Phenotypical and Genotypical Assessment Techniques for Identification of Some Contagious Mastitis Pathogens
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Phenotypical and Genotypical Assessment Techniques for Identification of Some Contagious Mastitis Pathogens

Authors: A. El Behiry, R. N. Zahran, R. Tarabees, E. Marzouk, M. Al-Dubaib

Abstract:

Mastitis is one of the most economic disease affecting dairy cows worldwide. Its classic diagnosis using bacterial culture and biochemical findings is a difficult and prolonged method. In this research, using of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) permitted identification of different microorganisms with high accuracy and rapidity (only 24 hours for microbial growth and analysis). During the application of MALDI-TOF MS, one hundred twenty strains of Staphylococcus and Streptococcus species isolated from milk of cows affected by clinical and subclinical mastitis were identified, and the results were compared with those obtained by traditional methods as API and VITEK 2 Systems. 37 of totality 39 strains (~95%) of Staphylococcus aureus (S. aureus) were exactly detected by MALDI TOF MS and then confirmed by a nuc-based PCR technique, whereas accurate identification was observed in 100% (50 isolates) of the coagulase negative staphylococci (CNS) and Streptococcus agalactiae (31 isolates). In brief, our results demonstrated that MALDI-TOF MS is a fast and truthful technique which has the capability to replace conventional identification of several bacterial strains usually isolated in clinical laboratories of microbiology.

Keywords: Identification, mastitis pathogens, mass spectral, phenotypical.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092463

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276

References:


[1] M. Benić, H. Boris, and G. Kompes, "Clinical and epidemiological aspects of cow mastitis caused by Staphylococcus aureus and its methicillin-resistant strains”, J Med Sci. 2012, 37,113-122.
[2] P. Dudko, K. Kostro, and M. Kurpisz, "Adaptation of Microstix® Candida Slide-test for Diagnosis of Bovine Mastitis Due to Anascogenic Yeasts”, ACTA VET. BRNO 2010, 79, 113–120.
[3] M. Ghorbanpoor, S.M. Seyfiabad, H. Moatamedi, M. Jamshidian, and S. Gooraninejad, "Comparison of PCR and bacterial culture methods for diagnosis of dairy cattle's subclinical mastitis caused by Staphylococcus aureus”, J. Vet. Res. 2007, 62, 87-91.
[4] R. Giebel, C. Worden, S.M. Rust, G.T. Kleinheinz, M. Robbins, and T.R. Sandrin, "Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges”, Adv. Appl. Microbiol. 2010, 71, 149-184.
[5] E. Carbonnelle, J.L. Beretti, S. Cottyn, G. Quesne , P. Berche, X. Nassif, and A. Ferroni, "Rapid identification of staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry”, J. Clin. Microbiol. 2007, 45, 2156-2161.
[6] K.G. Abdel Hameed, G. Sender, and A.K. Kossakowska, "An association of BoLA alleles DRB3.2 16 and DRB3.2 23 with occurrence of mastitis caused by different bacterial species in two herds of dairy cows”, Anim. Sci. Pap. Rep. 2008, 26, 37-48.
[7] P. Pradhan, S.M. Gopinath, G.R. Reddy, H.J. Dechamma, and V.V.S. Suryanarayana, "Detection of major pathogens in bovine sub-clinical mastitis by multiplex PCR directly from milk samples in presence of an internal control”, I. J. 2011, 1, 209-218.
[8] L. Sutra, P. Rainard, and B. Poutrel, "Phagocytosis of mastitis isolates of Staphylococcus aureus and expression of type 5 capsular polysaccharide are influenced by growth in the presence of milk”, J. Clin. Microbiol. 1990, 28, 2253-2258.
[9] O.M. Radostits, C.C. Gay, D.C. Blood, and K.W. Hinchkliff, "A Text Book of Veterinary Medicine”, 9th Edn., W.B. Saunders, New York, 2000, pp, 563-618.
[10] P. Phuektes, P.M. Mansell, and G.F. Browning, "Multiplex polymerase chain reaction assay for simultaneous detection of Staphylococcus aureus and streptococcal causes of bovine mastitis”, J. Dairy Sci. 2001, 84, 1140-1148.
[11] C.C. Pinnow, J.A. Butler, K. Sachse, H. Hotzel, L.L. Timms and R.F. Rosenbusch, "Detection of Mycoplasma bovis in preservative-treated field milk samples”, J. Dairy Sci. 2001, 84, 1640-1645
[12] I. Meiri-Bendek, E. Lipkin, A. Friedmann, G. Leitner, A. Saran, S. Friedman, and Y.A. Kashi, "PCR-based method for the detection of Streptococcus agalactiae in milk”, J. Dairy Sci. 2002, 85, 1717-1723.
[13] S. Tamarapu, J.L. Mckillip, and M. Drake, "Development of a multiplex polymerase chain reaction assay for detection and differentiation of Staphylococcus aureus in dairy products”, J. Food Protect. 2001, 64, 664–668.
[14] R. Boss, J. Naskova, A. Steiner, and H.U. Graber, "Mastitis diagnostics: quantitative PCR for Staphylococcus aureus genotype B in bulk tank milk”, J. Dairy Sci. 2011, 94, 128-137.
[15] L. Castelani, A.F. Santos, M. Dos Santos Miranda, L.F. Zafalon, C.R. C.R. Pozzi, and J.R. Arcaro, "Molecular Typing of Mastitis-Causing Staphylococcus aureus Isolated from Heifers and Cows”, Int. J. Mol. Sci. 2013, 14, 4326-4333.
[16] S. Sauer, A. Freiwald, T. Maier, M. Kube, R. Reinhardt, M. Kostrzewa, and K. Geider, "Classification and identification of bacteria by mass spectrometry and computational analysis”, PLoS One 2008, 3, e2843
[17] J.P. Hays, and W.B. van Leeuwen, "The Role of New Technologies in Medical Microbiological Research and Diagnosis”, 2012, ISBN, 978-1-60805-565-4
[18] A. Karger, R. Stock, M. Ziller, M.C. Elschner, B. Bettin, F. Melzer, T. Maier, M. Kostrzewa, H.C. Scholz, H. Neubauer and H. Tomaso, "Rapid identification of Burkholderia mallei and Burkholderia pseudomallei by intact cell Matrix-assisted Laser Desorption/Ionisation mass spectrometric typing”, BMC Microbiol. 2012, 12, 229-244.
[19] S. Biswas, and J.M. Rolain, "Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture”, J. Microbiol. Methods 2013, 92, 14-24.
[20] C. Fenselau, and P.A. Demirev, "Characterization of intact microorganisms by MALDI mass spectrometry”. Mass Spectrom. Rev. 2001, 20, 157-171.
[21] J.R. Barreiro, C.R. Ferreira, G.B. Sanvido, M. Kostrzewa, T. Maier, B. Wegemann, V. Böttcher, M.N. Eberlin, and M.V. dos Santos, "Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry”, J. Dairy Sci. 2010, 93, 5661–5667.
[22] R.D. Holland, J.G. Wilkes, F. Rafii, J.B. Sutherland, C.C. Persons, K.J. Voorhees, and J.O. Lay, "Rapid identification of intact whole bacteria based on spectral patterns using matrixassisted laser desorption/ionization with time-of-flight mass spectrometry”, Rapid Commun. Mass Spectrom. 1996, 10, 1227–1232
[23] M. Alispahic, K. Hummel, D. Jandreski-Cvetkovic, K. Nöbauer, E. Razzazi-Fazeli, M. Hess, and C. Hess, "Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ ionization time of flight mass spectrometry analysis”, J. Med. Microbiol. 2010, 59, 295–301.
[24] A. Mellmann, F. Bimet, C. Bizet, A.D. Borovskaya, R.R. Drake, U. Eigner, A.M. Fahr, Y. He, E.N. Ilina, M. Kostrzewa, T. Maier, L. Mancinelli, W. Moussaoui, G. Prevost, L. Putignani, C.L. Seachord, Y.W. Tang, and D. Harmsen, "High inter-laboratory reproducibility of matrix-assisted laser desorption ionization-time of flight mass spectrometry-based species identification of non-fermenting bacteria”, J. Clin. Microbiol. 2009, 47, 3732–3734
[25] A. Mellmann, J. Cloud, T. Maier, U. Keckevoet, I. Ramminger, P. Iwen, J. Dunn, G. Hall, D. Wilson, P. LaSala, M. Kostrzewa, and D. Harmsen, "Evaluation of matrix assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria”, Clin. Microbiol. 2008. 46, 1946–1954.
[26] E.N. Ilina, A.D. Borovskaya, M.M. Malakhova, V.A. Vereshchagin, A.A. Kubanova, A.N. Kruglov, T.S. Svistunova, A.O. Gazarian, T. Maier, M. Kostrzewa, and V.M. Govorun, "Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria, J. Mol. Diagn. 2009, 11, 75–86. DOI: 10.2353/jmoldx.2009.080079
[27] E.N. Ilina, A.D. Borovskaya, M.V. Serebryakova, V.V. Chelysheva, K.T. Momynaliev, T. Maier, M. Kostrzewa, and V.M. Govorun, "Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the study of Helicobacter pylori. Rapid Commun. Mass Spectrom”, 2010, 24, 328–334.
[28] National Mastitis Council, "Summary of peer-reviewed publications on efficacy of premilking and postmilking teat disinfectants”, published since 1980, updated January 2001. NMC website nmconline.org.
[29] M.F. Lartigue, G. Héry-Arnaud, E. Haguenoer, A.S. Domelier, P.O. Schmit, N. van der Mee-Marquet, P.P. Lanotte, L. Mereghetti, M. Kostrzewa, and R. Quentin, "Identification of Streptococcus agalactiae isolates from various phylogenetic lineages by matrix-assisted laser desorption ionization-time of flight mass spectrometry”, J. Clin. Microbiol. 2009, 47, 2284-2287.
[30] E. Carretto, D. Barbarini, I. Couto, D. De Vitis, P. Marone, J. Verhoef, H. De Lencastre, and S. Brisse, "Identification of coagulase-negative staphylococci other than Staphylococcus epidermidis by automated ribotyping”, Clin. Microbiol. Infect. 2005, 11, 177-84.
[31] Z. Du, Z., R. Yang, Z. Guo, Y. Song, and J. Wang, "Identification of Staphylococcus aureus and Determination of Its Methicillin Resistance by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry”, Anal. Chem. 2002, 74, 5487-5491.
[32] V. Edwards-Jones, M.A. Claydon, D.J. Evason, J. Walker, A.J. Fox, and D.B. Gordon, "Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry”, J. Med. Microbiol. 2000, 49, 295-300.
[33] J. Walker, A.J. Fox, V. Edwards-Jones, and D.B. Gordon, "Methods”. J. Microbiol. 2002, 48, 117-126.
[34] L. Odierno, L. Calvinho, P. Traverssa, M. Lasagno, C. Bogni and E. Reinoso, "Conventional identification of Streptococcus uberis isolated from bovine mastitis in Argentinean dairy herds”, J. Dairy Sci. 2006, 89, 3886-3890
[35] C.P. Kolbert, and D.H. Persing, "Ribosomal DNA sequencing as a tool for identification of bacterial pathogens”, Curr. Opin. Microbiol. 1999, 2, 299-305.
[36] J.E. Clarridge, "Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases”, Clin. Microbiol. Rev. 2004, 17, 840-862.
[37] S.B. Barbuddhe, T. Maier, G. Schwarz, M. Kostrzewa, H. Hof, E. Domann, T. Chakraborty, and T. Hain, "Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry”, Appl. Environ. Microbiol. 2008, 74, 402-5407.
[38] G. Marklein, M. Josten, U. Klanke, E. Müller, R. Horré, T. Maier, T. Wenzel, M. Kostrzewa, G. Bierbaum, A. Hoerauf, and H.G. Sahl, "Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates”, J. Clin. Microbiol. 2009, 47, 2912-2917.
[39] K. Nagy, K. Redeuil, R. Bertholet, H. Steiling, and M. Kussmann, "Quantification of anthocyanins and flavonols in milk-based food products by ultra performance liquid chromatography-tandem mass spectrometry”, Anal. Chem. 2009, 81, 6347-6356.
[40] D. Dubois, D. Leyssene, J.P. Chacornac, M. Kostrzewa, P.O. Schmit, R. Talon, R. Bonnet, and J. Delmas, "Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry”, J. Clin. Microbiol. 2010, 48, 941-945.
[41] E. Seibold, T. Maier, M. Kostrzewa, E. Zeman, and W. Splettstoesser, "Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels”, J. Clin. Microbiol. 2010, 48, 1061-1069.