Search results for: fetal electrocardiogram
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 60

Search results for: fetal electrocardiogram

60 Extraction of Fetal Heart Rate and Fetal Heart Rate Variability from Mother's ECG Signal

Authors: Khaldon Lweesy, Luay Fraiwan, Christoph Maier, Hartmut Dickhaus

Abstract:

This paper describes a new method for extracting the fetal heart rate (fHR) and the fetal heart rate variability (fHRV) signal non-invasively using abdominal maternal electrocardiogram (mECG) recordings. The extraction is based on the fundamental frequency (Fourier-s) theorem. The fundamental frequency of the mother-s electrocardiogram signal (fo-m) is calculated directly from the abdominal signal. The heart rate of the fetus is usually higher than that of the mother; as a result, the fundamental frequency of the fetal-s electrocardiogram signal (fo-f) is higher than that of the mother-s (fo-f > fo-m). Notch filters to suppress mother-s higher harmonics were designed; then a bandpass filter to target fo-f and reject fo-m is implemented. Although the bandpass filter will pass some other frequencies (harmonics), we have shown in this study that those harmonics are actually carried on fo-f, and thus have no impact on the evaluation of the beat-to-beat changes (RR intervals). The oscillations of the time-domain extracted signal represent the RR intervals. We have also shown in this study that zero-to-zero evaluation of the periods is more accurate than the peak-to-peak evaluation. This method is evaluated both on simulated signals and on different abdominal recordings obtained at different gestational ages.

Keywords: Aabdominal ECG, fetal heart rate variability, frequency harmonics, fundamental frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2673
59 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm

Authors: Xiang Jianhong, Wang Cong, Wang Linyu

Abstract:

With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.

Keywords: telemedicine, fetal electrocardiogram, compressed sensing, joint sparse reconstruction, block sparse signal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
58 The Results of the Fetal Weight Estimation of the Infants Delivered in the Delivery Room At Dan Khunthot Hospital by Johnson-s Method

Authors: Nareelux Suwannobol, JintanaTapin, Khuanchanok Narachan

Abstract:

The objective of this study was to determine the accuracy to estimation fetal weight by Johnson-s method and compares it with actual birth weight. The sample group was 126 infants delivered in Dan KhunThot hospital from January March 2012. Fetal weight was estimated by measuring fundal height according to Johnson-s method. The information was collected by studying historical delivery records and then analyzed by using the statistics of frequency, percentage, mean, and standard deviation. Finally, the difference was analyzed by a paired t-test.The results showed had an average birth weight was 3093.57 ± 391.03 g (mean ± SD) and 3,455 ± 454.55 g average estimated fetal weight by Johnson-s method higher than average actual birth weight was 384.09 grams. When classifying the infants according to birth weight found that low birth weight (<2500 g) and the appropriate birth weight (2500-3999g) actual birth weight less than estimate fetal weight . But the high birth weight (> 4000 g) actual birth weight was more than estimated fetal weight. The difference was found between actual birth weight and estimation fetal weight of the minimum weight in high birth weight ( > 4000 g) , the appropriate birth weight (2500-3999g) and low birth weight (<2500 g) respectively. The rate of estimates fetal weight within 10% of actual birth weight was 35.7%. Actual birth weight were compared with the found that the difference is statistically significant (p <.000). Employing Johnson-s method to estimate fetal weight can estimate initial fetal weight before passing to special examinations, which may require excessive high cost. A variety of methods should be employed to estimate fetal weight more precisely, which will help plan care for mother-s and infant-s safety.

Keywords: Johnson's method, Fetal weight estimate, Delivery Room, Student nurse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
57 Electrocardiogram Signal Denoising Using a Hybrid Technique

Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim

Abstract:

This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.

Keywords: Hybrid technique, ADTF, DWT, tresholding, ECG signal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199
56 Screening of Congenital Heart Diseases with Fetal Phonocardiography

Authors: F. Kovács, K. Kádár, G. Hosszú, Á. T. Balogh, T. Zsedrovits, N. Kersner, A. Nagy, Gy. Jeney

Abstract:

The paper presents a novel screening method to indicate congenital heart diseases (CHD), which otherwise could remain undetected because of their low level. Therefore, not belonging to the high-risk population, the pregnancies are not subject to the regular fetal monitoring with ultrasound echocardiography. Based on the fact that CHD is a morphological defect of the heart causing turbulent blood flow, the turbulence appears as a murmur, which can be detected by fetal phonocardiography (fPCG). The proposed method applies measurements on the maternal abdomen and from the recorded sound signal a sophisticated processing determines the fetal heart murmur. The paper describes the problems and the additional advantages of the fPCG method including the possibility of measurements at home and its combination with the prescribed regular cardiotocographic (CTG) monitoring. The proposed screening process implemented on a telemedicine system provides an enhanced safety against hidden cardiac diseases.

Keywords: Cardiac murmurs, fetal phonocardiography, screening of CHDs, telemedicine system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
55 Comparative Study of QRS Complex Detection in ECG

Authors: Ibtihel Nouira, Asma Ben Abdallah, Ibtissem Kouaja, Mohamed Hèdi Bedoui

Abstract:

The processing of the electrocardiogram (ECG) signal consists essentially in the detection of the characteristic points of signal which are an important tool in the diagnosis of heart diseases. The most suitable are the detection of R waves. In this paper, we present various mathematical tools used for filtering ECG using digital filtering and Discreet Wavelet Transform (DWT) filtering. In addition, this paper will include two main R peak detection methods by applying a windowing process: The first method is based on calculations derived, the second is a time-frequency method based on Dyadic Wavelet Transform DyWT.

Keywords: Derived calculation methods, Electrocardiogram, R peaks, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
54 Wavelet-Based Classification of Myocardial Ischemia, Arrhythmia, Congestive Heart Failure and Sleep Apnea

Authors: Santanu Chattopadhyay, Gautam Sarkar, Arabinda Das

Abstract:

This paper presents wavelet based classification of various heart diseases. Electrocardiogram signals of different heart patients have been studied. Statistical natures of electrocardiogram signals for different heart diseases have been compared with the statistical nature of electrocardiograms for normal persons. Under this study four different heart diseases have been considered as follows: Myocardial Ischemia (MI), Congestive Heart Failure (CHF), Arrhythmia and Sleep Apnea. Statistical nature of electrocardiograms for each case has been considered in terms of kurtosis values of two types of wavelet coefficients: approximate and detail. Nine wavelet decomposition levels have been considered in each case. Kurtosis corresponding to both approximate and detail coefficients has been considered for decomposition level one to decomposition level nine. Based on significant difference, few decomposition levels have been chosen and then used for classification.

Keywords: Arrhythmia, congestive heart failure, discrete wavelet transform, electrocardiogram, myocardial ischemia, sleep apnea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
53 Quality-Controlled Compression Method using Wavelet Transform for Electrocardiogram Signals

Authors: Redha Benzid, Farid Marir, Nour-Eddine Bouguechal

Abstract:

This paper presents a new Quality-Controlled, wavelet based, compression method for electrocardiogram (ECG) signals. Initially, an ECG signal is decomposed using the wavelet transform. Then, the resulting coefficients are iteratively thresholded to guarantee that a predefined goal percent root mean square difference (GPRD) is matched within tolerable boundaries. The quantization strategy of extracted non-zero wavelet coefficients (NZWC), according to the combination of RLE, HUFFMAN and arithmetic encoding of the NZWC and a resulting look up table, allow the accomplishment of high compression ratios with good quality reconstructed signals.

Keywords: ECG compression, Non-uniform Max-Lloydquantizer, PRD, Quality-Controlled, Wavelet transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
52 Electrocardiogram Signal Compression Using Multiwavelet Transform

Authors: Morteza Moazami-Goudarzi, Mohammad. H. Moradi

Abstract:

In this paper we are to find the optimum multiwavelet for compression of electrocardiogram (ECG) signals. At present, it is not well known which multiwavelet is the best choice for optimum compression of ECG. In this work, we examine different multiwavelets on 24 sets of ECG data with entirely different characteristics, selected from MITBIH database. For assessing the functionality of the different multiwavelets in compressing ECG signals, in addition to known factors such as Compression Ratio (CR), Percent Root Difference (PRD), Distortion (D), Root Mean Square Error (RMSE) in compression literature, we also employed the Cross Correlation (CC) criterion for studying the morphological relations between the reconstructed and the original ECG signal and Signal to reconstruction Noise Ratio (SNR). The simulation results show that the cardbal2 by the means of identity (Id) prefiltering method to be the best effective transformation.

Keywords: ECG compression, Multiwavelet, Prefiltering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
51 Fetal and Infant Mortality in Botucatu City, São Paulo State, Brazil: Evaluation of Maternal - Infant Health Care

Authors: Noda L. M., Salvador I. C, C. M. L. G. Parada, Fonseca C. R. B.

Abstract:

In Brazil, neonatal mortality rate is considered incompatible with the country development conditions, and has been a Public Health concern. Reduction in infant mortality rates has also been part of the Millennium Development Goals, a commitment made by countries, members of the Organization of United Nations (OUN), including Brazil. Fetal mortality rate is considered a highly sensitive indicator of health care quality. Suitable actions, such as good quality and access to health services may contribute positively towards reduction in these fetal and neonatal rates. With appropriate antenatal follow-up and health care during gestation and delivery, some death causes could be reduced or even prevented by means of early diagnosis and intervention, as well as changes in risk factors and interventions. Objectives: To study the quality of maternal and infant health care based on fetal and neonatal mortality, as well as the possible actions to prevent those deaths in Botucatu (Brazil). Methods: Classification of prevention according to the International Classification of Diseases and the modified Wigglesworth´s classification. In order to evaluate adequacy, indicators of quality of antenatal and delivery care were established by the authors. Results: Considering fetal deaths, 56.7% of them occurred before delivery, which reveals possible shortcomings in antenatal care, and 38.2% of them were a result of intra- labor changes, which could be prevented or reduced by adequate obstetric management. These findings were different from those in the group of early neonatal deaths which were also studied. Adequacy of health services showed that antenatal and childbirth care was appropriate for 24% and 33.3% of pregnant women, respectively, which corroborates the results of prevention. These results revealed that shortcomings in obstetric and antenatal care could be the causes of deaths in the study. Early and late neonatal deaths have similar characteristics: 76% could be prevented or reduced mainly by adequate newborn care (52.9%) and adequate health care for gestational women (11.7%). When adequacy of care was evaluated, childbirth and newborn care was adequate in 25.8% and antenatal care was adequate in 16.1%. In conclusion, direct relationship was found between adequacy and quality of care rendered to pregnant women and newborns, and fetal and infant mortality. Moreover, our findings highlight that deaths could be prevented by an adequate obstetric and neonatal management.

Keywords: Fetal Mortality, Infant Mortality, Maternal-Child Health Services, Program Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5069
50 A Trainable Neural Network Ensemble for ECG Beat Classification

Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour

Abstract:

This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study.

Keywords: ECG beat Classification; Combining Classifiers;Premature Ventricular Contraction (PVC); Multi Layer Perceptrons;Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
49 Identification of Cardiac Arrhythmias using Natural Resonance Complex Frequencies

Authors: Moustafa A. Bani-Hasan, Yasser M. Kadah, Fatma M. El-Hefnawi

Abstract:

An electrocardiogram (ECG) feature extraction system based on the calculation of the complex resonance frequency employing Prony-s method is developed. Prony-s method is applied on five different classes of ECG signals- arrhythmia as a finite sum of exponentials depending on the signal-s poles and the resonant complex frequencies. Those poles and resonance frequencies of the ECG signals- arrhythmia are evaluated for a large number of each arrhythmia. The ECG signals of lead II (ML II) were taken from MIT-BIH database for five different types. These are the ventricular couplet (VC), ventricular tachycardia (VT), ventricular bigeminy (VB), and ventricular fibrillation (VF) and the normal (NR). This novel method can be extended to any number of arrhythmias. Different classification techniques were tried using neural networks (NN), K nearest neighbor (KNN), linear discriminant analysis (LDA) and multi-class support vector machine (MC-SVM).

Keywords: Arrhythmias analysis, electrocardiogram, featureextraction, statistical classifiers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
48 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks

Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang

Abstract:

For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.

Keywords: High-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
47 High Performance Electrocardiogram Steganography Based on Fast Discrete Cosine Transform

Authors: Liang-Ta Cheng, Ching-Yu Yang

Abstract:

Based on fast discrete cosine transform (FDCT), the authors present a high capacity and high perceived quality method for electrocardiogram (ECG) signal. By using a simple adjusting policy to the 1-dimentional (1-D) DCT coefficients, a large volume of secret message can be effectively embedded in an ECG host signal and be successfully extracted at the intended receiver. Simulations confirmed that the resulting perceived quality is good, while the hiding capability of the proposed method significantly outperforms that of existing techniques. In addition, our proposed method has a certain degree of robustness. Since the computational complexity is low, it is feasible for our method being employed in real-time applications.

Keywords: Data hiding, ECG steganography, fast discrete cosine transform, 1-D DCT bundle, real-time applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
46 A Novel Compression Algorithm for Electrocardiogram Signals based on Wavelet Transform and SPIHT

Authors: Sana Ktata, Kaïs Ouni, Noureddine Ellouze

Abstract:

Electrocardiogram (ECG) data compression algorithm is needed that will reduce the amount of data to be transmitted, stored and analyzed, but without losing the clinical information content. A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm has achieved notable success in still image coding. We modified the algorithm for the one-dimensional (1-D) case and applied it to compression of ECG data. By this compression method, small percent root mean square difference (PRD) and high compression ratio with low implementation complexity are achieved. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. Compression ratios of up to 48:1 for ECG signals lead to acceptable results for visual inspection.

Keywords: Discrete Wavelet Transform, ECG compression, SPIHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
45 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 334
44 Assessment of Maternal and Embryo-Fetal Toxicity of Copper Oxide Fungicide

Authors: André M. Ornelas, Lise P. Labéjof, Ligia V. Lage dos Santos, Jackson A. Santos

Abstract:

The excessive use of agricultural pesticides and the resulting contamination of food and beds of rivers have been a recurring problem nowadays. Some of these substances can cause changes in endocrine balance and impair reproductive function of human and animal population. In the present study, we evaluated the possible effects of the fungicide cuprous copper oxide Sandoz® on pregnant Wistar rats. They received a daily oral administration of 103 or 3.103 mg/kg of the fungicide from the 6th to the 15th day of gestation. On day 21 of gestation, the maternal and fetal toxicity parameters and indices were determined. The administration of cuprous oxide (Copper Sandoz) in Wistar rats, the period of organogenesis, revealed no evidence of maternal toxicity or embryo at the studied doses.

Keywords: Reproductive toxicity, endocrine disrupter, cupper Sandoz®, rodent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
43 Capacitive ECG Measurement by Conductive Fabric Tape

Authors: Yue-Der Lin, Ya-Hsueh Chien, Yen-Ting Lin, Shih-Fan Wang, Cheng-Lun Tsai, Ching-Che Tsai

Abstract:

Capacitive electrocardiogram (ECG) measurement is an attractive approach for long-term health monitoring. However, there is little literature available on its implementation, especially for multichannel system in standard ECG leads. This paper begins from the design criteria for capacitive ECG measurement and presents a multichannel limb-lead capacitive ECG system with conductive fabric tapes pasted on a double layer PCB as the capacitive sensors. The proposed prototype system incorporates a capacitive driven-body (CDB) circuit to reduce the common-mode power-line interference (PLI). The presented prototype system has been verified to be stable by theoretic analysis and practical long-term experiments. The signal quality is competitive to that acquired by commercial ECG machines. The feasible size and distance of capacitive sensor have also been evaluated by a series of tests. From the test results, it is suggested to be greater than 60 cm2 in sensor size and be smaller than 1.5 mm in distance for capacitive ECG measurement.

Keywords: capacitive driven-body (CDB) circuit, capacitive electrocardiogram (ECG) measurement, capacitive sensor, conductive fabric tape, power-line interference (PLI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3130
42 Mucosal- Submucosal Changes in Rabbit Duodenum during Development

Authors: Elnasharty M. A., Abou-Ghanema I. I., Sayed-Ahmed A., A. Abo Elnour

Abstract:

The sequential morphologic changes of rabbit duodenal mucosa-submucosa were studied from primodial stage to birth in 15 fetuses and during the early days of life in 21 rabbit newborns till maturity using light, scanning and transmission electron microscopy. Fetal rabbit duodenum develops from a simple tube of stratified epithelium to a tube containing villus and intervillus regions of simple columnar epithelium. By day 21 of gestation, the first rudimentary villi were appeared and by day 24 the first true villi were appeared. The Crypts of Lieberkuhn did not appear until birth. By the first day of postnatal life the duodenal glands appeared. The histological maturity of the rabbit small intestine occurred one month after birth. In conclusion, at all stages, the sequential morphologic changes of the rabbit small intestine developed to meet the structural and physiological demands during the fetal stage to be prepared to extra uterine life.

Keywords: Duodenum, mucosa, submucosa, morphogenesis, rabbit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
41 ECG-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
40 Effect of Retinoic Acid on Fetus Reproductive Organ Mice (Mus musculus) Swiss Webster

Authors: Yulia Irnidayanti

Abstract:

Retinoic acid is like a steroid hormone that plays a role in embryo formation, proliferation of spermatogonia cells, ephitelial cells differentiation and organogenesis. Retinoic acid can influences seminiferous tubule formation during embryonic testis development and also play a role in the regulation of ovarian function and female reproductive tract by suppressing the hormones FSH receptor expression. The excessive use of retinoic acid caused abnormalities in the fetus. The result showed that there is the influence of retinoic acid on the developmet of mice fetal testes, for examples disruption of the formation of seminiferous tubules and tubules seemed to be hollow, spermatogonia cells are relatively few in number and caused Leydig cells count relatively more. While in the female fetus does not caused the formation of primordial follicles and disrupted the development of germinal ephitelial cells of fetal ovaries of female mice (mus musculus) Swiss Webster.

Keywords: Retinoic acid, Leydig cell, Spermatogonia cells, Semin- ferous tubules, Primordial follicles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
39 A Combinatorial Model for ECG Interpretation

Authors: Costas S. Iliopoulos, Spiros Michalakopoulos

Abstract:

A new, combinatorial model for analyzing and inter- preting an electrocardiogram (ECG) is presented. An application of the model is QRS peak detection. This is demonstrated with an online algorithm, which is shown to be space as well as time efficient. Experimental results on the MIT-BIH Arrhythmia database show that this novel approach is promising. Further uses for this approach are discussed, such as taking advantage of its small memory requirements and interpreting large amounts of pre-recorded ECG data.

Keywords: Combinatorics, ECG analysis, MIT-BIH Arrhythmia Database, QRS Detection, String Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
38 Analysis of Noise Level Effects on Signal-Averaged Electrocardiograms

Authors: Chun-Cheng Lin

Abstract:

Noise level has critical effects on the diagnostic performance of signal-averaged electrocardiogram (SAECG), because the true starting and end points of QRS complex would be masked by the residual noise and sensitive to the noise level. Several studies and commercial machines have used a fixed number of heart beats (typically between 200 to 600 beats) or set a predefined noise level (typically between 0.3 to 1.0 μV) in each X, Y and Z lead to perform SAECG analysis. However different criteria or methods used to perform SAECG would cause the discrepancies of the noise levels among study subjects. According to the recommendations of 1991 ESC, AHA and ACC Task Force Consensus Document for the use of SAECG, the determinations of onset and offset are related closely to the mean and standard deviation of noise sample. Hence this study would try to perform SAECG using consistent root-mean-square (RMS) noise levels among study subjects and analyze the noise level effects on SAECG. This study would also evaluate the differences between normal subjects and chronic renal failure (CRF) patients in the time-domain SAECG parameters. The study subjects were composed of 50 normal Taiwanese and 20 CRF patients. During the signal-averaged processing, different RMS noise levels were adjusted to evaluate their effects on three time domain parameters (1) filtered total QRS duration (fQRSD), (2) RMS voltage of the last QRS 40 ms (RMS40), and (3) duration of the low amplitude signals below 40 μV (LAS40). The study results demonstrated that the reduction of RMS noise level can increase fQRSD and LAS40 and decrease the RMS40, and can further increase the differences of fQRSD and RMS40 between normal subjects and CRF patients. The SAECG may also become abnormal due to the reduction of RMS noise level. In conclusion, it is essential to establish diagnostic criteria of SAECG using consistent RMS noise levels for the reduction of the noise level effects.

Keywords: Signal-averaged electrocardiogram, Ventricular latepotentials, Chronic renal failure, Noise level effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
37 Wavelet Compression of ECG Signals Using SPIHT Algorithm

Authors: Mohammad Pooyan, Ali Taheri, Morteza Moazami-Goudarzi, Iman Saboori

Abstract:

In this paper we present a novel approach for wavelet compression of electrocardiogram (ECG) signals based on the set partitioning in hierarchical trees (SPIHT) coding algorithm. SPIHT algorithm has achieved prominent success in image compression. Here we use a modified version of SPIHT for one dimensional signals. We applied wavelet transform with SPIHT coding algorithm on different records of MIT-BIH database. The results show the high efficiency of this method in ECG compression.

Keywords: ECG compression, wavelet, SPIHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
36 Sickle Cell Disease: Review of Managements in Pregnancy and the Outcome in Ampang Hospital, Selangor

Authors: Z. Nurzaireena, K. Azalea, T. Azirawaty, S. Jameela, G. Muralitharan

Abstract:

The aim of this study is the review of the management practices of sickle cell disease patients during pregnancy, as well as the maternal and neonatal outcome at Ampang Hospital, Selangor. The study consisted of a review of pregnant patients with sickle cell disease under follow up at the Hematology Clinic, Ampang Hospital over the last seven years to assess their management and maternal-fetal outcome. The results of the review show that Ampang Hospital is considered the public hematology centre for sickle cell disease and had successfully managed three pregnancies throughout the last seven years. Patients’ presentations, managements and maternal-fetal outcome were compared and reviewed for academic improvements. All three patients were seen very early in their pregnancy and had been given a regime of folic acid, antibiotics and thrombo-prophylactic drugs. Close monitoring of maternal and fetal well being was done by the hematologists and obstetricians. Among the patients, there were multiple admissions during the pregnancy for either a painful sickle cell bone crisis, haemolysis following an infection and anemia requiring phenotype- matched blood and exchange transfusions. Broad spectrum antibiotics coverage during and infection, hydration, pain management and venous-thrombolism prophylaxis were mandatory. The pregnancies managed to reach near term in the third trimester but all required emergency caesarean section for obstetric indications. All pregnancies resulted in live births with good fetal outcome. During post partum all were nursed closely in the high dependency units for further complications and were discharged well. Post partum follow up and contraception counseling was comprehensively given for future pregnancies. Sickle cell disease is uncommonly seen in the East, especially in the South East Asian region, yet more cases are seen in the current decade due to improved medical expertise and advance medical laboratory technologies. Pregnancy itself is a risk factor for sickle cell patients as increased thrombosis event and risk of infections can lead to multiple crisis, haemolysis, anemia and vaso-occlusive complications including eclampsia, cerebrovasular accidents and acute bone pain. Patients mostly require multiple blood product transfusions thus phenotype-matched blood is required to reduce the risk of alloimmunozation. Emphasizing the risks and complications in preconception counseling and establishing an ultimate pregnancy plan would probably reduce the risk of morbidity and mortality to the mother and unborn child. Early management for risk of infection, thromboembolic events and adequate hydration is mandatory. A holistic approach involving multidisciplinary team care between the hematologist, obstetricians, anesthetist, neonatologist and close nursing care for both mother and baby would ensure the best outcome. In conclusion, sickle cell disease by itself is a high risk medical condition and pregnancy would further amplify the risk. Thus, close monitoring with combine multidisciplinary care, counseling and educating the patients are crucial in achieving the safe outcome.

Keywords: Anemia, haemoglobinopathies, pregnancy, sickle cell disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
35 Denosing ECG using Translation Invariant Multiwavelet

Authors: Jeong Yup Han, Su Kyung Lee, Hong Bae Park

Abstract:

In this paper, we propose a method to reduce the various kinds of noise while gathering and recording the electrocardiogram (ECG) signal. Because of the defects of former method in the noise elimination of ECG signal, we use translation invariant (TI) multiwavelet denoising method to the noise elimination. The advantage of the proposed method is that it may not only remain the geometrical characteristics of the original ECG signal and keep the amplitudes of various ECG waveforms efficiently, but also suppress impulsive noise to some extent. The simulation results indicate that the proposed method are better than former removing noise method in aspects of remaining geometrical characteristics of ECG signal and the signal-to-noise ratio (SNR).

Keywords: ECG, TI multiwavelet, denoise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
34 Optimal ECG Sampling Frequency for Multiscale Entropy-Based HRV

Authors: Manjit Singh

Abstract:

Multiscale entropy (MSE) is an extensively used index to provide a general understanding of multiple complexity of physiologic mechanism of heart rate variability (HRV) that operates on a wide range of time scales. Accurate selection of electrocardiogram (ECG) sampling frequency is an essential concern for clinically significant HRV quantification; high ECG sampling rate increase memory requirements and processing time, whereas low sampling rate degrade signal quality and results in clinically misinterpreted HRV. In this work, the impact of ECG sampling frequency on MSE based HRV have been quantified. MSE measures are found to be sensitive to ECG sampling frequency and effect of sampling frequency will be a function of time scale.

Keywords: ECG, heart rate variability, HRV, multiscale entropy, sampling frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
33 Automated Segmentation of ECG Signals using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Mohammad Hassan Moradi, Sohrab Saberi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG-s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna-s two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna-s method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise DerivativeDynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
32 Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Sohrab Saberi, Mohammad Hassan Moradi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
31 An Improved QRS Complex Detection for Online Medical Diagnosis

Authors: I. L. Ahmad, M. Mohamed, N. A. Ab. Ghani

Abstract:

This paper presents the work of signal discrimination specifically for Electrocardiogram (ECG) waveform. ECG signal is comprised of P, QRS, and T waves in each normal heart beat to describe the pattern of heart rhythms corresponds to a specific individual. Further medical diagnosis could be done to determine any heart related disease using ECG information. The emphasis on QRS Complex classification is further discussed to illustrate the importance of it. Pan-Tompkins Algorithm, a widely known technique has been adapted to realize the QRS Complex classification process. There are eight steps involved namely sampling, normalization, low pass filter, high pass filter (build a band pass filter), derivation, squaring, averaging and lastly is the QRS detection. The simulation results obtained is represented in a Graphical User Interface (GUI) developed using MATLAB.

Keywords: ECG, Pan Tompkins Algorithm, QRS Complex, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573