Search results for: solar energy
3048 Impact of Reflectors on Solar Energy Systems
Authors: J. Rizk, M. H. Nagrial
Abstract:
The paper aims to show that implementing different types of reflectors in solar energy systems, will dramatically improve energy production by means of concentrating and intensifying more sunlight onto a solar cell. The Solar Intensifier unit is designed to increase efficiency and performance of a set of solar panels. The unit was fabricated and tested. The experimental results show good improvement in the performance of the solar energy system.Keywords: Renewable Energy, Power optimization, Solar Energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32663047 Solar Tracking System Using a Refrigerant as Working Medium for Solar Energy Conversion
Authors: S. Sendhil Kumar, S. N. Vijayan
Abstract:
Utilization of solar energy can be found in various domestic and industrial applications. The performance of any solar collector is largely affected by various parameters such as glazing, absorber plate, top covers, and heating pipes. Technology improvements have brought us another method for conversion of solar energy to direct electricity using solar photovoltaic system. Utilization and extraction of solar energy is the biggest problem in these conversion methods. This paper aims to overcome these problems and take the advantages of available energy from solar by maximizing the utilization through solar tracking system using a refrigerant as a working medium. The use of this tracking system can help increase the efficiency of conversion devices by maximum utilization of solar energy. The dual axis tracking system gives maximum energy output compared to single axis tracking system.Keywords: Refrigerant, solar collector, solar energy, solar panel, solar tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20203046 A Note on Significance of Solar Pond Technology for Power Generation
Authors: Donepudi Jagadish
Abstract:
In the view of current requirements of power generation and the increased interest on renewable energy sources, many options are available for generation of clean power. Solar power generation would be one of the best options in this context. The solar pond uses the principle of conversion of solar energy into heat energy, and also has the capability of storing this energy for certain period of time. The solar ponds could be best option for the regions with high solar radiation throughout the day, and also has free land availability. The paper depicts the significance of solar pond for conversion of solar energy into heat energy with a sight towards the parameters like thermal efficiency, working conditions and cost of construction. The simulation of solar pond system has been carried out for understanding the trends of the thermal efficiencies with respect to time.
Keywords: Renewable Energy, Solar Pond, Energy Efficiency, Construction of Solar Pond.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33283045 Some Aspects Regarding I. R. Absorbing Materials Based On Thin Alumina Films for Solar-Thermal Energy Conversion, Using X-Ray Diffraction Technique
Authors: Sorina Adriana Mitrea, Silvia Maria Hodorogea, Anca Duta, Luminita Isac, Elena Purghel, Mihaela Voinea
Abstract:
Solar energy is the most “available", ecological and clean energy. This energy can be used in active or passive mode. The active mode implies the transformation of solar energy into a useful energy. The solar energy can be transformed into thermal energy, using solar collectors. In these collectors, the active and the most important element is the absorber, material which performs the absorption of solar radiation and, in at the same time, limits its reflection. The paper presents some aspects regarding the IR absorbing material – a type of cermets, used as absorber in the solar collectors, by X Ray Diffraction Technique (XRD) characterization.
Keywords: Alumina films, solar energy, X-ray diffraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15863044 Solar Energy for Water Conditioning
Authors: J. Pawłat, H. Stryczewska
Abstract:
Shortening of natural resources will impose greater limitations of electric energy consumption in various fields including water treatment technologies. Small water treatment installations supplied with electric energy from solar sources are perfect example of zero-emission technology. Possibility of solar energy application, as one of the alternative energy resources for decontamination processes is strongly dependent on geographical location. Various examples of solar driven water purification systems are given and design of solar-water treatment installation based on ozone for the geographical conditions in Poland are presented.Keywords: solar energy, water purification, ozone water treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17923043 Viability Analysis of the Use of Solar Energy for Water Heating in Brazil
Authors: E. T. L. Cöuras Ford, V. A. C.Vale, J. U. L Mendes
Abstract:
The sun is an inexhaustible source and harness its potential both for heating and power generation is one of the most promising and necessary alternatives, mainly due to environmental issues. However, it should be noted that this has always been present in the generation of energy on earth, only indirectly, since it is responsible for virtually all other energy sources, such as generating source of evaporation of the water cycle, allowing the impoundment and the consequent generation of electricity (hydroelectric power); winds are caused by atmospheric induction caused by large scale solar radiation; petroleum, coal and natural gas were generated from waste plants and animals that originally derived energy required for their development of solar radiation. This paper presents a study on the feasibility of using solar energy for water heating in homes. A simplified methodology developed for formulation of solar heating operation model of water in alternative systems of solar energy in Brazil, and compared it to that in the international market. Across this research, it was possible to create new paradigms for alternative applications to the use of solar energy.Keywords: Solar energy, solar heating, solar project.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10843042 Potential of Solar Energy in Zarqa Region
Authors: Ali M. Jawarneh, Ahmad S. AL-Shyyab
Abstract:
The purpose of this work is to present the potential of solar energy in Zarqa region. The solar radiation along year 2009 was obtained from Pyranometer which measures the global radiation over horizontal surfaces. Solar data in several different forms, over period of 5 minutes, hour-by-hour, daily and monthly data radiation have been presented. Briefly, the yearly global solar radiation in Zarqa is 7297.5 MJ/m2 (2027 kWh/m²) and the average annual solar radiation per day is 20 MJ/m2 (5.5 Kwh/m2). More specifically, the average annual solar radiation per day is 12.9 MJ/m2 (3.57 Kwh/m2) in winter and 25 MJ/m2 (7 Kwh/m2) in summer.Keywords: Solar Energy, Pyranometer, Zarqa Region
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19213041 Current Status and Energy Savings Potential of Solar Shading in Ningbo
Authors: Jian Yao
Abstract:
To investigate the energy performance of solar shading devices, this paper carried out a survey on the current status of solar shading utilization in buildings in Ningbo and performed building simulations to evaluate the energy savings potential by adopting different solar shading devices. Results show that solar shading utilization in this area is not popular and effective, and should be considered firstly in the design stage since the potential for energy savings is up to 6.8% for residential buildings and 9.4% for commercial buildings.
Keywords: Solar shading, Energy savings, Building design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17123040 Impact of Solar Energy Based Power Grid for Future Prospective of Pakistan
Authors: Muhammd Usman Sardar, Mazhar Hussain Baloch, Muhammad Shahbaz Ahmad, Zahir Javed Paracha
Abstract:
Shortfall of electrical energy in Pakistan is a challenge adversely affecting its industrial output and social growth. As elsewhere, Pakistan derives its electrical energy from a number of conventional sources. The exhaustion of petroleum and conventional resources, the rising costs coupled with extremely adverse climatic effects are taking its toll especially on the under-developed countries like Pakistan. As alternate, renewable energy sources like hydropower, solar, wind, even bio-energy and a mix of some or all of them could provide a credible alternative to the conventional energy resources that would not only be cleaner but sustainable as well. As a model, solar energy-based power grid for the near future has been attempted to offset the energy shortfalls as a mix with our existing sustainable natural energy resources. An assessment of solar energy potential for electricity generation is being presented for fulfilling the energy demands with higher level of reliability and sustainability. This model is based on the premise that solar energy potential of Pakistan is not only reliable but also sustainable. This research estimates the present & future approaching renewable energy resource specially the impact of solar energy based power grid for mitigating energy shortage in Pakistan.
Keywords: Powergrid network, solar photovoltaic (SPV) setups, solar power generation, solar energy technology (SET).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34513039 Empirical Survey of the Solar System Based on the Fusion of GPS and Image Processing
Authors: S. Divya Gnanarathinam, S. Sundaramurthy
Abstract:
The tremendous increase in the population of the world creates the immediate need for the energy resources. All the people in the world need the sustainable energy resources which have low costs. Solar energy is appraised as one of the main energy resources in warm countries. The areas in the west of India like Rajasthan, Gujarat, etc. are immensely rich in solar energy resources. This paper deals with the development of dual axis solar tracker using Arduino board. Depending on the astronomical estimates of the sun from the GPS and sensor image processing outcomes, a methodology is proposed to locate the position of the sun to obtain the maximum solar energy. Based on the outcomes, the solar tracking system figures out whether to use image processing outcomes or astronomical estimates to attain the maximum efficiency of the solar panel. Finally, the experimental values obtained from the solar tracker for both the sunny and the rainy days are being tabulated.
Keywords: Dual axis solar tracker, Arduino board, LDR sensors, global positioning system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15893038 Increase in Solar Thermal Energy Storage by using a Hybrid Energy Storage System
Authors: Hassan Zohoor, Zaeem M. Moosavi
Abstract:
The intermittent nature of solar energy and the energy requirements of buildings necessitate the storage of thermal energy. In this paper a hybrid system of storing solar energy has been analyzed. Adding a LHS medium to a commercial solar water heater, the required energy for heating a small room was obtained in addition to preparing hot water. In other words, the suggested hybrid storage system consists of two tanks: a water tank as a SHS medium; and a paraffin tank as a LHS medium. A computing program was used to find the optimized time schedule of charging the storage tanks during each day, according to the solar radiation conditions. The results show that the use of such system can improve the capability of energy gathering comparing to the individual water storage tank during the cold months of the year. Of course, because of the solar radiation angles and shorten daylight in December & January, the performance will be the same as the simple solar water heaters (in the northern hemisphere). But the extra energy stored in November, February, March & April, can be useful for heating a small room for 3 hours during the cold days.Keywords: Hybrid, Optimization, Solar thermal energy, Storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17833037 Feasibility Study of Air Conditioners Operated by Solar Energy in Saudi Arabia
Authors: Eman Simbawa, Budur Alasmri, Hanan Munahir, Hanin Munahir
Abstract:
Solar energy has become currently the subject of attention around the world and is undergoing many researches and studies. Using solar energy, which is a renewable energy, is aligned with the Saudi Vision 2030. People are more aware of it and are starting to use it more for environmental and economical reasons. A questionnaire was conducted in this paper to measure the awareness of people in Saudi Arabia regarding solar energy and their attitude towards it. Then, two kinds of air conditioners (one powered by electricity only and one powered by solar panels and electricity) are compared in terms of their cost over a period of 20 years. This will help the users to decide which kind of device to use depending on its cost. The result shows that as the electricity tariffs in Saudi Arabia increases, depending on the sector, the solar air conditioner is cheaper. In fact, if the tariff in the future increases to reach 50 Halalah/kWh, the solar air conditioner is more economical. This will influence users to buy more solar powered devices, and it will decrease the consumption of electricity. Therefore, the dependence on oil will decrease.Keywords: Air conditioner, solar energy, photovoltaic cells, present value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7423036 Optical Analysis of Variable Aperture Mechanism for a Solar Reactor
Authors: Akanksha Menon, Nesrin Ozalp
Abstract:
Solar energy is not only sustainable but also a clean alternative to be used as source of high temperature heat for many processes and power generation. However, the major drawback of solar energy is its transient nature. Especially in solar thermochemical processing, it is crucial to maintain constant or semiconstant temperatures inside the solar reactor. In our laboratory, we have developed a mechanism allowing us to achieve semi-constant temperature inside the solar reactor. In this paper, we introduce the concept along with some updated designs and provide the optical analysis of the concept under various incoming flux.Keywords: Aperture, Solar reactor, Optical analysis, Solar thermal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14623035 Solar Energy Generation Based Urban Development: A Case of Jodhpur City
Authors: A. Kumar, V. Devadas
Abstract:
India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.
Keywords: City, consumption, energy, generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5643034 Matlab/Simulink Simulation of Solar Energy Storage System
Authors: Mustafa A. Al-Refai
Abstract:
This paper investigates the energy storage technologies that can potentially enhance the use of solar energy. Water electrolysis systems are seen as the principal means of producing a large amount of hydrogen in the future. Starting from the analysis of the models of the system components, a complete simulation model was realized in the Matlab-Simulink environment. Results of the numerical simulations are provided. The operation of electrolysis and photovoltaic array combination is verified at various insulation levels. It is pointed out that solar cell arrays and electrolysers are producing the expected results with solar energy inputs that are continuously varying.
Keywords: Electrolyzer, Simulink, solar energy, storage system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90773033 Long Term Stability of an Experimental Insulated-Model Salinity-Gradient Solar Pond
Authors: N. W. K. Jayatissa, R. Attalage, Prabath Hewageegana, P. A. A. Perera, M. A. Punyasena
Abstract:
Per capita energy usage in any country is exponentially increasing with their development. As a result, the country’s dependence on the fossil fuels for energy generation is also increasing tremendously creating economic and environmental concerns. Tropical countries receive considerable amount of solar radiation throughout the year, use of solar energy with different energy storage and conversion methodologies is a viable solution to minimize the ever increasing demand for the depleting fossil fuels. Salinity gradient solar pond is one such solar energy application. This paper reports the characteristics and performance of a thermally insulated, experimental salinity-gradient solar pond, built at the premises of the University of Kelaniya, Sri Lanka. Particular stress is given to the behavior of the evolution of the three layer structure exist at the stable state of a salinity gradient solar pond over a long period of time, under different environmental conditions. The operational procedures required to maintain the long term thermal stability are also reported in this article.
Keywords: Salt-gradient, solar pond, solar radiation, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16063032 Assessing the Viability of Solar Water Pumps Economically, Socially and Environmentally in Soan Valley, Punjab
Authors: Zenab Naseem, Sadia Imran
Abstract:
One of the key solutions to the climate change crisis is to develop renewable energy resources, such as solar and wind power and biogas. This paper explores the socioeconomic and environmental viability of solar energy, based on a case study of the Soan Valley Development Program. Under this project, local farmers were provided solar water pumps at subsidized rates. These have been functional for the last seven years and have gained popularity among the local communities. The study measures the economic viability of using solar energy in agriculture, based on data from 36 households, of which 12 households each use diesel, electric and solar water pumps. Our findings are based on the net present value of each technology type. We also carry out a qualitative assessment of the social impact of solar water pumps relative to diesel and electric pumps. Finally, we conduct an environmental impact assessment, using the lifecycle assessment approach. All three analyses indicate that solar energy is a viable alternative to diesel and electricity.Keywords: Alternative energy sources, pollution control adoption and costs, solar energy pumps, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26263031 A Review of Current Trends in Thin Film Solar Cell Technologies
Authors: Adekanmi M. Adeyinka, Onyedika V. Mbelu, Yaqub B. Adediji, Daniel I. Yahya
Abstract:
Growing energy demand and the world's dependence on fossil fuel-based energy systems causing greenhouse gas emissions and climate change have intensified the need for utilizing renewable energy sources. Solar energy can be converted directly into electricity via photovoltaic solar cells. Thin-film solar cells are preferred due to their cost effectiveness, less material consumption, flexibility, and rising trend in efficiency. In this paper, Gallium arsenide (GaAs), Amorphous silicon (a-Si), Copper Indium Gallium Selenide (CIGS), and Cadmium Telluride (CdTe) thin film solar cells are reviewed. The evolution, structures, fabrication methods, stability and degradation methods, and trend in the efficiency of the thin-film solar cells over the years are discussed in detail. Also, a comparison of the thin-film solar cells reviewed with crystalline silicon in terms of physical properties and performance is made.
Keywords: Climate change, conversion efficiency, solar energy, thin-film solar cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12173030 A Numerical Simulation of Solar Distillation for Installation in Chabahar-Iran
Authors: Masoud Afrand, Amin Behzadmehr, Arash Karimipour
Abstract:
The world demand for potable water is increasing every day with growing population. Desalination using solar energy is suitable for potable water production from brackish and seawater. In this paper, we present a theoretical study of solar distillation in a single basin under the open environmental conditions of Chabahar-Iran. The still has a base area of 2000mm×500mm with a glass cover inclined at 25° in order to obtain extra solar energy. We model the still and conduct its energy balance equations under minor assumptions. We computed the temperatures of glass cover, seawater interface, moist air and bottom using numerical method. The investigation addressed the following: The still productivity, distilled water salinity and still performance in terms of the still efficiency. Calculated still productivity in July was higher than December. So in this paper, we show that still productivity is directly functioning of solar radiation.Keywords: Inclined Solar still, Solar energy, Solar desalination, Numerical Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28853029 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.
Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7823028 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System
Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva
Abstract:
Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.
Keywords: Energy production, meteorological data, irradiance decomposition, solar photovoltaic system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7673027 A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds
Authors: Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff
Abstract:
A salinity gradient solar pond is a free energy source system for collecting, convertingand storing solar energy as heat. In thispaper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transferbehaviour of salinity gradient solar pond. MATLAB codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calculated. The numerical results are validated with experimental data and the results arefound to be in good agreement.
Keywords: Finite Difference method, Salt-gradient solar-pond, Solar energy, Transient heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49803026 Solar Panel Installations on Existing Structures
Authors: Tim D. Sass, Pe, Leed
Abstract:
The rising price of fossil fuels, government incentives and growing public aware-ness for the need to implement sustainable energy supplies has resulted in a large in-crease in solar panel installations across the country. For many sites the most eco-nomical solar panel installation uses existing, southerly facing rooftops. Adding solar panels to an existing roof typically means increased loads that must be borne by the building-s structural elements. The structural design professional is responsible for ensuring a new solar panel installation is properly supported by an existing structure and configured to maximize energy generation.Keywords: Solar Panel, Structures, Structural Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80903025 Effect of Elevation and Wind Direction on Silicon Solar Panel Efficiency
Authors: Abdulrahman M. Homadi
Abstract:
As a great source of renewable energy, solar energy is considered to be one of the most important in the world, since it will be one of solutions cover the energy shortage in the future. Photovoltaic (PV) is the most popular and widely used among solar energy technologies. However, PV efficiency is fairly low and remains somewhat expensive. High temperature has a negative effect on PV efficiency and cooling system for these panels is vital, especially in warm weather conditions. This paper presents the results of a simulation study carried out on silicon solar cells to assess the effects of elevation on enhancing the efficiency of solar panels. The study included four different terrains. The study also took into account the direction of the wind hitting the solar panels. To ensure the simulation mimics reality, six silicon solar panels are designed in two columns and three rows, facing to the south at an angle of 30 o. The elevations are assumed to change from 10 meters to 200 meters. The results show that maximum increase in efficiency occurs when the wind comes from the north, hitting the back of the panels.Keywords: Solar panels, elevation, wind direction, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23713024 Effects of Solar Absorption Coefficient of External Wall on Building Energy Consumption
Authors: Jian Yao, Chengwen Yan
Abstract:
The principle concern of this paper is to determine the impact of solar absorption coefficient of external wall on building energy consumption. Simulations were carried out on a typical residential building by using the simulation Toolkit DeST-h. Results show that reducing solar absorption coefficient leads to a great reduction in building energy consumption and thus light-colored materials are suitable.Keywords: Solar absorption coefficient, External wall, Buildingenergy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44273023 Passive Cooling of Building by using Solar Chimney
Authors: Insaf Mehani, N. Settou
Abstract:
Natural ventilation is an important means to improve indoor thermal comfort and reduce the energy consumption. A solar chimney system is an enhancing natural draft device, which uses solar radiation to heat the air inside the chimney, thereby converting the thermal energy into kinetic energy. The present study considered some parameters such as chimney width and solar intensity, which were believed to have a significant effect on space ventilation. Fluent CFD software was used to predict buoyant air flow and flow rates in the cavities. The results were compared with available published experimental and theoretical data from the literature. There was an acceptable trend match between the present results and the published data for the room air change per hour, ACH. Further, it was noticed that the solar intensity has a more significant effect on ACH.
Keywords: Solar chimney, numerical simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44093022 Heat Transfer and Friction Factor Study for Triangular Duct Solar Air Heater Having Discrete V-Shaped Ribs
Authors: Varun
Abstract:
Solar energy is a good option among renewable energy resources due to its easy availability and abundance. The simplest and most efficient way to utilize solar energy is to convert it into thermal energy and this can be done with the help of solar collectors. The thermal performance of such collectors is poor due to less heat transfer from the collector surface to air. In this work, experimental investigations of single pass solar air heater having triangular duct and provided with roughness element on the underside of the absorber plate. V-shaped ribs are used for investigation having three different values of relative roughness pitch (p/e) ranges from 4- 16 for a fixed value of angle of attack (α), relative roughness height (e/Dh) and a relative gap distance (d/x) values are 60°, 0.044 and 0.60 respectively. Result shows that considerable augmentation in heat transfer has been obtained by providing roughness.
Keywords: Artificial roughness, Solar Air heater, Triangular duct, V-Shaped Ribs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29073021 Energy and Exergy Analysis of Dual Purpose Solar Collector
Authors: I. Jafari, A. Ershadi, E. Najafpour, N. Hedayat
Abstract:
Energy and exergy study of air-water combined solar collector which is called dual purpose solar collector (DPSC) is investigated. The method of ε - NTU is used. Analysis is performed for triangle channels. Parameters like the air flow rate and water inlet temperature are studied. Results are shown that DPSC has better energy and exergy efficiency than single collector. In addition, the triangle passage with water inlet temperature of 60O C has shown better exergy and energy efficiency.
Keywords: Efficiency, Exergy, Irreversibility, Solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26323020 Mapping of Solar Radiation Anomalies Based on Climate Change
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Francisco Pereira, Elton Rossini
Abstract:
The use of alternative energy sources to meet energy demand reduces environmental damage. To diversify an energy matrix and to minimize global warming, a solar energy is gaining space, being an important source of renewable energy, and its potential depends on the climatic conditions of the region. Brazil presents a great solar potential for a generation of electric energy, so the knowledge of solar radiation and its characteristics are fundamental for the study of energy use. Due to the above reasons, this article aims to verify the climatic variability corresponding to the variations in solar radiation anomalies, in the face of climate change scenarios. The data used in this research are part of the Intercomparison of Interconnected Models, Phase 5 (CMIP5), which contributed to the preparation of the fifth IPCC-AR5 report. The solar radiation data were extracted from The Australian Community Climate and Earth System Simulator (ACCESS) model using the RCP 4.5 and RCP 8.5 scenarios that represent an intermediate structure and a pessimistic framework, the latter being the most worrisome in all cases. In order to allow the use of solar radiation as a source of energy in a given location and/or region, it is important, first, to determine its availability, thus justifying the importance of the study. The results pointed out, for the 75-year period (2026-2100), based on a pessimistic scenario, indicate a drop in solar radiation of the approximately 12% in the eastern region of Rio Grande do Sul. Factors that influence the pessimistic prospects of this scenario should be better observed by the responsible authorities, since they can affect the possibility to produce electricity from solar radiation.
Keywords: Climate change, solar radiation, energy utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9933019 Integration of Hydropower and Solar Photovoltaic Generation into Distribution System: Case of South Sudan
Authors: A. Amogpai
Abstract:
Hydropower and solar photovoltaic (PV) generation are crucial in sustainability and transitioning from fossil fuel to clean energy. Integrating renewable energy sources such as hydropower and solar PV into the distributed networks contributes to achieving energy balance, pollution mitigation, and cost reduction. Frequent power outages and a lack of load reliability characterize the current South Sudan electricity distribution system. The country’s electricity demand is 300 MW; however, the installed capacity is around 212.4 MW. Insufficient funds to build new electricity facilities and expand generation are the reasons for the gap in installed capacity. The South Sudan Ministry of Energy and Dams gave a contract to an Egyptian Elsewedy Electric Company that completed the construction of a solar PV plant in 2023. The plant has a 35 MWh battery storage and 20 MW solar PV system capacity. The construction of Juba Solar PV Park started in 2022 to increase the current installed capacity in Juba City to 53 MW. The plant will begin serving 59000 residents in Juba and save 10,886.2 t of carbon dioxide (CO2) annually.
Keywords: Renewable energy, hydropower, solar energy, photovoltaic, South Sudan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30