intrinsic and nested clusters, the detection of which is of utmost importance. This paper presents a Distributed Grid-based Density Clustering algorithm capable of identifying arbitrary shaped embedded clusters as well as multi-density clusters over large spatial datasets. For handling massive datasets, we implemented our method using a 'sharednothing' architecture where multiple computers are interconnected over a network. Experimental results are reported to establish the superiority of the technique in terms of scale-up, speedup as well as cluster quality.Keywords: Clustering, Density-based, Grid-based, Adaptive Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15971594 The System Identification and PID Lead-lag Control for Two Poles Unstable SOPDT Process by Improved Relay Method
Authors: V. K. Singh, P. K. Padhy
Abstract:
This paper describes identification of the two poles unstable SOPDT process, especially with large time delay. A new modified relay feedback identification method for two poles unstable SOPDT process is proposed. Furthermore, for the two poles unstable SOPDT process, an additional Derivative controller is incorporated parallel with relay to relax the constraint on the ratio of delay to the unstable time constant, so that the exact model parameters of unstable processes can be identified. To cope with measurement noise in practice, a low pass filter is suggested to get denoised output signal toimprove the exactness of model parameter of unstable process. PID Lead-lag tuning formulas are derived for two poles unstable (SOPDT) processes based on IMC principle. Simulation example illustrates the effectiveness and the simplicity of the proposed identification and control method.Keywords: IMC structure, PID Lead-lag controller, Relayfeedback, SOPDT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20961593 Natural Language News Generation from Big Data
Authors: Bastian Haarmann, Lukas Sikorski
Abstract:
In this paper, we introduce an NLG application for the automatic creation of ready-to-publish texts from big data. The resulting fully automatic generated news stories have a high resemblance to the style in which the human writer would draw up such a story. Topics include soccer games, stock exchange market reports, and weather forecasts. Each generated text is unique. Readyto-publish stories written by a computer application can help humans to quickly grasp the outcomes of big data analyses, save timeconsuming pre-formulations for journalists and cater to rather small audiences by offering stories that would otherwise not exist.
Keywords: Big data, natural language generation, publishing, robotic journalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16851592 Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies
Authors: Rebecca Angeles
Abstract:
This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e., in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the “Technology-Organization-Environment” theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved.Keywords: Environmental sustainability, radio frequency identification, technology-organization-environment framework
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21171591 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network
Authors: O. Siriporn, S. Benjawan
Abstract:
This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.
Keywords: Unsupervised, clustering, anomaly, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21111590 Automatic Generation of Ontology from Data Source Directed by Meta Models
Authors: Widad Jakjoud, Mohamed Bahaj, Jamal Bakkas
Abstract:
Through this paper we present a method for automatic generation of ontological model from any data source using Model Driven Architecture (MDA), this generation is dedicated to the cooperation of the knowledge engineering and software engineering. Indeed, reverse engineering of a data source generates a software model (schema of data) that will undergo transformations to generate the ontological model. This method uses the meta-models to validate software and ontological models.
Keywords: Meta model, model, ontology, data source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19961589 Phenotypical and Genotypical Assessment Techniques for Identification of Some Contagious Mastitis Pathogens
Authors: A. El Behiry, R. N. Zahran, R. Tarabees, E. Marzouk, M. Al-Dubaib
Abstract:
Mastitis is one of the most economic disease affecting dairy cows worldwide. Its classic diagnosis using bacterial culture and biochemical findings is a difficult and prolonged method. In this research, using of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) permitted identification of different microorganisms with high accuracy and rapidity (only 24 hours for microbial growth and analysis). During the application of MALDI-TOF MS, one hundred twenty strains of Staphylococcus and Streptococcus species isolated from milk of cows affected by clinical and subclinical mastitis were identified, and the results were compared with those obtained by traditional methods as API and VITEK 2 Systems. 37 of totality 39 strains (~95%) of Staphylococcus aureus (S. aureus) were exactly detected by MALDI TOF MS and then confirmed by a nuc-based PCR technique, whereas accurate identification was observed in 100% (50 isolates) of the coagulase negative staphylococci (CNS) and Streptococcus agalactiae (31 isolates). In brief, our results demonstrated that MALDI-TOF MS is a fast and truthful technique which has the capability to replace conventional identification of several bacterial strains usually isolated in clinical laboratories of microbiology.
Keywords: Identification, mastitis pathogens, mass spectral, phenotypical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22731588 A Review on Enhanced Dynamic Clustering in WSN
Authors: M. Sangeetha, A. Sabari, K. Elakkiya
Abstract:
Recent advancement in wireless internetworking has presented a number of dynamic routing protocols based on sensor networks. At present, a number of revisions are made based on their energy efficiency, lifetime and mobility. However, to the best of our knowledge no extensive survey of this special type has been prepared. At present, review is needed in this area where cluster-based structures for dynamic wireless networks are to be discussed. In this paper, we examine and compare several aspects and characteristics of some extensively explored hierarchical dynamic clustering protocols in wireless sensor networks. This document also presents a discussion on the future research topics and the challenges of dynamic hierarchical clustering in wireless sensor networks.Keywords: Dynamic cluster, Hierarchical clustering, Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13751587 Forward Speed and Draught Requirement of a Semi-Automatic Cassava Planter under Different Wheel Usage
Authors: M. O. Ale, S. I. Manuwa, O. J. Olukunle, T. Ewetumo
Abstract:
Five varying speeds of 1.5, 1.8, 2.1, 2.3 and 2.6 km/h were used at a constant soil depth of 100 mm to determine the effects of forward speed on the draught requirement of a semi-automatic cassava planter under pneumatic wheel and rigid wheel usage on a well-prepared sandy clay loam soil. The soil draught was electronically measured using an on-the-go soil draught measuring instrumentation system developed for the purpose of this research. The results showed an exponential relationship between forward speed and draught in which draught ranging between 24.91 and 744.44 N increased with an increase in forward speed in the rigid wheel experiment. This is contrary to the polynomial relationship observed in the pneumatic wheel experiment in which the draught varied between 96.09 and 343.53 N. It was observed in the experiments that the optimum speed of 1.5 km/h had the least values of draught in both the pneumatic wheel and rigid wheel experiments with higher values in the pneumatic experiment. It was generally noted that the rigid wheel planter with the less value of draught requires less energy requirement for operation. It is therefore concluded that operating the semi-automatic cassava planter with rigid wheels will be more economical for cassava farmers than operating the planter with pneumatic wheels.
Keywords: Cassava planter, planting, forward speed, draught, wheel type.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481586 Identification of an Mechanism Systems by Using the Modified PSO Method
Authors: Chih-Cheng Kao, Hsin- Hua Chu
Abstract:
This paper mainly proposes an efficient modified particle swarm optimization (MPSO) method, to identify a slidercrank mechanism driven by a field-oriented PM synchronous motor. In system identification, we adopt the MPSO method to find parameters of the slider-crank mechanism. This new algorithm is added with “distance" term in the traditional PSO-s fitness function to avoid converging to a local optimum. It is found that the comparisons of numerical simulations and experimental results prove that the MPSO identification method for the slider-crank mechanism is feasible.Keywords: Slider-crank mechanism, distance, systemidentification, modified particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041585 Scale-Space Volume Descriptors for Automatic 3D Facial Feature Extraction
Authors: Daniel Chen, George Mamic, Clinton Fookes, Sridha Sridharan
Abstract:
An automatic method for the extraction of feature points for face based applications is proposed. The system is based upon volumetric feature descriptors, which in this paper has been extended to incorporate scale space. The method is robust to noise and has the ability to extract local and holistic features simultaneously from faces stored in a database. Extracted features are stable over a range of faces, with results indicating that in terms of intra-ID variability, the technique has the ability to outperform manual landmarking.
Keywords: Scale space volume descriptor, feature extraction, 3D facial landmarking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15071584 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique
Authors: Antonio Vitale, Nicola Genito, Giovanni Cuciniello, Ferdinando Montemari
Abstract:
The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.
Keywords: Flapping Dynamics, Flight Dynamics, System Identification, Tilt-Rotor Modeling and Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12851583 The Method of Evaluation Artery Diameter from Ultrasound Video
Authors: U. Rubins, Z. Marcinkevics, K.Volceka
Abstract:
The cardiovascular system has become the most important subject of clinical research, particularly measurement of arterial blood flow. Therefore correct determination of arterial diameter is crucial. We propose a novel, semi-automatic method for artery lumen detection. The method is based on Gaussian probability function. Usability of our proposed method was assessed by analyzing ultrasound B-mode CFA video sequences acquired from eleven healthy volunteers. The correlation coefficient between the manual and semi-automatic measurement of arterial diameter was 0.996. Our proposed method for detecting artery boundary is novel and accurate enough for the measurement of artery diameter.Keywords: Ultrasound, boundary detection, artery diameter, curve fitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15921582 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments
Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy CMeans methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc.).Keywords: Defuzzification, floating search, fuzzy clustering, Zernike moments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20491581 Artificial Neural Networks for Identification and Control of a Lab-Scale Distillation Column Using LABVIEW
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco
Abstract:
LABVIEW is a graphical programming language that has its roots in automation control and data acquisition. In this paper we have utilized this platform to provide a powerful toolset for process identification and control of nonlinear systems based on artificial neural networks (ANN). This tool has been applied to the monitoring and control of a lab-scale distillation column DELTALAB DC-SP. The proposed control scheme offers high speed of response for changes in set points and null stationary error for dual composition control and shows robustness in presence of externally imposed disturbance.
Keywords: Distillation, neural networks, LABVIEW, monitoring, identification, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29181580 Automatic Extraction of Roads from High Resolution Aerial and Satellite Images with Heavy Noise
Authors: Yan Li, Ronald Briggs
Abstract:
Aerial and satellite images are information rich. They are also complex to analyze. For GIS systems, many features require fast and reliable extraction of roads and intersections. In this paper, we study efficient and reliable automatic extraction algorithms to address some difficult issues that are commonly seen in high resolution aerial and satellite images, nonetheless not well addressed in existing solutions, such as blurring, broken or missing road boundaries, lack of road profiles, heavy shadows, and interfering surrounding objects. The new scheme is based on a new method, namely reference circle, to properly identify the pixels that belong to the same road and use this information to recover the whole road network. This feature is invariable to the shape and direction of roads and tolerates heavy noise and disturbances. Road extraction based on reference circles is much more noise tolerant and flexible than the previous edge-detection based algorithms. The scheme is able to extract roads reliably from images with complex contents and heavy obstructions, such as the high resolution aerial/satellite images available from Google maps.
Keywords: Automatic road extraction, Image processing, Feature extraction, GIS update, Remote sensing, Geo-referencing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17001579 Automatic Recognition of Emotionally Coloured Speech
Authors: Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou
Abstract:
Emotion in speech is an issue that has been attracting the interest of the speech community for many years, both in the context of speech synthesis as well as in automatic speech recognition (ASR). In spite of the remarkable recent progress in Large Vocabulary Recognition (LVR), it is still far behind the ultimate goal of recognising free conversational speech uttered by any speaker in any environment. Current experimental tests prove that using state of the art large vocabulary recognition systems the error rate increases substantially when applied to spontaneous/emotional speech. This paper shows that recognition rate for emotionally coloured speech can be improved by using a language model based on increased representation of emotional utterances.Keywords: Statistical language model, N-grams, emotionallycoloured speech
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161578 Novel Ridge Orientation Based Approach for Fingerprint Identification Using Co-Occurrence Matrix
Authors: Mehran Yazdi, Zahra Adelpour, Batoul Bahraini, Yasaman Keshtkar Jahromi
Abstract:
In this paper we use the property of co-occurrence matrix in finding parallel lines in binary pictures for fingerprint identification. In our proposed algorithm, we reduce the noise by filtering the fingerprint images and then transfer the fingerprint images to binary images using a proper threshold. Next, we divide the binary images into some regions having parallel lines in the same direction. The lines in each region have a specific angle that can be used for comparison. This method is simple, performs the comparison step quickly and has a good resistance in the presence of the noise.Keywords: Parallel lines detection, co-occurrence matrix, fingerprint identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13561577 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India
Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi
Abstract:
River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand, and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.Keywords: Cluster analysis, multivariate statistical technique, river Hindon, water Quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38121576 Identification of Impact Loads and Partial System Parameters Using 1D-CNN
Authors: Xuewen Yu, Danhui Dan
Abstract:
The identification of impact loads and some hard-to-obtain system parameters is crucial for analysis, validation, and evaluation activities in the engineering field. This paper proposes a method based on 1D-CNN to identify impact loads and partial system parameters from the measured responses. To this end, forward computations are conducted to provide datasets consisting of triples (parameter θ, input u, output y). Two neural networks are then trained: one to learn the mapping from output y to input u and another to learn the mapping from input and output (u, y) to parameter θ. Subsequently, by feeding the measured output response into the trained neural networks, the input impact load and system parameter can be calculated, respectively. The method is tested on two simulated examples and shows sound accuracy in estimating the impact load (waveform and location) and system parameter.
Keywords: Convolutional neural network, impact load identification, system parameter identification, inverse problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941575 Analysis of the Current and Ideal Situation of Iran’s Football Talent Management Process from the Perspective of the Elites
Authors: Mehran Nasiri, Ardeshir Poornemat
Abstract:
The aim of this study was to investigate the current and ideal situations of the process of talent identification in Iranian football from the point of view of Iranian instructors of the Asian Football Confederation (AFC). This research was a descriptive-analytical study; in data collection phase a questionnaire was used, whose face validity was confirmed by experts of Physical Education and Sports Science. The reliability of questionnaire was estimated through the use of Cronbach's alpha method (0.91). This study involved 122 participants of Iranian instructors of the AFC who were selected based on stratified random sampling method. Descriptive statistics were used to describe the variables and inferential statistics (Chi-square) were used to test the hypotheses of the study at significant level (p ≤ 0.05). The results of Chi-square test related to the point of view of Iranian instructors of the AFC showed that the grass-roots scientific method was the best way to identify football players (0.001), less than 10 years old were the best ages for talent identification (0.001), the Football Federation was revealed to be the most important organization in talent identification (0.002), clubs were shown to be the most important institution in developing talents (0.001), trained scouts of Football Federation were demonstrated to be the best and most appropriate group for talent identification (0.001), and being referred by the football academy coaches was shown to be the best way to attract talented football players in Iran (0.001). It was also found that there was a huge difference between the current and ideal situation of the process of talent identification in Iranian football from the point of view of Iranian instructors of the AFC. Hence, it is recommended that the policy makers of talent identification for Iranian football provide a comprehensive, clear and systematic model of talent identification and development processes for the clubs and football teams, so that the talent identification process helps to nurture football talents more efficiently.
Keywords: Current situation, talent finding, ideal situation, instructors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9601574 Performance Evaluation of Acoustic-Spectrographic Voice Identification Method in Native and Non-Native Speech
Authors: E. Krasnova, E. Bulgakova, V. Shchemelinin
Abstract:
The paper deals with acoustic-spectrographic voice identification method in terms of its performance in non-native language speech. Performance evaluation is conducted by comparing the result of the analysis of recordings containing native language speech with recordings that contain foreign language speech. Our research is based on Tajik and Russian speech of Tajik native speakers due to the character of the criminal situation with drug trafficking. We propose a pilot experiment that represents a primary attempt enter the field.Keywords: Speaker identification, acoustic-spectrographic method, non-native speech.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8651573 Speaker Identification Using Admissible Wavelet Packet Based Decomposition
Authors: Mangesh S. Deshpande, Raghunath S. Holambe
Abstract:
Mel Frequency Cepstral Coefficient (MFCC) features are widely used as acoustic features for speech recognition as well as speaker recognition. In MFCC feature representation, the Mel frequency scale is used to get a high resolution in low frequency region, and a low resolution in high frequency region. This kind of processing is good for obtaining stable phonetic information, but not suitable for speaker features that are located in high frequency regions. The speaker individual information, which is non-uniformly distributed in the high frequencies, is equally important for speaker recognition. Based on this fact we proposed an admissible wavelet packet based filter structure for speaker identification. Multiresolution capabilities of wavelet packet transform are used to derive the new features. The proposed scheme differs from previous wavelet based works, mainly in designing the filter structure. Unlike others, the proposed filter structure does not follow Mel scale. The closed-set speaker identification experiments performed on the TIMIT database shows improved identification performance compared to other commonly used Mel scale based filter structures using wavelets.Keywords: Speaker identification, Wavelet transform, Feature extraction, MFCC, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19811572 Remote Control Software for Rohde and Schwarz Instruments
Authors: Tomas Shejbal, Matej Petkov, Tomas Zalabsky, Jan Pidanic, Zdenek Nemec
Abstract:
The paper describes software for remote control and measuring with new Graphical User Interface for Rohde & Schwarz instruments. Software allows remote control through Ethernet and supports basic and advanced functions for control various type of instruments like network and spectrum analyzers, power meters, signal generators and oscilloscopes. Standard Commands for Programmable Instruments (SCPI) and Virtual Instrument Software Architecture (VISA) are used for remote control and setup of instruments. Developed software is modular with user friendly graphic user interface for each instrument with automatic identification of instruments.
Keywords: Remote control, Rohde&Schwarz, SCPI, VISA, MATLAB, spectum analyzer, network analyzer, oscilloscope, signal generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54011571 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.
Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930