Search results for: Ant colony optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1904

Search results for: Ant colony optimization

1634 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi

Abstract:

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
1633 Dynamic Optimization of Industrial Servomechanisms using Motion Laws Based On Bezier Curves

Authors: Giovanni Incerti

Abstract:

The motion planning procedure described in this paper has been developed in order to eliminate or reduce the residual vibrations of electromechanical positioning systems, without augmenting the motion time (usually imposed by production requirements), nor introducing overtime for vibration damping. The proposed technique is based on a suitable choice of the motion law assigned to the servomotor that drives the mechanism. The reference profile is defined by a Bezier curve, whose shape can be easily changed by modifying some numerical parameters. By means of an optimization technique these parameters can be modified without altering the continuity conditions imposed on the displacement and on its time derivatives at the initial and final time instants.

Keywords: Servomechanism, residual vibrations, motion optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
1632 Preliminary Roadway Alignment Design: A Spatial-Data Optimization Approach

Authors: Y. Abdelrazig, R. Moses

Abstract:

Roadway planning and design is a very complex process involving five key phases before a project is completed; planning, project development, final design, right-of-way, and construction. The planning phase for a new roadway transportation project is a very critical phase as it greatly affects all latter phases of the project. A location study is usually performed during the preliminary planning phase in a new roadway project. The objective of the location study is to develop alignment alternatives that are cost efficient considering land acquisition and construction costs. This paper describes a methodology to develop optimal preliminary roadway alignments utilizing spatial-data. Four optimization criteria are taken into consideration; roadway length, land cost, land slope, and environmental impacts. The basic concept of the methodology is to convert the proposed project area into a grid, which represents the search space for an optimal alignment. The aforementioned optimization criteria are represented in each of the grid’s cells. A spatial-data optimization technique is utilized to find the optimal alignment in the search space based on the four optimization criteria. Two case studies for new roadway projects in Duval County in the State of Florida are presented to illustrate the methodology. The optimization output alignments are compared to the proposed Florida Department of Transportation (FDOT) alignments. The comparison is based on right-of-way costs for the alignments. For both case studies, the right-of-way costs for the developed optimal alignments were found to be significantly lower than the FDOT alignments.

Keywords: Optimization, planning, roadway alignment, FDOT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
1631 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: Exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
1630 Solving Machine Loading Problem in Flexible Manufacturing Systems Using Particle Swarm Optimization

Authors: S. G. Ponnambalam, Low Seng Kiat

Abstract:

In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve machine loading problem in flexible manufacturing system (FMS), with bicriterion objectives of minimizing system unbalance and maximizing system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools. The performance of the PSO is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The results support that the proposed PSO is comparable with the algorithms reported in the literature.

Keywords: Machine loading problem, FMS, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
1629 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process

Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai

Abstract:

An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.

Keywords: Stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
1628 Dynamic Economic Dispatch Using Glowworm Swarm Optimization Technique

Authors: K. C. Meher, R. K. Swain, C. K. Chanda

Abstract:

This paper gives an intuition regarding glowworm swarm optimization (GSO) technique to solve dynamic economic dispatch (DED) problems of thermal generating units. The objective of the problem is to schedule optimal power generation of dedicated thermal units over a specific time band. In this study, Glowworm swarm optimization technique enables a swarm of agents to split into subgroup, exhibit simultaneous taxis towards each other and rendezvous at multiple optima (not necessarily equal) of a given multimodal function. The feasibility of the GSO method has been tested on ten-unit-test systems where the power balance constraints, operating limits, valve point effects, and ramp rate limits are taken into account. The results obtained by the proposed technique are compared with other heuristic techniques. The results show that GSO technique is capable of producing better results.

Keywords: Dynamic economic dispatch, Glowworm swarm optimization, Luciferin, Valve–point loading effect, Ramp rate limits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
1627 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications

Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka

Abstract:

The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.

Keywords: Automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3273
1626 A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods

Authors: Ioannis N. Koukoulis, Clio G. Vossou, Christopher G. Provatidis

Abstract:

The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.

Keywords: Elastostatic, inverse problem, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
1625 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: Piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
1624 A Cost Optimization Model for the Construction of Bored Piles

Authors: Kenneth M. Oba

Abstract:

Adequate management, control, and optimization of cost is an essential element for a successful construction project. A multiple linear regression optimization model was formulated to address the problem of costs associated with pile construction operations. A total of 32 PVC-reinforced concrete piles with diameter of 300 mm, 5.4 m long, were studied during the construction. The soil upon which the piles were installed was mostly silty sand, and completely submerged in water at Bonny, Nigeria. The piles are friction piles installed by boring method, using a piling auger. The volumes of soil removed, the weight of reinforcement cage installed, and volumes of fresh concrete poured into the PVC void were determined. The cost of constructing each pile based on the calculated quantities was determined. A model was derived and subjected to statistical tests using Statistical Package for the Social Sciences (SPSS) software. The model turned out to be adequate, fit, and have a high predictive accuracy with an R2 value of 0.833.

Keywords: Cost optimization modelling, multiple linear models, pile construction, regression models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178
1623 Reentry Trajectory Optimization Based on Differential Evolution

Authors: Songtao Chang, Yongji Wang, Lei Liu, Dangjun Zhao

Abstract:

Reentry trajectory optimization is a multi-constraints optimal control problem which is hard to solve. To tackle it, we proposed a new algorithm named CDEN(Constrained Differential Evolution Newton-Raphson Algorithm) based on Differential Evolution( DE) and Newton-Raphson.We transform the infinite dimensional optimal control problem to parameter optimization which is finite dimensional by discretize control parameter. In order to simplify the problem, we figure out the control parameter-s scope by process constraints. To handle constraints, we proposed a parameterless constraints handle process. Through comprehensive analyze the problem, we use a new algorithm integrated by DE and Newton-Raphson to solve it. It is validated by a reentry vehicle X-33, simulation results indicated that the algorithm is effective and robust.

Keywords: reentry vehicle, trajectory optimization, constraint optimal, differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
1622 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1621 Design of Gravity Dam by Genetic Algorithms

Authors: Farzin Salmasi

Abstract:

The design of a gravity dam is performed through an interactive process involving a preliminary layout of the structure followed by a stability and stress analysis. This study presents a method to define the optimal top width of gravity dam with genetic algorithm. To solve the optimization task (minimize the cost of the dam), an optimization routine based on genetic algorithms (GAs) was implemented into an Excel spreadsheet. It was found to perform well and GA parameters were optimized in a parametric study. Using the parameters found in the parametric study, the top width of gravity dam optimization was performed and compared to a gradient-based optimization method (classic method). The accuracy of the results was within close proximity. In optimum dam cross section, the ratio of is dam base to dam height is almost equal to 0.85, and ratio of dam top width to dam height is almost equal to 0.13. The computerized methodology may provide the help for computation of the optimal top width for a wide range of height of a gravity dam.

Keywords: Chromosomes, dam, genetic algorithm, globaloptimum, preliminary layout, stress analysis, theoretical profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4335
1620 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: Parameterization, response surface, structure optimization, pressure hull.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
1619 Fuzzy Optimization in Metabolic Systems

Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu

Abstract:

The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.

Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
1618 Noise Optimization Techniques for 1V 1GHz CMOS Low-Noise Amplifiers Design

Authors: M. Zamin Khan, Yanjie Wang, R. Raut

Abstract:

A 1V, 1GHz low noise amplifier (LNA) has been designed and simulated using Spectre simulator in a standard TSMC 0.18um CMOS technology.With low power and noise optimization techniques, the amplifier provides a gain of 24 dB, a noise figure of only 1.2 dB, power dissipation of 14 mW from a 1 V power supply.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
1617 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique

Authors: Mandeep Kumar, Hari Singh

Abstract:

The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.

Keywords: ANOVA, DOE, inconel, machining, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
1616 On the Parameter Optimization of Fuzzy Inference Systems

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.

Keywords: Artificial Intelligence, Fuzzy Logic, Fuzzy InferenceSystems, Nonlinear Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
1615 Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: Correlation analysis, F-ratio, Levenberg-Marquardt, MSE, NARX, neural network, optimisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
1614 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe

Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati

Abstract:

This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PCCPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rth, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66 (ºC/W).

Keywords: Loop heat pipe, nanofluid, optimization, thermal resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
1613 Invasion of Pectinatella magnifica in Freshwater Resources of the Czech Republic

Authors: J. Pazourek, K. Šmejkal, P. Kollár, J. Rajchard, J. Šinko, Z. Balounová, E. Vlková, H. Salmonová

Abstract:

Pectinatella magnifica (Leidy, 1851) is an invasive freshwater animal that lives in colonies. A colony of Pectinatella magnifica (a gelatinous blob) can be up to several feet in diameter large and under favorable conditions it exhibits an extreme growth rate. Recently European countries around rivers of Elbe, Oder, Danube, Rhine and Vltava have confirmed invasion of Pectinatella magnifica, including freshwater reservoirs in South Bohemia (Czech Republic). Our project (Czech Science Foundation, GAČR P503/12/0337) is focused onto biology and chemistry of Pectinatella magnifica. We monitor the organism occurrence in selected South Bohemia ponds and sandpits during the last years, collecting information about physical properties of surrounding water, and sampling the colonies for various analyses (classification, maps of secondary metabolites, toxicity tests). Because the gelatinous matrix is during the colony lifetime also a host for algae, bacteria and cyanobacteria (co-habitants), in this contribution, we also applied a high performance liquid chromatography (HPLC) method for determination of potentially present cyanobacterial toxins (microcystin-LR, microcystin-RR, nodularin). Results from the last 3-year monitoring show that these toxins are under limit of detection (LOD), so that they do not represent a danger yet. The final goal of our study is to assess toxicity risks related to fresh water resources invaded by Pectinatella magnifica, and to understand the process of invasion, which can enable to control it.

Keywords: Cyanobacteria, freshwater resources, Pectinatella magnifica invasion, toxicity monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
1612 Design Optimization of Cutting Parameters when Turning Inconel 718 with Cermet Inserts

Authors: M. Aruna, V. Dhanalaksmi

Abstract:

Inconel 718, a nickel based super-alloy is an extensively used alloy, accounting for about 50% by weight of materials used in an aerospace engine, mainly in the gas turbine compartment. This is owing to their outstanding strength and oxidation resistance at elevated temperatures in excess of 5500 C. Machining is a requisite operation in the aircraft industries for the manufacture of the components especially for gas turbines. This paper is concerned with optimization of the surface roughness when turning Inconel 718 with cermet inserts. Optimization of turning operation is very useful to reduce cost and time for machining. The approach is based on Response Surface Method (RSM). In this work, second-order quadratic models are developed for surface roughness, considering the cutting speed, feed rate and depth of cut as the cutting parameters, using central composite design. The developed models are used to determine the optimum machining parameters. These optimized machining parameters are validated experimentally, and it is observed that the response values are in reasonable agreement with the predicted values.

Keywords: Inconel 718, Optimization, Response Surface Methodology (RSM), Surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2839
1611 Non-Sensitive Solutions in Multi-Objective Optimization of a Solar Photovoltaic/Thermal(PV/T) Air Collector

Authors: F. Sarhaddi, S. Farahat, M .A. Alavi, F. Sobhnamayan

Abstract:

In this paper, an attempt has been made to obtain nonsensitive solutions in the multi-objective optimization of a photovoltaic/thermal (PV/T) air collector. The selected objective functions are overall energy efficiency and exergy efficiency. Improved thermal, electrical and exergy models are used to calculate the thermal and electrical parameters, overall energy efficiency, exergy components and exergy efficiency of a typical PV/T air collector. A computer simulation program is also developed. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Finally, multi-objective optimization has been carried out under given climatic, operating and design parameters. The optimized ranges of inlet air velocity, duct depth and the objective functions in optimal Pareto front have been obtained. Furthermore, non-sensitive solutions from energy or exergy point of view in the results of multi-objective optimization have been shown.

Keywords: Solar photovoltaic thermal (PV/T) air collector, Overall energy efficiency, Exergy efficiency, Multi-objectiveoptimization, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
1610 Opportunities for Precision Feed in Apiculture for Managing the Efficacy of Feed and Medicine

Authors: John Michael Russo

Abstract:

Honeybees are important to our food system and continue to suffer from high rates of colony loss. Precision feed has brought many benefits to livestock cultivation and these should transfer to apiculture. However, apiculture has unique challenges. The objective of this research is to understand how principles of precision agriculture, applied to apiculture and feed specifically, might effectively improve state-of-the-art cultivation. The methodology surveys apicultural practice to build a model for assessment. First, a review of apicultural motivators is made. Feed method is then evaluated. Finally, precision feed methods are examined as accelerants with potential to advance the effectiveness of feed practice. Six important motivators emerge: colony loss, disease, climate change, site variance, operational costs, and competition. Feed practice itself is used to compensate for environmental variables. The research finds that the current state-of-the-art in apiculture feed focuses on critical challenges in the management of feed schedules which satisfy requirements of the bees, preserve potency, optimize environmental variables, and manage costs. Many of the challenges are most acute when feed is used to dispense medication. Technology such as RNA treatments have even more rigorous demands. Precision feed solutions focus on strategies which accommodate specific needs of individual livestock. A major component is data; they integrate precise data with methods that respond to individual needs. There is enormous opportunity for precision feed to improve apiculture through the integration of precision data with policies to translate data into optimized action in the apiary, particularly through automation.

Keywords: Apiculture, precision apiculture, RNA varroa treatment, honeybee feed applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236
1609 Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach.

Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360
1608 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
1607 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: B. Mukanova, N. Glazyrina, S. Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: Direct problem, multiparametric optimization, optimization parameters, water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
1606 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting

Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun

Abstract:

In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution.

Keywords: Multi-objective optimization, random drift particle swarm optimization, crowding distance, Pareto optimal solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
1605 Optimization Parameters of Rotary Positioner Controller using CDM

Authors: Meemongkol A., Tipsuwanporn V., Numsomran A.

Abstract:

The authors present optimization parameters of rotary positioner controller in hard disk drive servo track writing process using coefficient diagram method; CDM. Due to estimation parameters in PI Positioning Control System by expected ratio method cannot meet the required specification of response effectively, we suggest coefficient diagram method for defining controller parameters under the requirement of the system. Finally, the simulation results show that our proposed method can improve the problem in tuning parameter of rotary positioner controller. It is satisfied specification of performance of control system. Furthermore, it is very convenient as a fast adjustment damping ratio as well as a high speed response.

Keywords: Optimization Parameters, Rotary Positioner, CDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548